JPH09306407A - Scanning electron microscope - Google Patents

Scanning electron microscope

Info

Publication number
JPH09306407A
JPH09306407A JP8124345A JP12434596A JPH09306407A JP H09306407 A JPH09306407 A JP H09306407A JP 8124345 A JP8124345 A JP 8124345A JP 12434596 A JP12434596 A JP 12434596A JP H09306407 A JPH09306407 A JP H09306407A
Authority
JP
Japan
Prior art keywords
scanning
electron
electron beam
electron microscope
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8124345A
Other languages
Japanese (ja)
Inventor
Noriyuki Kaneoka
則幸 兼岡
Kashio Kageyama
甲子男 影山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8124345A priority Critical patent/JPH09306407A/en
Publication of JPH09306407A publication Critical patent/JPH09306407A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an equipment, which can detect the optimal condition of a focal point of a lens so as to accurately perform the automatic focal point control in a short time, by providing a deflecting signal generating means, which is formed of an oscillator a scanning counter, a conversion table and a D/A converter. SOLUTION: Electron beam 2 emitted from an electron gun 1 is throttled narrow by an electron lens 3. The electron lens 3 has a lens working function of a magnetic field to be generated by flowing the current in a coil, and an electron lens control circuit 10 controls the current of the coil so that the electron lens 3 works at a focal distance indicated by a control CPU 20. The electron beam 2, which is throttled narrow by the electron lens 3, is deflected by the two-dimensional scanning in a direction X and a direction Y of deflecting units 4, 5. Deflecting amplifiers 11, 12 controls the current to be flowed to coils of the deflecting units 4, 5. When a sample is irradiated with the electron beam 2, secondary grains 8 such as secondary electron is generated in response to the shape and the material of the sample. The secondary grains 8 are detected by a secondary grain detection unit 9 and amplified, and stored in an image memory 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は走査電子顕微鏡に関
する。
[0001] The present invention relates to a scanning electron microscope.

【0002】[0002]

【従来の技術】電子顕微鏡は試料の微細な構造を観察す
るための有効なツールとして多くの研究開発分野で用い
られている。図2に従来の一般的な走査電子顕微鏡の構
成を示し、動作を簡単に説明する。電子銃1から放出さ
れた電子線2を電子レンズ3で細く絞り、さらに、偏向
器4と偏向器5とで二次元の走査偏向を行い試料6に照
射させる。試料6に電子線2が照射されると試料6の形
状や材質に従った二次電子等の二次粒子8が発生する。
二次粒子8を二次粒子検出器9で検出増幅した後、A/
D変換器13でディジタル値の画像データに変換し、画
像メモリ14に記憶する。画像メモリ14に記憶した画
像データはD/A変換器15で映像信号に変換し、ディ
スプレイ16に走査電子顕微鏡像として表示する。画像
メモリ制御回路17は電子線2の走査に同期した画像メ
モリ14へ書き込みと映像信号に同期した画像メモリ1
4の読み出しを行うように画像メモリ14のアドレスバ
ス,データバス,制御信号を制御する。走査偏向信号発
生回路27は、偏向アンプ11,12に与える二次元偏
向走査信号である鋸歯状波の発生と画像メモリ14の書
き込みアドレスを画像メモリ制御回路17に与える。
2. Description of the Related Art An electron microscope is used in many research and development fields as an effective tool for observing a fine structure of a sample. FIG. 2 shows the configuration of a conventional general scanning electron microscope, and the operation will be briefly described. The electron beam 2 emitted from the electron gun 1 is narrowed down by the electron lens 3, and the deflector 4 and the deflector 5 perform two-dimensional scanning deflection to irradiate the sample 6. When the sample 6 is irradiated with the electron beam 2, secondary particles 8 such as secondary electrons according to the shape and material of the sample 6 are generated.
After the secondary particles 8 are detected and amplified by the secondary particle detector 9, A /
The D converter 13 converts the digital value into image data and stores it in the image memory 14. The image data stored in the image memory 14 is converted into a video signal by the D / A converter 15 and displayed on the display 16 as a scanning electron microscope image. The image memory control circuit 17 writes in the image memory 14 synchronized with the scanning of the electron beam 2 and the image memory 1 synchronized with the video signal.
The address bus, the data bus, and the control signal of the image memory 14 are controlled so that 4 is read out. The scanning deflection signal generation circuit 27 supplies the image memory control circuit 17 with generation of a sawtooth wave which is a two-dimensional deflection scanning signal given to the deflection amplifiers 11 and 12 and a write address of the image memory 14.

【0003】このような走査電子顕微鏡で、電子レンズ
3の焦点条件を自動的に最適値に設定する自動焦点(オ
ートフォーカス)制御は、電子レンズ3の条件を変化さ
せた複数枚のフレームの走査を行い、得られる二次粒子
の検出信号を焦点評価値検出回路19で評価し、最適値
を電子レンズの条件に設定するものであった。例として
特開平5−190132 号公報「走査型電子顕微鏡の自動焦点
合わせ方法」がある。
In such a scanning electron microscope, the autofocus control for automatically setting the focus condition of the electron lens 3 to an optimum value is performed by scanning a plurality of frames in which the condition of the electron lens 3 is changed. Then, the obtained secondary particle detection signal is evaluated by the focus evaluation value detection circuit 19, and the optimum value is set as the condition of the electron lens. As an example, there is JP-A-5-190132 "Automatic focusing method for a scanning electron microscope".

【0004】[0004]

【発明が解決しようとする課題】従来の走査電子顕微鏡
で、走査偏向信号発生回路27は、四角形の平面の走査
を行う偏向信号を発生するもので、複数枚のフレームの
走査電子顕微鏡像を取り込む自動焦点制御が終了するま
でに数十秒の時間を要する問題があった。また、処理時
間を短縮するために面の走査を行わないで、円走査,8
の字走査,渦巻走査等の走査を行う方法があるが、特殊
な走査をするための信号発生回路が必要であったり、電
子線の走査位置のみの試料の状態に依存するために最適
な焦点検出ができない問題があった。
In the conventional scanning electron microscope, the scanning deflection signal generation circuit 27 generates a deflection signal for scanning a quadrangular plane, and takes in scanning electron microscope images of a plurality of frames. There is a problem that it takes several tens of seconds until the automatic focus control ends. Also, in order to reduce the processing time, the surface is not scanned,
There are methods to perform scanning such as cross-shaped scanning and spiral scanning, but the optimum focus is required because a signal generation circuit for special scanning is required, or the scanning position of the electron beam only depends on the state of the sample. There was a problem that could not be detected.

【0005】本発明の目的は、電子レンズの焦点の最適
条件を検出する自動焦点制御を短時間に精度良く行える
電子線の走査信号発生手段と自動焦点制御方法により、
快適な操作環境が得られる走査電子顕微鏡を提供するこ
とにある。
An object of the present invention is to provide an electron beam scanning signal generating means and an automatic focus control method capable of accurately performing automatic focus control for detecting the optimum condition of the focus of an electron lens in a short time.
An object of the present invention is to provide a scanning electron microscope capable of obtaining a comfortable operating environment.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、発振器と、走査カウンタと、変換テーブ
ルと、D/Aコンバータとで構成する偏向信号発生手段
を備え、少量の画像データを得るための低分解能走査と
多量の画像データを得るための高分解能走査の複数の電
子線の走査モードを有し、低分解能走査により自動焦点
制御を行った後に高分解能走査により再度自動焦点制御
を行う。さらに、二次粒子が効率良く検出できる走査速
度となるように発振器が任意の発振周波数で発振する。
さらに、走査カウンタが走査モードと走査範囲に応じて
計数範囲を設定できる。さらに、変換テーブルが書き換
え可能で、電子線の走査モードに応じた変換データを設
定する。
In order to achieve the above object, the present invention comprises a deflection signal generating means composed of an oscillator, a scanning counter, a conversion table and a D / A converter, and a small amount of image data. It has a scanning mode of multiple electron beams of low resolution scanning for obtaining high resolution and high resolution scanning for obtaining a large amount of image data, and automatic focus control is performed again by high resolution scanning after performing automatic focus control by low resolution scanning. I do. Further, the oscillator oscillates at an arbitrary oscillation frequency so that the scanning speed is such that the secondary particles can be detected efficiently.
Further, the scanning counter can set the counting range according to the scanning mode and the scanning range. Furthermore, the conversion table is rewritable and conversion data is set according to the electron beam scanning mode.

【0007】[0007]

【発明の実施の形態】図1は本発明の実施例である走査
電子顕微鏡のブロック図である。電子銃1から放出され
た電子線2を電子レンズ3で細く絞る。電子レンズ3
は、コイルに電流を流すことよって発生した磁界のレン
ズ作用を用いており、電子レンズ制御回路10は、電子
レンズ3のレンズ作用が制御CPU20の指示する焦点
距離になるようにコイルの電流を制御する。偏向器4,
5は、電子レンズ3で細く絞った電子線2をX方向とY
方向の二次元で走査偏向する。偏向器4,5もコイルに
電流を流すことよって発生した磁界により電子線2の偏
向を行い、偏向アンプ11,12は、偏向器4,5のコ
イルに流す電流を制御する。試料6に電子線2が照射さ
れると試料6の形状や材質によって二次電子等の二次粒
子8が発生する。この二次粒子8を二次粒子検出器9で
検出増幅した後、A/D変換器13でディジタル値の画
像データに変換し、画像メモリ14に記憶する。画像メ
モリ14から読み出した画像データはD/A変換器15
で映像信号に変換し、ディスプレイ16に走査電子顕微
鏡像を表示する。画像メモリ14は、記憶する画像デー
タの最大サイズを1,024画素×1,024画素、階調
を8ビットとすると1M(1,048,576)バイトのサイズ
のメモリで構成する。画像メモリ制御回路17は、偏向
信号発生手段21が発生する電子線2の走査信号に同期
したアドレスへの書き込みと映像同期信号発生回路18
が発生する映像信号に同期したアドレスの読み出しを行
うように画像メモリ14のアドレスバス,データバス,
制御信号を制御する。偏向信号発生手段21は、発振器
22,走査カウンタ23,変換テーブル24、および、
D/A変換器25,26で構成し、電子線の走査偏向信
号を発生し、偏向アンプ11,12に与える。焦点評価
値検出回路19は、得られた画像データから焦点の状態
の評価値を検出する。
FIG. 1 is a block diagram of a scanning electron microscope which is an embodiment of the present invention. The electron beam 2 emitted from the electron gun 1 is narrowed down by the electron lens 3. Electronic lens 3
Uses the lens action of the magnetic field generated by passing a current through the coil, and the electron lens control circuit 10 controls the current of the coil so that the lens action of the electron lens 3 becomes the focal length instructed by the control CPU 20. To do. Deflector 4,
Reference numeral 5 designates the electron beam 2 narrowed down by the electron lens 3 in the X direction and the Y direction.
Scan and deflect in two dimensions. The deflectors 4 and 5 also deflect the electron beam 2 by the magnetic field generated by flowing a current through the coils, and the deflection amplifiers 11 and 12 control the currents flowing through the coils of the deflectors 4 and 5. When the sample 6 is irradiated with the electron beam 2, secondary particles 8 such as secondary electrons are generated depending on the shape and material of the sample 6. The secondary particles 8 are detected and amplified by the secondary particle detector 9, converted into digital value image data by the A / D converter 13, and stored in the image memory 14. The image data read from the image memory 14 is the D / A converter 15.
Is converted into a video signal, and a scanning electron microscope image is displayed on the display 16. The image memory 14 is composed of a memory having a maximum size of 1,024 pixels × 1,024 pixels of image data to be stored and a size of 1 M (1,048,576) bytes when the gradation is 8 bits. The image memory control circuit 17 writes to the address synchronized with the scanning signal of the electron beam 2 generated by the deflection signal generation means 21 and the video synchronization signal generation circuit 18.
The address bus of the image memory 14, the data bus,
Control the control signal. The deflection signal generating means 21 includes an oscillator 22, a scanning counter 23, a conversion table 24, and
It is composed of D / A converters 25 and 26, generates an electron beam scanning deflection signal, and supplies it to the deflection amplifiers 11 and 12. The focus evaluation value detection circuit 19 detects the evaluation value of the focus state from the obtained image data.

【0008】図3に偏向信号発生手段21の構成例を示
す。発振器22は、基本発振器30で発生したパルスを
分周器31で制御CPU20が指定する分周比で分周し
たパルスを出力する。分周比を設定することによって任
意の走査速度が実現できる。基本周波数を20MHz,
X方向の画素数を1,024 画素,分周比を1,電子線
の帰線期間を256画素分の12.8μ 秒とした場合、
1ラインの走査時間は(1,024+256)÷20MH
zで得られる64μ秒となり、NTSCと呼ばれる映像
信号の水平周期にほぼ等しい走査速度となる。また、分
周比を313,帰線期間を256画素分とした場合、1
ラインの走査時間は(1,024+256)×313÷2
0MHzで得られる20m秒となり、商用電源の50H
zの周期にほぼ等しい走査速度が得られる。このように
分周比を設定することによって走査速度を変化させるこ
とができる。走査カウンタ23は、2組のカウンタ3
2,33と比較器34,35で構成する。カウンタ33
は水平画素数1024画素の画像データと帰線期間を得
るために2048まで計数することができる11ビット
出力のカウンタで、カウンタ32は垂直画素数1024
画素を得るために1024まで計数することができる10ビ
ット出力のカウンタである。カウンタ37,36の計数
範囲を比較器35,34のレジスタに設定し、カウンタ
33,32のリセットを解除すると発振器22が出力す
るパルスの計数を開始する。カウンタ33の出力が設定
した計数範囲の値になると比較器35はカウンタ33を
リセットするとともにカウンタ32をカウントアップさ
せる。カウンタ32が設定した計数範囲の値になると比
較器34はカウンタ32,33をリセットし、次のフレ
ームの走査を開始する。変換テーブル24は、2組のメ
モリ36,37で構成し、カウンタ32,33の出力を
変換してA/D変換器25,26に与える。メモリ37
は、入力が11ビットで出力が10ビットの2048×
10ビットのサイズで、メモリ36は、入力が10ビッ
トで出力が10ビットの1024×10ビットのサイズ
である。変換テーブル24の変換データは、アドレスバ
ス,データバス,制御信号をカウンタ23側から制御C
PU20側に切り替えて制御CPU20が書き込む。D
/A変換器25,26は、変換テーブル24のディジタ
ルの出力をアナログの信号に変換し、偏向アンプ11,
12に偏向信号として与える。
FIG. 3 shows a configuration example of the deflection signal generating means 21. The oscillator 22 outputs a pulse generated by dividing the pulse generated by the basic oscillator 30 by the frequency divider 31 at a frequency division ratio designated by the control CPU 20. Arbitrary scanning speed can be realized by setting the frequency division ratio. The basic frequency is 20MHz,
When the number of pixels in the X direction is 1,024 pixels, the division ratio is 1, and the electron beam retrace period is 12.8 μs for 256 pixels,
The scanning time for one line is (1,024 + 256) / 20MH
The scanning speed is 64 μsec obtained by z, and the scanning speed is almost equal to the horizontal period of the video signal called NTSC. When the frequency division ratio is 313 and the blanking period is 256 pixels, 1
The line scanning time is (1,024 + 256) × 313/2
20ms obtained at 0MHz, 50H of commercial power supply
A scanning speed approximately equal to the period of z is obtained. By setting the frequency division ratio in this way, the scanning speed can be changed. The scanning counter 23 includes two sets of counters 3.
2, 33 and comparators 34, 35. Counter 33
Is an 11-bit output counter capable of counting up to 2048 in order to obtain image data having 1024 horizontal pixels and a blanking period. The counter 32 has 1024 vertical pixels.
It is a 10-bit output counter that can count up to 1024 to get pixels. When the count ranges of the counters 37 and 36 are set in the registers of the comparators 35 and 34 and the reset of the counters 33 and 32 is released, the counting of the pulses output by the oscillator 22 is started. When the output of the counter 33 reaches a value within the set counting range, the comparator 35 resets the counter 33 and counts up the counter 32. When the counter 32 reaches the value within the set counting range, the comparator 34 resets the counters 32 and 33 and starts scanning the next frame. The conversion table 24 is composed of two sets of memories 36 and 37, converts the outputs of the counters 32 and 33 and gives them to the A / D converters 25 and 26. Memory 37
Is 2048 × with 11-bit input and 10-bit output
The memory 36 has a size of 10 bits, and the memory 36 has a size of 1024 × 10 bits with 10 bits for input and 10 bits for output. The conversion data of the conversion table 24 includes an address bus, a data bus, and a control signal from the counter 23 side to control C.
The control CPU 20 writes the data by switching to the PU 20 side. D
The / A converters 25 and 26 convert the digital output of the conversion table 24 into an analog signal, and the deflection amplifier 11,
12 as a deflection signal.

【0009】図4に焦点評価値検出回路19の構成例を
示す。ここでは画像データの微分値の絶対値の総和が最
大となる場合を最適な焦点が得られたと判断している。
A/D変換器13で得た画像データから先に得て遅延レ
ジスタ40によって遅延させた画像データを減算器41
で減算して微分値を求める。次に、絶対値回路42で微
分値が負の場合に2の補数を求めて絶対値にする。さら
に、加算器43とレジスタ44によって総和を求める。
このように求めた評価値を制御CPU20が読み取る。
遅延レジスタ40の遅延を1ライン走査分以上とし、Y
軸方向の微分値を求めたり、減算器41を空間微分を求
める空間フィルタとすることもできる。以上のような構
成による自動焦点制御について以下に説明する。
FIG. 4 shows a configuration example of the focus evaluation value detection circuit 19. Here, it is determined that the optimum focus is obtained when the total sum of the absolute values of the differential values of the image data is maximum.
The subtractor 41 subtracts the image data previously obtained from the image data obtained by the A / D converter 13 and delayed by the delay register 40.
To obtain the differential value. Next, in the absolute value circuit 42, when the differential value is negative, the two's complement is calculated and set to the absolute value. Further, the adder 43 and the register 44 determine the total sum.
The control CPU 20 reads the evaluation value thus obtained.
The delay of the delay register 40 is set to one line scanning or more, and Y
Alternatively, the differential value in the axial direction may be obtained, and the subtractor 41 may be a spatial filter that obtains the spatial differential. The automatic focus control with the above configuration will be described below.

【0010】第1の自動焦点制御の例は、まず、変換テ
ーブル24のメモリ36,37に図5(a),(b)に示
すような入力Xi,Yiに対して出力Xo,Yoがそれ
ぞれN,M倍大きくなるような変換データを設定し、走
査カウンタ23のカウンタ34,35の計数範囲を10
24画素×1024画素のそれぞれ1/N,1/Mとな
るように設定すると電子線の走査は、図5(c)のよう
に間引いた低分解能の全面走査となる。発振器19の周
波数が同じであれば1フレームの走査を行う時間は1/
(N×M)に短くなる。この低分解能走査により電子レ
ンズ3の励磁条件を変化させた複数枚のフレームの走査
を行い、焦点評価値検出回路19によって焦点の評価値
を検出し、電子レンズ3の励磁条件の最適値を求める。
次に、変換テーブル24のメモリ36,37に図6
(a),(b)に示すような高分解能の全面走査を行うた
めの変換データを設定する。そして、電子レンズ3の励
磁条件を低分解能走査で得た最適値の近くで変化させた
複数枚のフレームの走査を行い、焦点評価値検出回路1
9によって焦点の評価値を検出し、電子レンズ3の励磁
条件の最適値を求める。このような方法により短時間で
精度の良い自動焦点制御ができる。ここでは、2段階の
制御について説明したが、多段階の細かい制御を行うこ
ともできる。
In the first automatic focus control example, first, in the memories 36 and 37 of the conversion table 24, the outputs Xo and Yo are respectively input to the inputs Xi and Yi as shown in FIGS. 5A and 5B. The conversion data is set to be N or M times larger, and the count ranges of the counters 34 and 35 of the scanning counter 23 are set to 10
When 24 pixels × 1024 pixels are set to be 1 / N and 1 / M, respectively, the electron beam scanning is a low-resolution whole-surface scanning thinned as shown in FIG. 5C. If the frequency of the oscillator 19 is the same, the time for scanning one frame is 1 /
(N × M). By this low resolution scanning, a plurality of frames in which the excitation condition of the electron lens 3 is changed are scanned, the focus evaluation value detection circuit 19 detects the focus evaluation value, and the optimum value of the excitation condition of the electron lens 3 is obtained. .
Next, in the memories 36 and 37 of the conversion table 24 shown in FIG.
The conversion data for performing high-resolution full-screen scanning as shown in (a) and (b) is set. Then, the focus evaluation value detection circuit 1 is scanned by scanning a plurality of frames in which the excitation condition of the electron lens 3 is changed near the optimum value obtained by the low resolution scanning.
The focus evaluation value is detected by 9 and the optimum value of the excitation condition of the electron lens 3 is obtained. With such a method, accurate automatic focus control can be performed in a short time. Here, the two-step control has been described, but it is also possible to perform multi-step fine control.

【0011】高速度の走査を行うと試料の単位面積当り
の電子線の照射量が少なくなり、二次粒子検出信号の雑
音の影響が大きくなる。高品質の画像データを得ようと
すると低速度の走査を行う必要がある。第2の自動焦点
制御の例は、まず、高速度の走査により電子レンズ3の
励磁条件を変化させた複数枚のフレームの走査を行い、
焦点評価値検出回路19によって焦点の評価値を検出
し、電子レンズ3の励磁条件の最適値を求める。次に、
低速度の走査を行い電子レンズ3の励磁条件を高速度の
走査で得られた最適値の近傍で変化させた複数枚のフレ
ームの走査を行い、焦点評価値検出回路19によって焦
点の評価値を検出し、電子レンズ3の励磁条件の最適値
を求める。このような方法により短時間で精度の良い自
動焦点制御ができる。走査速度の制御は、偏向信号発生
手段21の発振器22の分周器31の分周比の設定を制
御CPU20が行うことで容易に実現できる。また、焦
点評価値検出回路19に効率的な信号が入力できる走査
速度の最適値を評価値から求めることもできる。
When high-speed scanning is performed, the irradiation amount of the electron beam per unit area of the sample decreases, and the influence of noise on the secondary particle detection signal increases. In order to obtain high quality image data, it is necessary to scan at low speed. In the second example of automatic focus control, first, a plurality of frames in which the excitation conditions of the electron lens 3 are changed by high-speed scanning are scanned,
The focus evaluation value detection circuit 19 detects the focus evaluation value, and obtains the optimum value of the excitation condition of the electron lens 3. next,
Scanning is performed at a low speed to scan a plurality of frames in which the excitation condition of the electron lens 3 is changed in the vicinity of the optimum value obtained by the high-speed scanning, and the focus evaluation value detection circuit 19 determines the focus evaluation value. Then, the optimum value of the excitation condition of the electron lens 3 is obtained. With such a method, accurate automatic focus control can be performed in a short time. The control of the scanning speed can be easily realized by the control CPU 20 setting the frequency division ratio of the frequency divider 31 of the oscillator 22 of the deflection signal generating means 21. Further, the optimum value of the scanning speed at which an efficient signal can be input to the focus evaluation value detection circuit 19 can be obtained from the evaluation value.

【0012】観察する試料6に高低差がある場合に自動
焦点制御を行うと焦点の観察したい部分の焦点が合わな
い問題がある。第3の自動焦点制御の例は、観察したい
部分の最適焦点が得られる例である。ある程度の画像が
得られた時点で、図7に示すようにディスプレイ16に
表示した画像上で太線で示したように操作者が範囲50
を指定する。そして、その範囲50のみに電子線の走査
を行い自動焦点制御を行うようにすれば良い。これは、
図8に示すように変換テーブル24のメモリ36,37
の変換データをA,Bから始まる指定範囲のみを走査す
るように設定し、走査カウンタ23のカウンタ34,3
5の計数範囲を有効な走査期間C,Dに帰線期間を加え
た範囲とすることで実現できる。走査範囲X方向の長さ
が1/N,Y方向の長さが1/Mとすると1フレームの
画像を取り込む走査時間は、帰線期間を除くと1/(N
×M)となる。このような方法により自動焦点制御を短
時間にすることと観察したい部分の精度の良い焦点合わ
せが可能となる。
When the automatic focus control is performed when the sample 6 to be observed has a height difference, there is a problem that the portion to be observed is out of focus. The third example of automatic focus control is an example in which the optimum focus of the portion to be observed is obtained. When a certain amount of image is obtained, as shown by the thick line on the image displayed on the display 16 as shown in FIG.
Is specified. Then, only the range 50 may be scanned with an electron beam to perform automatic focus control. this is,
As shown in FIG. 8, the memories 36 and 37 of the conversion table 24 are
The conversion data is set to scan only a specified range starting from A and B, and the counters 34 and 3 of the scanning counter 23 are scanned.
This can be realized by setting the counting range of 5 to a range in which the blanking period is added to the effective scanning periods C and D. If the length of the scanning range in the X direction is 1 / N and the length in the Y direction is 1 / M, the scanning time for capturing an image of one frame is 1 / (N except the blanking period.
XM). By such a method, it becomes possible to shorten the automatic focus control and focus the portion to be observed with high accuracy.

【0013】第4の自動焦点制御の例は、面の走査のみ
ならず任意な線走査を行う方法である。図9に示すよう
に走査カウンタ23のカウンタ33の出力を変換テーブ
ル24のメモリ37,36の両方に入力し、変換テーブ
ル24のメモリ37,36の変換データを図10
(a),(b)に示すような値を設定する。すると電子線
の走査は図10(c)に示すようなX方向の直径が1/
N,Y方向の直径が1/Mの円を描く。このような走査
によって自動焦点制御を行うこともできる。変換テーブ
ル24の変換データによって8の字走査や渦巻き走査を
容易に実現できる。変換テーブル24はサイズを大きく
し、予めいくつかの走査モードの変換データを書き込ん
でアドレスを制御することで走査モードを選択すること
もできる。また、走査カウンタ23のカウンタ33,3
2の両方の出力を変換テーブル24のメモリ37,36
の両方に入力し、変換テーブル24のメモリ37,36
のサイズを対応する大きさにすると1ラインの走査のみ
ならず複雑な面走査を実現することもできる。
The fourth example of automatic focus control is a method of performing not only surface scanning but also arbitrary line scanning. As shown in FIG. 9, the output of the counter 33 of the scanning counter 23 is input to both of the memories 37 and 36 of the conversion table 24, and the conversion data of the memories 37 and 36 of the conversion table 24 is converted into FIG.
The values shown in (a) and (b) are set. Then, the scanning with the electron beam has a diameter of 1 / X in the X direction as shown in FIG.
Draw a circle whose diameter in the N and Y directions is 1 / M. Automatic focus control can also be performed by such scanning. By the conversion data of the conversion table 24, it is possible to easily realize the figure 8 scanning and the spiral scanning. It is also possible to select the scanning mode by increasing the size of the conversion table 24 and writing conversion data of some scanning modes in advance to control the address. Further, the counters 33, 3 of the scanning counter 23
Both outputs of 2 are stored in the memories 37 and 36 of the conversion table 24.
To the memory 37, 36 of the conversion table 24.
If the size of the above is set to a corresponding size, not only the scanning of one line but also the complicated surface scanning can be realized.

【0014】[0014]

【発明の効果】本発明によれば、電子レンズの自動焦点
制御が短時間に精度良く行え快適な操作環境が得られる
走査電子顕微鏡を提供できる。
According to the present invention, it is possible to provide a scanning electron microscope in which automatic focus control of an electron lens can be accurately performed in a short time and a comfortable operating environment can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の走査電子顕微鏡のブロック
図。
FIG. 1 is a block diagram of a scanning electron microscope according to an embodiment of the present invention.

【図2】従来の走査電子顕微鏡のブロック図。FIG. 2 is a block diagram of a conventional scanning electron microscope.

【図3】偏向信号発生手段のブロック図。FIG. 3 is a block diagram of deflection signal generating means.

【図4】焦点評価値検出手段のブロック図。FIG. 4 is a block diagram of focus evaluation value detection means.

【図5】低分解能走査の変換テーブルと電子線の走査を
示す説明図。
FIG. 5 is an explanatory diagram showing a conversion table for low resolution scanning and scanning with an electron beam.

【図6】高分解能走査の変換テーブルと電子線の走査を
示す説明図。
FIG. 6 is an explanatory diagram showing a conversion table for high resolution scanning and scanning with an electron beam.

【図7】走査の範囲指定を示す説明図。FIG. 7 is an explanatory diagram showing designation of a scanning range.

【図8】指定範囲走査の変換テーブルと電子線の走査を
示す説明図。
FIG. 8 is an explanatory view showing a conversion table of designated range scanning and scanning of an electron beam.

【図9】円走査の偏向信号発生手段の構成例を示すブロ
ック図。
FIG. 9 is a block diagram showing a configuration example of a deflection signal generating means for circular scanning.

【図10】円走査の変換テーブルと電子線の走査を示す
説明図。
FIG. 10 is an explanatory diagram showing a conversion table for circular scanning and electron beam scanning.

【符号の説明】[Explanation of symbols]

1…電子銃、2…電子線、3…電子レンズ、4,5…偏
向器、6…試料、7…試料台、8…二次粒子、9…二次
粒子検出器、10…レンズ制御回路、11,12…偏向
アンプ、13…A/D変換器、14…画像メモリ、15
…D/A変換器、16…ディスプレイ、17…画像メモ
リ制御回路、18…映像同期信号発生回路、19…焦点
評価値検出回路、20…制御CPU、21…偏向信号発
生手段、22…発振器、23…走査カウンタ、24…変
換テーブル、25,26…D/A変換器。
DESCRIPTION OF SYMBOLS 1 ... Electron gun, 2 ... Electron beam, 3 ... Electron lens, 4, 5 ... Deflector, 6 ... Sample, 7 ... Sample stand, 8 ... Secondary particle, 9 ... Secondary particle detector, 10 ... Lens control circuit , 11, 12 ... Deflection amplifier, 13 ... A / D converter, 14 ... Image memory, 15
... D / A converter, 16 ... Display, 17 ... Image memory control circuit, 18 ... Video synchronization signal generation circuit, 19 ... Focus evaluation value detection circuit, 20 ... Control CPU, 21 ... Deflection signal generation means, 22 ... Oscillator, 23 ... Scan counter, 24 ... Conversion table, 25, 26 ... D / A converter.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】電子線を放出する電子銃と、前記電子線を
細く絞る電子レンズと、前記電子線を試料上に二次元走
査させる偏向器と、前記試料から発生する二次粒子を検
出する二次粒子検出器と、検出信号をディジタルの画像
データに変換するA/D変換器と、前記画像データを記
憶する画像メモリと、前記画像メモリから読み出した前
記画像データを映像信号に変換するD/A変換器と、画
像を表示するディスプレイとで構成される走査電子顕微
鏡において、発振器と、走査カウンタと、変換テーブル
と、前記D/A変換器とで構成する偏向信号発生手段を
備えることを特徴とする走査電子顕微鏡。
1. An electron gun for emitting an electron beam, an electron lens for narrowing down the electron beam, a deflector for two-dimensionally scanning the electron beam on a sample, and detecting secondary particles generated from the sample. A secondary particle detector, an A / D converter that converts a detection signal into digital image data, an image memory that stores the image data, and a D that converts the image data read from the image memory into a video signal. A scanning electron microscope including an A / A converter and a display for displaying an image, including a deflection signal generating unit including an oscillator, a scanning counter, a conversion table, and the D / A converter. Characteristic scanning electron microscope.
【請求項2】請求項1において、少量の画像データを得
るための低分解能走査と多量の画像データを得るための
高分解能走査の複数の電子線の走査モードを有し、前記
偏向信号発生手段の変換テーブルの変換データによって
低分解能と高分解能の走査信号を選択して偏向器に与え
る走査電子顕微鏡。
2. The deflection signal generating means according to claim 1, having a plurality of electron beam scanning modes of low resolution scanning for obtaining a small amount of image data and high resolution scanning for obtaining a large amount of image data. Scanning electron microscope that selects low-resolution and high-resolution scanning signals according to the conversion data of the conversion table of and supplies them to the deflector.
【請求項3】請求項2において、低分解能走査により自
動焦点制御を行った後に高分解能走査により再度自動焦
点制御を行う走査電子顕微鏡。
3. A scanning electron microscope according to claim 2, wherein automatic focus control is performed by low resolution scanning, and then automatic focus control is performed again by high resolution scanning.
【請求項4】請求項1において、前記偏向信号発生手段
の前記変換テーブルが書き換え可能で、前記電子線の走
査モードに応じて任意の変換データを書き換える走査電
子顕微鏡。
4. The scanning electron microscope according to claim 1, wherein the conversion table of the deflection signal generating means is rewritable and any conversion data is rewritten according to a scanning mode of the electron beam.
【請求項5】請求項1において、前記偏向信号発生手段
の発振器の発振周波数が設定可能で前記電子線の走査速
度を任意の速度に設定できる走査電子顕微鏡。
5. The scanning electron microscope according to claim 1, wherein the oscillation frequency of the oscillator of the deflection signal generating means can be set, and the scanning speed of the electron beam can be set to an arbitrary speed.
【請求項6】請求項5において、高速度の走査により自
動焦点制御を行った後に低速度の走査により再度自動焦
点制御を行う走査電子顕微鏡。
6. The scanning electron microscope according to claim 5, wherein automatic focus control is performed by high-speed scanning, and then automatic focus control is performed again by low-speed scanning.
【請求項7】請求項1において、前記偏向信号発生手段
の走査カウンタの計数範囲が設定可能で電子線の走査範
囲を任意の範囲に設定できる走査電子顕微鏡。
7. A scanning electron microscope according to claim 1, wherein the count range of the scan counter of the deflection signal generating means can be set and the scan range of the electron beam can be set to an arbitrary range.
【請求項8】請求項7において、任意の範囲のみに前記
電子線の走査を行い自動焦点制御する走査電子顕微鏡。
8. A scanning electron microscope according to claim 7, wherein the electron beam is scanned only in an arbitrary range and automatic focus control is performed.
JP8124345A 1996-05-20 1996-05-20 Scanning electron microscope Pending JPH09306407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8124345A JPH09306407A (en) 1996-05-20 1996-05-20 Scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8124345A JPH09306407A (en) 1996-05-20 1996-05-20 Scanning electron microscope

Publications (1)

Publication Number Publication Date
JPH09306407A true JPH09306407A (en) 1997-11-28

Family

ID=14883073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8124345A Pending JPH09306407A (en) 1996-05-20 1996-05-20 Scanning electron microscope

Country Status (1)

Country Link
JP (1) JPH09306407A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236915A (en) * 1999-09-03 2001-08-31 Applied Materials Inc Focusing method and system
JP2004006219A (en) * 2002-04-11 2004-01-08 Keyence Corp Electron microscope, operating method of electron microscope, operation program of electron microscope and recording medium capable of reading by computer
WO2004105077A1 (en) * 1999-02-24 2004-12-02 Katsuto Goto High-density recording scanning microscope
KR100846635B1 (en) * 2007-03-26 2008-07-16 삼성전자주식회사 Method for auto focusing in scanning electron microscope
JP2009064746A (en) * 2007-09-10 2009-03-26 Topcon Corp Imaging method for charged particle beam device, computer program, and recording medium
JP2009070686A (en) * 2007-09-13 2009-04-02 Hitachi High-Technologies Corp Inspection device
JP2010092632A (en) * 2008-10-06 2010-04-22 Hitachi High-Technologies Corp Adjustment method of charged particle beam and charged particle beam device
JP2012018812A (en) * 2010-07-08 2012-01-26 Keyence Corp Magnifying observation device, magnifying observation method, program for magnifying observation, and computer-readable recording medium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004105077A1 (en) * 1999-02-24 2004-12-02 Katsuto Goto High-density recording scanning microscope
JP2001236915A (en) * 1999-09-03 2001-08-31 Applied Materials Inc Focusing method and system
JP2004006219A (en) * 2002-04-11 2004-01-08 Keyence Corp Electron microscope, operating method of electron microscope, operation program of electron microscope and recording medium capable of reading by computer
KR100846635B1 (en) * 2007-03-26 2008-07-16 삼성전자주식회사 Method for auto focusing in scanning electron microscope
JP2009064746A (en) * 2007-09-10 2009-03-26 Topcon Corp Imaging method for charged particle beam device, computer program, and recording medium
JP2009070686A (en) * 2007-09-13 2009-04-02 Hitachi High-Technologies Corp Inspection device
JP2010092632A (en) * 2008-10-06 2010-04-22 Hitachi High-Technologies Corp Adjustment method of charged particle beam and charged particle beam device
JP2012018812A (en) * 2010-07-08 2012-01-26 Keyence Corp Magnifying observation device, magnifying observation method, program for magnifying observation, and computer-readable recording medium

Similar Documents

Publication Publication Date Title
US7817105B2 (en) Image forming method and charged particle beam apparatus
JPH0574399A (en) Scanning electron microscope
US5523567A (en) Scanning electron microscope and image forming method therewith
JPH09306407A (en) Scanning electron microscope
US4020343A (en) Scanning electron device
JP3021917B2 (en) Automatic focusing and astigmatism correction method in electron beam device
US4160162A (en) Method for the pictorial display of a diffraction image in a transmission-type, scanning, corpuscular-beam microscope
JPH06243812A (en) Scanning electron microscope
JP4154681B2 (en) Electron beam analyzer
JPH1050245A (en) Focusing method in charged particle beam device
JP3114335B2 (en) Focusing method in scanning electron microscope
JPH06295695A (en) Scanning electron microscope
JPH0574402A (en) Scanning type electron microscope
JPH0360297A (en) Image pickup device and its operating method
JP3206014B2 (en) Electron detector and scanning electron microscope using the same
JPH0696711A (en) Display method for image of scanning electron microscope
JP2001216931A (en) Method for observing image and scanning electron microscope
JPS59103261A (en) Electron beam device
JPH06302294A (en) Scanning type charged particle beam device
JPS6362142A (en) Surface analysis device
JPH07161327A (en) Focusing method in charged particle beam
SU983822A1 (en) Pulze corpuscular microscore
JPH09134695A (en) Scanning electron microscope
JP2851394B2 (en) Scanning electron microscope
JPH07201299A (en) Method and device for focusing in charged particle beam device