JPH0930489A - Paint film for preventing deposition of marine organism - Google Patents

Paint film for preventing deposition of marine organism

Info

Publication number
JPH0930489A
JPH0930489A JP7182822A JP18282295A JPH0930489A JP H0930489 A JPH0930489 A JP H0930489A JP 7182822 A JP7182822 A JP 7182822A JP 18282295 A JP18282295 A JP 18282295A JP H0930489 A JPH0930489 A JP H0930489A
Authority
JP
Japan
Prior art keywords
coating film
conductive
metal foil
paint film
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7182822A
Other languages
Japanese (ja)
Other versions
JP3207718B2 (en
Inventor
Masahiro Usami
正博 宇佐美
Hidetoshi Morita
秀敏 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP18282295A priority Critical patent/JP3207718B2/en
Publication of JPH0930489A publication Critical patent/JPH0930489A/en
Application granted granted Critical
Publication of JP3207718B2 publication Critical patent/JP3207718B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Catching Or Destruction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide uniform current distribution and expand a pollution preventing region by providing an electrifying band-like metal foil between an insulating paint film and a high conductivity conductive paint film, forming the insulating paint film having the width wider than that of the metal foil on the surface of the high conductivity conductive paint film right above the metal foil and further forming an antielectrolysis conductive paint film on the whole surface. SOLUTION: A band-like metal foil 3 connected to an electrifying terminal is applied to the surface of an insulating paint film 2 formed on the surface of a structure contacting the sea water. A high conductivity conductive paint film 4 is formed on the insulating paint film 2 having the metal foil 3 applied thereto. The band-like insulating paint having the width wider than the metal foil 3 is applied to the surface of the high conductivity conductive paint film 4 right above the band-like metal foil 3 to form a band-like insulating paint film 6. Further, An antielectrolysis conductive paint film is formed on the whole surface of the high conductivity conductive paint film 4 having the band-like insulating paint applied thereto. The band-like insulating paint film 6 restrains electric current from the concentration in the smallest resistance portion, i.e., right above the metal foil 3 to uniformize the current distribution and increase the effective length for preventing pollution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、船舶などの海水に
接する構造物の表面に形成させ、微小電流を流して海洋
生物の付着を防止するための海洋生物付着防止塗膜に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a marine organism adhesion preventing coating film which is formed on the surface of a structure in contact with seawater such as a ship and a minute electric current is applied to prevent the adhesion of marine organisms.

【0002】[0002]

【従来の技術】船舶などの海水に接する構造物の表面に
フジツボ、イガイ、カンザシゴカイ、ホヤなどの海洋生
物が付着するのを防止するため、構造物の表面に導電性
塗膜からなる海洋生物付着防止塗膜を形成させ、これに
微小電流を流して海水を電気分解することによって海洋
生物の付着を防止する方法が行われている。従来、この
目的のために図5に示すような海洋生物付着防止塗膜が
使用されている。この海洋生物付着防止塗膜は構造物1
の表面に形成させた絶縁塗膜2の表面に通電用の端子を
接続する細長い帯状の金属箔3を貼り付け、この金属箔
3を貼り付けた絶縁塗膜2の上に高導電性導電塗膜4を
形成させ、さらにその上に耐電解性導電塗膜5を形成さ
せた構成を有するものである。
2. Description of the Related Art In order to prevent marine organisms such as barnacles, mussels, mosquitoes, sea squirts, etc. from adhering to the surface of structures that come into contact with seawater such as ships, the attachment of marine organisms consisting of conductive coating films A method of preventing adhesion of marine organisms by forming a protective coating film and passing a minute electric current through the coating film to electrolyze seawater is performed. Conventionally, a marine organism adhesion preventing coating film as shown in FIG. 5 has been used for this purpose. This marine organism adhesion prevention coating is structure 1
An elongated strip-shaped metal foil 3 for connecting a terminal for energization is attached to the surface of the insulating coating film 2 formed on the surface of the substrate, and the highly conductive conductive coating is applied on the insulating coating film 2 to which the metal foil 3 is attached. The film 4 is formed, and the electrolytic resistant conductive coating film 5 is further formed on the film 4.

【0003】[0003]

【発明が解決しようとする課題】前記従来技術の海洋生
物付着防止塗膜では、導電塗膜の下面に貼着された金属
箔を通して導電塗膜に通電している。そのため、金属箔
の材質としては海水中で通電しても溶解しないチタンが
使用されているが、チタンはその比抵抗が銅やアルミニ
ウムに比較して1桁以上大きいため、その長さ方向でI
Rドロップ(金属箔を通して導電塗膜に流す電流量Iと
金属箔の抵抗Rによって発生する電圧降下)により電位
降下が生じ、その結果電流分布が不均一となり、汚染を
防止できる範囲が制約されるという問題点がある。
In the above-mentioned marine organism adhesion preventing coating film of the prior art, the conductive coating film is energized through the metal foil attached to the lower surface of the conductive coating film. Therefore, titanium is used as the material of the metal foil, which does not dissolve even when electricity is applied in seawater. However, since titanium has a specific resistance larger than that of copper or aluminum by one digit or more, I
A potential drop occurs due to the R drop (a current drop I flowing through the conductive coating through the metal foil and a voltage drop caused by the resistance R of the metal foil), resulting in non-uniform current distribution and limiting the range in which contamination can be prevented. There is a problem.

【0004】本発明は前記従来技術における問題点を解
消し、均一な電流分布が得られ、防汚可能領域を拡大す
ることのできる海洋生物付着防止塗膜を提供しようとす
るものである。
The present invention aims to solve the above-mentioned problems in the prior art, and to provide a coating film for preventing adhesion of marine organisms, which can obtain a uniform current distribution and can expand a stain-proof possible region.

【0005】[0005]

【課題を解決するための手段】本発明は、(1)海水に
接する構造物の表面に形成し微小電流を流して海洋生物
の付着を防止する塗膜であって、構造物の表面に形成さ
れた絶縁塗膜とその上に形成された高導電性導電塗膜と
さらにその上に形成された耐電解性導電塗膜とからなる
海洋生物付着防止塗膜において、前記絶縁塗膜と高導電
性導電塗膜との間に通電用の端子を接続して通電する帯
状の金属箔が設けられ、この帯状の金属箔の直上の高導
電性導電塗膜の表面に前記金属箔より幅の広い帯状の絶
縁塗膜が形成され、この帯状絶縁塗膜を含む高導電性導
電塗膜の表面全面に耐電解性導電塗膜を形成させた構造
としてなることを特徴とする海洋生物付着防止塗膜、
(2)海水に接する少なくとも表面が絶縁体である構造
物の表面に形成し微小電流を流して海洋生物の付着を防
止する塗膜であって、構造物の表面に形成された高導電
性導電塗膜とその上に形成された耐電解性導電塗膜とか
らなる海洋生物付着防止塗膜において、前記高導電性導
電塗膜の構造物の絶縁体表面に接着する面に通電用の端
子を接続して通電する帯状の金属箔が貼り付けられ、こ
の帯状の金属箔の直上の高導電性導電塗膜の表面に前記
金属箔より幅の広い帯状の絶縁塗膜が形成され、この帯
状絶縁塗膜を含む高導電性導電塗膜の表面全面に耐電解
性導電塗膜を形成させた構造としてなることを特徴とす
る海洋生物付着防止塗膜、及び(3)前記(1)又は
(2)の海洋生物付着防止塗膜において、帯状絶縁塗膜
の表面をさらに高導電性導電塗膜で被覆した後、表面全
面に耐電解性導電塗膜を形成させた構成としてなること
を特徴とする海洋生物付着防止塗膜、である。
Means for Solving the Problems The present invention is (1) a coating film formed on the surface of a structure which is in contact with seawater to prevent a marine organism from adhering by applying a minute electric current to the surface of the structure. In the marine organism adhesion preventing coating film, which comprises a coated insulating coating film, a highly conductive conductive coating film formed thereon, and an electrolytic resistant conductive coating film formed thereon, the insulating coating film and the high conductive film are highly conductive. A strip-shaped metal foil for connecting a current-carrying terminal to the conductive conductive coating is provided, and has a width wider than the metal foil on the surface of the highly conductive conductive coating directly above the strip-shaped metal foil. A marine organism adhesion preventing coating film having a structure in which a band-shaped insulating coating film is formed and an electrolytic resistant conductive coating film is formed on the entire surface of the highly conductive conductive coating film including the band-shaped insulating coating film. ,
(2) A coating film which is formed on the surface of a structure, at least the surface of which is in contact with seawater, is an insulator, and which allows a minute current to flow to prevent marine life from adhering, and which has high conductivity and conductivity formed on the surface of the structure. In a marine organism adhesion preventing coating film consisting of a coating film and an electrolysis resistant conductive coating film formed on the coating film, a terminal for energization is provided on the surface of the highly conductive conductive coating film to be adhered to the insulator surface of the structure. A strip-shaped metal foil that is connected and energized is attached, and a strip-shaped insulating coating film having a width wider than that of the metal foil is formed on the surface of the highly conductive conductive coating film immediately above the strip-shaped metal foil. A marine organism adhesion preventing coating film having a structure in which an electrolytic resistant conductive coating film is formed on the entire surface of a highly conductive conductive coating film including a coating film, and (3) above (1) or (2) ) Marine organisms adhesion prevention coating, the surface of the band-shaped insulation coating has a higher conductivity After coating with sex conductive coating, marine anti-biofouling coating characterized by comprising a structure obtained by forming the electrolyte-conductive coating on the whole surface, it is.

【0006】本発明の海洋生物付着防止塗膜を適用する
構造物の例としては船舶、発電所取水路内壁などの海水
に接する構造物があげられる。これらの構造物の材質と
しては鋼鉄製、FRP製、コンクリート製など表面が絶
縁体のものあるいは導電体のものがある。
As an example of a structure to which the marine organism adhesion preventing coating film of the present invention is applied, there is a structure in contact with seawater such as a ship or an inner wall of a power plant intake channel. Examples of the material of these structures include steel, FRP, concrete, and the like whose surface is an insulator or conductor.

【0007】[0007]

【発明の実施の形態】以下、図面を参照して本発明の海
洋生物付着防止塗膜の構成を説明する。図1は本発明の
海洋生物付着防止塗膜の1実施態様を示す断面図であ
る。図1は構造物1の表面が導電体である場合の例を示
している。図1の海洋生物付着防止塗膜は、海水と接す
る構造物1の表面に形成された絶縁塗膜2の表面に通電
用の端子を接続する帯状の金属箔3を貼り付け、この金
属箔3を貼り付けた絶縁塗膜2上に高導電性導電塗膜4
を形成させ、前記帯状の金属箔3の直上の高導電性導電
塗膜4の表面に前記金属箔3より幅の広い帯状に絶縁塗
料を塗布して帯状絶縁塗膜6を形成させ、この帯状に絶
縁塗料を塗布した高導電性導電塗膜4の表面全面に耐電
解性導電塗膜5を形成させた構造を有している。
BEST MODE FOR CARRYING OUT THE INVENTION The structure of the marine organism adhesion-preventing coating film of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing one embodiment of the marine organism adhesion preventing coating film of the present invention. FIG. 1 shows an example in which the surface of the structure 1 is a conductor. The marine organism adhesion preventing coating film of FIG. 1 is obtained by attaching a strip-shaped metal foil 3 for connecting terminals for energization to the surface of an insulating coating film 2 formed on the surface of a structure 1 in contact with seawater. Highly conductive conductive coating film 4 on the insulating coating film 2 with
Is formed on the surface of the high-conductivity conductive coating film 4 directly above the strip-shaped metal foil 3, and a strip-shaped insulating coating film 6 is formed by coating the strip-shaped insulating coating film with a wider strip than the metal foil 3. It has a structure in which an electrolytic resistant conductive coating film 5 is formed on the entire surface of a highly conductive conductive coating film 4 coated with an insulating paint.

【0008】前記構造物1の表面に形成させる絶縁塗膜
2の材料としてはエポキシ塗料などの防食塗料が使用で
きる。また、絶縁塗膜2の厚みは100μm以上、好ま
しくは150μm以上である。100μm未満ではピン
ホールが防止できず、絶縁効果が十分でない。この絶縁
塗膜2は各種塗装機による塗装、ローラー塗り、ハケ塗
りなどの方法により形成させることができる。なお、F
RP船(絶縁船体のもの)などのように構造物1の表面
自体が絶縁体である場合には金属箔3、高導電性導電塗
膜4、帯状絶縁塗膜6及び耐電解性導電塗膜5の構成と
し、絶縁塗膜2を省略してもよい。ただし、絶縁体であ
っても吸水性があるなど不具合を生じるおそれがある場
合には絶縁塗膜2を設けるのが望ましい。
As a material for the insulating coating film 2 formed on the surface of the structure 1, an anticorrosive paint such as epoxy paint can be used. The thickness of the insulating coating film 2 is 100 μm or more, preferably 150 μm or more. If it is less than 100 μm, pinholes cannot be prevented and the insulating effect is not sufficient. The insulating coating film 2 can be formed by a method such as coating with various coating machines, roller coating, and brush coating. Note that F
When the surface of the structure 1 itself is an insulator such as an RP ship (insulated hull), the metal foil 3, the highly conductive conductive coating film 4, the strip insulating coating film 6 and the electrolytic resistant conductive coating film are used. 5, the insulating coating film 2 may be omitted. However, it is desirable to provide the insulating coating film 2 when there is a possibility that a defect such as water absorption may occur even with an insulator.

【0009】絶縁塗膜2の上には通電用の端子を接続し
て通電するための帯状の金属箔3を、防汚対象領域のほ
ぼ中央部に長さ方向に平行に貼り付ける。防汚対象領域
が広い場合には適当な間隔で複数本の金属箔3を貼り付
けるようにする。金属箔3の材質としてはCu、Al、
Tiなどの金属箔、Ti/AlやTi/Cuなどのクラ
ッド箔が使用できるが、海水中で長時間使用する場合の
耐久性の面からTi箔が好ましい。これらの金属材料の
比抵抗はTiが5×10-5Ω・cm、Cuが1.5×1
-6Ω・cm、Alが3×10-6Ω・cm程度である。
金属箔3の厚みは50〜500μm、好ましくは50〜
200μmとするのがよい。50μm未満ではその抵抗
が十分に小さくないため箔を施工する効果が十分でな
く、500μmを超えると施工が難しくなるので好まし
くない。金属箔3の幅は施工対象構造物の種類、施工対
象領域の広さ、所要電流の強さなどにより適宜定めれば
よいが、船舶の場合で2〜20cm、好ましくは5〜1
0cmである。2cm未満では箔の施工効果が十分でな
く、20cmを超えると曲面等での施工が難しくなるの
で好ましくない。絶縁塗膜2上に金属箔3を貼り付ける
方法としては例えば感圧接着剤などにより接着する方法
がある。
On the insulating coating film 2, a strip-shaped metal foil 3 for connecting a current-carrying terminal to conduct current is attached in parallel to the lengthwise direction at substantially the center of the antifouling target area. When the antifouling target area is wide, a plurality of metal foils 3 are attached at appropriate intervals. The material of the metal foil 3 is Cu, Al,
A metal foil such as Ti or a clad foil such as Ti / Al or Ti / Cu can be used, but a Ti foil is preferable from the viewpoint of durability when used for a long time in seawater. The specific resistance of these metallic materials is 5 × 10 −5 Ω · cm for Ti and 1.5 × 1 for Cu.
0 −6 Ω · cm, Al is about 3 × 10 −6 Ω · cm.
The thickness of the metal foil 3 is 50 to 500 μm, preferably 50 to 500 μm.
The thickness is preferably 200 μm. If the thickness is less than 50 μm, the resistance is not sufficiently small and the effect of applying the foil is not sufficient. If the thickness exceeds 500 μm, the application becomes difficult, which is not preferable. The width of the metal foil 3 may be appropriately determined according to the type of the construction target structure, the size of the construction target area, the strength of the required current, etc., but in the case of a ship, it is 2 to 20 cm, preferably 5 to 1
0 cm. If it is less than 2 cm, the effect of applying the foil is not sufficient, and if it exceeds 20 cm, it is difficult to apply it on a curved surface or the like, which is not preferable. As a method of attaching the metal foil 3 onto the insulating coating film 2, there is a method of adhering it with a pressure sensitive adhesive or the like.

【0010】このようにして金属箔3を貼り付けた絶縁
塗膜2上に高導電性導電塗膜4を形成させる。この高導
電性導電塗膜4はカーボンブラック、グラファイト、炭
素繊維などのカーボン類を導電性顔料として混合したア
クリル樹脂、ビニル樹脂、エポキシ樹脂、ウレタン樹脂
などの塗料樹脂で構成されている。導電顔料の混合率は
55〜70容量%、好ましくは60〜65容量%程度で
ある。混合率が55容量%未満では導電性が不足し、ま
た、70容量%を超えると塗膜が脆くなり、成膜が困難
となる。この高導電性導電塗膜4の抵抗率は5×10-4
〜5×10-2Ω・cm程度である。この高導電性塗膜4
の厚みは、厚くなれば塗膜の抵抗が下がり広範囲の防汚
が可能となるので、施工する防汚構造物の大きさにより
適宜定めればよい。この高導電性塗膜4はエアレス塗装
法などの方法により形成させることができる。
In this way, the highly conductive conductive coating film 4 is formed on the insulating coating film 2 to which the metal foil 3 is attached. The highly conductive conductive coating film 4 is made of paint resin such as acrylic resin, vinyl resin, epoxy resin, urethane resin in which carbons such as carbon black, graphite and carbon fiber are mixed as conductive pigments. The mixing ratio of the conductive pigment is 55 to 70% by volume, preferably about 60 to 65% by volume. If the mixing rate is less than 55% by volume, the conductivity is insufficient, and if it exceeds 70% by volume, the coating film becomes brittle and film formation becomes difficult. The resistivity of this highly conductive conductive coating film 4 is 5 × 10 −4.
It is about 5 × 10 -2 Ω · cm. This highly conductive coating 4
The thicker the film, the thicker the resistance of the coating film is and the wider the area is capable of antifouling, the thickness may be appropriately determined according to the size of the antifouling structure to be constructed. This highly conductive coating film 4 can be formed by a method such as an airless coating method.

【0011】次にこの高導電性導電塗膜4の表面の前記
金属箔3の直上の部分に、金属箔3より幅の広い帯状に
絶縁塗料を塗布して帯状絶縁塗膜6を形成させ、この帯
状絶縁塗膜6を付した高導電性導電塗膜4の表面全面に
耐電解性導電塗膜5を形成させる。この帯状絶縁塗膜6
は電流が最も抵抗の小さい部分、すなわち金属箔3の直
上方向へ集中するのを抑え、電流分布を均一化する機能
を有するものである。帯状絶縁塗膜6の幅は前記金属箔
3の幅よりも広くし、上方から見て金属箔3の両側に各
5cm以上はみ出すように塗布する。このはみ出し幅が
5cm未満では電流密度分布の改善効果が不十分であ
る。絶縁塗料としてはビニル樹脂、アクリル樹脂、エポ
キシ樹脂、ウレタン樹脂などが使用できる。
Next, a strip-shaped insulating coating 6 is formed on the surface of the highly conductive conductive coating 4 directly above the metal foil 3 by applying a strip-shaped insulating coating wider than the metal foil 3. An electrolytic resistant conductive coating film 5 is formed on the entire surface of the highly conductive conductive coating film 4 having the strip-shaped insulating coating film 6 attached thereto. This strip insulation coating 6
Has the function of suppressing the concentration of the current in the portion with the smallest resistance, that is, in the direction directly above the metal foil 3, and making the current distribution uniform. The width of the strip-shaped insulating coating film 6 is made wider than the width of the metal foil 3 and is applied so as to protrude by 5 cm or more on both sides of the metal foil 3 when viewed from above. If the protrusion width is less than 5 cm, the effect of improving the current density distribution is insufficient. As the insulating paint, vinyl resin, acrylic resin, epoxy resin, urethane resin or the like can be used.

【0012】帯状に絶縁塗料を塗布した高導電性導電塗
膜4の表面全面に耐電解性導電塗膜5を形成させる。こ
の耐電解性導電塗膜5はカーボンブラック、グラファイ
ト、炭素繊維などのカーボン類を導電性顔料として混合
した塗料樹脂で構成されている。塗料樹脂としては塩化
ビニル系樹脂、アクリル樹脂、エポキシ樹脂、ウレタン
樹脂などの一般的な塗料樹脂やそれらのシリコン変性品
や塩素化物などの変性品が適用できるが、耐久性を考慮
すると塩化ビニル系樹脂あるいはその変性品が好まし
い。導電顔料の混合率は30〜50容量%、好ましくは
35〜45容量%程度である。混合率が30容量%未満
あるいは50容量%を超えると耐久性が不足となるので
好ましくない。この耐電解性導電塗膜5の抵抗率は0.
1〜10Ω・cm程度である。この耐電解性塗膜5の厚
みは平均膜厚で100μm以上、好ましくは250μm
以上である。平均膜厚が100μm未満では塗装時の膜
厚分布から50μm以下の部位が生じる恐れがあり、耐
久性が不十分となるので好ましくない。この耐電解性導
電塗膜5はエアレス塗装などの方法により形成させるこ
とができる。
An electrolytic resistant conductive coating film 5 is formed on the entire surface of the highly conductive conductive coating film 4 coated with an insulating coating in a strip shape. The electrolysis resistant conductive coating film 5 is composed of a paint resin in which carbons such as carbon black, graphite and carbon fibers are mixed as a conductive pigment. As the paint resin, general paint resins such as vinyl chloride resin, acrylic resin, epoxy resin, urethane resin and their modified products such as silicon modified products and chlorinated products can be applied, but considering the durability, vinyl chloride resin Resins or modified products thereof are preferred. The mixing ratio of the conductive pigment is 30 to 50% by volume, preferably about 35 to 45% by volume. If the mixing ratio is less than 30% by volume or exceeds 50% by volume, the durability becomes insufficient, which is not preferable. The resistivity of this electrolysis resistant conductive coating film 5 is 0.
It is about 1 to 10 Ω · cm. The average thickness of the electrolytic resistant coating film 5 is 100 μm or more, preferably 250 μm.
That is all. If the average film thickness is less than 100 μm, a portion of 50 μm or less may occur due to the film thickness distribution at the time of coating, resulting in insufficient durability, which is not preferable. The electrolytic resistant conductive coating film 5 can be formed by a method such as airless coating.

【0013】帯状絶縁塗膜6の幅が50cm程度以上と
広い場合には、その部分の防汚性能が不十分となるおそ
れがあるので、図2に示すようにさらにこの帯状絶縁塗
膜6の表面を高導電性導電塗膜7で帯状に被覆した後、
耐電解性導電塗膜5を形成させるのが好ましい。ここで
施工する高導電性導電塗膜7の材料としては、前記の構
造物の表面の絶縁塗膜2上に形成させた高導電性導電塗
膜4と同一の材質のものを使用すればよい。また、この
帯状高導電性導電塗膜7の幅は帯状絶縁塗膜6の全面を
覆い、下層の高導電性導電塗膜4につながるようにし、
厚みは100〜200μm程度とするのがよい。
If the width of the belt-shaped insulating coating film 6 is as wide as about 50 cm or more, the antifouling performance of that portion may be insufficient. Therefore, as shown in FIG. After coating the surface with a highly conductive conductive coating film 7 in a strip shape,
It is preferable to form the electrolytic resistant conductive coating film 5. As the material of the highly conductive conductive coating film 7 to be constructed here, the same material as the highly conductive conductive coating film 4 formed on the insulating coating film 2 on the surface of the structure may be used. . Further, the width of the strip-shaped highly conductive conductive coating film 7 covers the entire surface of the strip-shaped insulating coating film 6, and is connected to the high conductive conductive coating film 4 in the lower layer,
The thickness is preferably about 100 to 200 μm.

【0014】(作用)本発明の海洋生物付着防止塗膜に
おいては、通電用の端子を接続するための帯状の金属箔
の直上の高導電性導電塗膜の表面に帯状の絶縁塗膜を設
けたことにより、(導電塗膜の垂直方向の抵抗)/(金
属箔の抵抗(長手方向))の比率が大きくなり、金属箔
の長手方向に電流が流れやすくなり、電流分布の均一化
ができ、防汚有効長さが増大する。
(Function) In the marine organism adhesion preventing coating film of the present invention, a strip-shaped insulating coating film is provided on the surface of the highly conductive conductive coating film directly above the strip-shaped metal foil for connecting terminals for energization. As a result, the ratio of (resistance in the vertical direction of the conductive coating film) / (resistance of the metal foil (longitudinal direction)) becomes large, which makes it easier for current to flow in the longitudinal direction of the metal foil, and makes the current distribution uniform. , The antifouling effective length is increased.

【0015】また、本発明の海洋生物付着防止塗膜にお
ける導電塗膜は、高い導電性を付与するため比較的多量
のカーボン類を添加した高導電性導電塗膜の上に、カー
ボン配合量が比較的少なく、緻密で耐久性の高い耐電解
性導電塗膜を設けた2層構成となっている。そのため、
電流分布の支配因子である下層の導電塗膜の抵抗変化が
なく、有効防汚範囲が狭くなることがなく、長期間安定
した防汚性能を得ることができる。
Further, the conductive coating film in the coating film for preventing adhesion of marine organisms of the present invention is such that the carbon content on the highly conductive conductive coating film to which a relatively large amount of carbons has been added in order to impart high conductivity. It has a two-layer structure in which an electrolytic resistant conductive coating film that is relatively small, dense, and has high durability is provided. for that reason,
There is no change in resistance of the lower conductive coating film, which is a factor controlling the current distribution, and the effective antifouling range is not narrowed, and stable antifouling performance can be obtained for a long period of time.

【0016】[0016]

【実施例】以下実施例により本発明をさらに具体的に説
明する。コンクリート製水槽の内面に本発明及び従来技
術による海洋生物付着防止塗膜を形成させ、海水を満た
して通電試験を行った。使用した水槽及び形成させた塗
膜の概要を図3に模式的に示す。図3(a)は通電試験
の概況を示す説明図、図3(b)は形成させた塗膜の概
要を示す断面図である。幅1m、長さ(奥行き)20
m、深さ1mのコンクリート製水槽10の相対する長手
方向の内面に幅90cm、長さ19.5mの長方形にエ
ポキシ系の絶縁塗料を塗布し、平均膜厚250μmの絶
縁塗膜11を形成させた。次にこの両側の絶縁塗膜11
の表面中央部に長さ方向に平行に幅10cm、厚さ50
μm、長さ19.5mのTi箔12を貼り付けた後、全
体の表面に60容量%のグラファイト粉末を配合したア
クリル樹脂からなる高導電性導電塗膜13をエアレス塗
装により350μmの厚さで形成させた。
The present invention will be described more specifically with reference to the following examples. A coating film for preventing adhesion of marine organisms according to the present invention and the prior art was formed on the inner surface of a concrete water tank, and seawater was filled to conduct an electric current test. An outline of the water tank used and the coating film formed is schematically shown in FIG. FIG. 3A is an explanatory view showing the general condition of the energization test, and FIG. 3B is a sectional view showing the outline of the formed coating film. Width 1m, length (depth) 20
m, a depth of 1 m, and a concrete water tank 10 having a width of 90 cm and a rectangle of 19.5 m in length, the epoxy-based insulating paint was applied to the inner surfaces of the concrete water tank 10 opposite to each other to form an insulating coating film 11 having an average film thickness of 250 μm. It was Next, the insulation coating 11 on both sides
Width 10 cm, thickness 50 parallel to the center of the surface of the
After attaching a Ti foil 12 having a length of 1 μm and a length of 19.5 m, a highly conductive conductive coating film 13 made of an acrylic resin mixed with 60% by volume of graphite powder is applied to the entire surface by airless coating with a thickness of 350 μm. Formed.

【0017】その後、一方の面には高導電性導電塗膜1
3の表面に40容量%のグラファイト粉末を配合した塩
化ビニル樹脂からなる耐電解性導電塗膜14をエアレス
塗装により350μmの厚さで形成させ、従来技術によ
る海洋生物付着防止塗膜である塗膜Aとした。他方の面
には、高導電性導電塗膜13の表面の中央部、すなわち
絶縁塗膜11の直上の部分に30cmの幅で150μm
の厚さで塩化ビニル樹脂系の絶縁塗料を塗布して帯状絶
縁塗膜15を施工後、前記塗膜Aと同じ材質からなる耐
電解性導電塗膜14をエアレス塗装により350μmの
厚さで形成させ、本発明の海洋生物付着防止塗膜である
塗膜Bとした。
Thereafter, a highly conductive conductive coating film 1 is formed on one surface.
An electroless conductive coating film 14 made of vinyl chloride resin having 40% by volume of graphite powder is formed on the surface of 3 by airless coating to a thickness of 350 μm, which is a coating film for preventing adhesion of marine organisms by a conventional technique. It was set to A. On the other surface, the central portion of the surface of the highly conductive conductive coating film 13, that is, the portion directly above the insulating coating film 11 with a width of 30 cm and 150 μm.
After applying a vinyl chloride resin-based insulating paint with a thickness of 1 to form a strip-shaped insulating coating film 15, an electroless conductive coating film 14 made of the same material as the coating film A is formed to a thickness of 350 μm by airless coating. Thus, a coating film B which is a coating film for preventing adhesion of marine organisms of the present invention was obtained.

【0018】塗膜を形成して約10日間乾燥後、水槽1
0内に海水を満たし、相対する塗膜A及びB間にTi箔
12の端部から2Aの電流を流し、一定時間毎に
(+)、(−)が変わるように通電して、塗膜A及びB
上の電位を長手方向で陽極時に計測した。その結果は図
4に示すとおりで、本発明に係る塗膜Bが従来技術であ
る塗膜Aに比較して高電位を維持できる長さが長く、防
汚有効長さを増大できることがわかる。
After forming a coating film and drying for about 10 days, a water tank 1
0 is filled with seawater, a current of 2A is applied from the end of the Ti foil 12 between the opposing coating films A and B, and electricity is applied so that (+) and (-) change at regular time intervals. A and B
The top potential was measured longitudinally at the anode. The results are shown in FIG. 4, and it can be seen that the coating film B according to the present invention has a longer length capable of maintaining a high electric potential and the antifouling effective length can be increased as compared with the coating film A which is a conventional technique.

【0019】[0019]

【発明の効果】本発明の海洋生物付着防止塗膜によれ
ば、通電用の金属箔の長手方向での電位降下を小さく抑
えることができ、その結果電流分布が均一となり、防汚
有効長さを増大させることができる。
EFFECTS OF THE INVENTION According to the coating film for preventing attachment of marine organisms of the present invention, the potential drop in the longitudinal direction of the metal foil for energization can be suppressed to be small, resulting in a uniform current distribution and an effective antifouling length. Can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の海洋生物付着防止塗膜の1実施態様を
示す断面図。
FIG. 1 is a cross-sectional view showing one embodiment of a marine organism adhesion-preventing coating film of the present invention.

【図2】本発明の海洋生物付着防止塗膜の他の実施態様
を示す断面図。
FIG. 2 is a cross-sectional view showing another embodiment of the marine organism adhesion preventing coating film of the present invention.

【図3】実施例で使用した水槽及び形成させた塗膜の概
要を示す説明図。
FIG. 3 is an explanatory view showing an outline of a water tank used in Examples and a coating film formed.

【図4】実施例の通電試験における通電端からの距離と
陽極電位の大きさとの関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the distance from the current-carrying end and the magnitude of the anode potential in the current-carrying test of the example.

【図5】従来の海洋生物付着防止塗膜の1例を示す断面
図。
FIG. 5 is a sectional view showing an example of a conventional marine organism adhesion preventing coating film.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 海水に接する構造物の表面に形成し微小
電流を流して海洋生物の付着を防止する塗膜であって、
構造物の表面に形成された絶縁塗膜とその上に形成され
た高導電性導電塗膜とさらにその上に形成された耐電解
性導電塗膜とからなる海洋生物付着防止塗膜において、
前記絶縁塗膜と高導電性導電塗膜との間に通電用の端子
を接続して通電する帯状の金属箔が設けられ、この帯状
の金属箔の直上の高導電性導電塗膜の表面に前記金属箔
より幅の広い帯状の絶縁塗膜が形成され、この帯状絶縁
塗膜を含む高導電性導電塗膜の表面全面に耐電解性導電
塗膜を形成させた構造としてなることを特徴とする海洋
生物付着防止塗膜。
1. A coating film which is formed on the surface of a structure in contact with seawater and which allows a minute electric current to flow therethrough to prevent the adhesion of marine organisms.
In a marine organism adhesion preventing coating film consisting of an insulating coating film formed on the surface of a structure and a highly conductive conductive coating film formed thereon and an electrolytic resistant conductive coating film further formed thereon,
A strip-shaped metal foil for connecting a current-carrying terminal is provided between the insulating coating film and the high-conductivity conductive coating film, and the surface of the high-conductive conductive coating film is provided directly on the strip-shaped metal foil. A strip-shaped insulating coating film having a width wider than that of the metal foil is formed, and the structure is such that an electrolytic resistant conductive coating film is formed on the entire surface of the highly conductive conductive coating film including the strip-shaped insulating coating film. A marine organism adhesion prevention coating.
【請求項2】 海水に接する少なくとも表面が絶縁体で
ある構造物の表面に形成し微小電流を流して海洋生物の
付着を防止する塗膜であって、構造物の表面に形成され
た高導電性導電塗膜とその上に形成された耐電解性導電
塗膜とからなる海洋生物付着防止塗膜において、前記高
導電性導電塗膜の構造物の絶縁体表面に接着する面に通
電用の端子を接続して通電する帯状の金属箔が貼り付け
られ、この帯状の金属箔の直上の高導電性導電塗膜の表
面に前記金属箔より幅の広い帯状の絶縁塗膜が形成さ
れ、この帯状絶縁塗膜を含む高導電性導電塗膜の表面全
面に耐電解性導電塗膜を形成させた構造としてなること
を特徴とする海洋生物付着防止塗膜。
2. A coating film which is formed on the surface of a structure, at least the surface of which is in contact with seawater, is an insulator and which allows a minute electric current to flow to prevent the adhesion of marine organisms, and which has high conductivity formed on the surface of the structure. Marine organism adhesion preventing coating film consisting of a conductive conductive coating film and an electrolytic resistant conductive coating film formed on the conductive conductive coating film, in order to apply current to the surface of the highly conductive conductive coating film that is adhered to the insulator surface of the structure. A strip-shaped metal foil for connecting terminals and energizing is attached, and a strip-shaped insulating coating film having a width wider than that of the metal foil is formed on the surface of the highly conductive conductive coating film directly above the strip-shaped metal foil. A marine organism adhesion preventing coating film having a structure in which an electrolytic resistant conductive coating film is formed on the entire surface of a highly conductive conductive coating film including a band-shaped insulating coating film.
【請求項3】 請求項1又は2に記載の海洋生物付着防
止塗膜において、帯状絶縁塗膜の表面をさらに高導電性
導電塗膜で被覆した後、表面全面に耐電解性導電塗膜を
形成させた構成としてなることを特徴とする海洋生物付
着防止塗膜。
3. The marine organism adhesion-preventing coating film according to claim 1, wherein the surface of the band-shaped insulating coating film is further covered with a highly conductive conductive coating film, and then an electrolytic resistant conductive coating film is formed on the entire surface. A marine organism adhesion-preventing coating characterized by having a formed structure.
JP18282295A 1995-07-19 1995-07-19 Marine organism adhesion prevention coating Expired - Fee Related JP3207718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18282295A JP3207718B2 (en) 1995-07-19 1995-07-19 Marine organism adhesion prevention coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18282295A JP3207718B2 (en) 1995-07-19 1995-07-19 Marine organism adhesion prevention coating

Publications (2)

Publication Number Publication Date
JPH0930489A true JPH0930489A (en) 1997-02-04
JP3207718B2 JP3207718B2 (en) 2001-09-10

Family

ID=16125072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18282295A Expired - Fee Related JP3207718B2 (en) 1995-07-19 1995-07-19 Marine organism adhesion prevention coating

Country Status (1)

Country Link
JP (1) JP3207718B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015043726A (en) * 2013-08-28 2015-03-12 n−tech株式会社 Bird and animal-repelling paint, and bird and animal-repelling system using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015043726A (en) * 2013-08-28 2015-03-12 n−tech株式会社 Bird and animal-repelling paint, and bird and animal-repelling system using the same

Also Published As

Publication number Publication date
JP3207718B2 (en) 2001-09-10

Similar Documents

Publication Publication Date Title
KR930008997B1 (en) Anti-fouling device for afloaters
EP1781533B1 (en) Multilayered submersible structure with fouling inhibiting characteristic
JPH0242908B2 (en)
JPH03197691A (en) Manufacture of open metallic mesh and open metallic mesh
JP2001114185A (en) Sea water resistance reduced ship and resistance reducing method for hull
JPH0930489A (en) Paint film for preventing deposition of marine organism
US20100083893A1 (en) Method for making a submersible surface with antifouling protection
JPH0814036B2 (en) Antifouling equipment for structures in contact with seawater
JP3145390B2 (en) Conductive film for seawater electrolytic antifouling equipment
JPH03125690A (en) Antifouling device for construction touching seawater
JP2505608B2 (en) Antifouling equipment for structures in contact with seawater
JPS63101464A (en) Electrically conductive coating film for use in electrolysis of sea water
JP2601807B2 (en) Antifouling device and antifouling / anticorrosion device for structures in contact with seawater
CA1278775C (en) Catalytic polymer electrode for cathodic protection and cathodic protection system comprising same
JP4201394B2 (en) Concrete steel structure covered with composite film electrode
JPH02279772A (en) Anti-fouling apparatus for structure brought into contact with sea water
JPH02144406A (en) Filth-resistant device for water-intake ditch
JPH02196868A (en) Antifouling device for structure contacting with sea water
JP2557936Y2 (en) Seawater electrolytic antifouling equipment
JPH048691A (en) Method for constructing antifouliong device for sea water contact structure
JP2809351B2 (en) Antifouling and anticorrosion methods for hull skin in contact with seawater
JP2575866B2 (en) Antifouling equipment for structures in contact with seawater
BR112020021138A2 (en) surface treatment method
JPH06107973A (en) Electrically-conductive coating compound for preventing adhesion of marine organism
JPH03169905A (en) Antipollution device for intake channel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010605

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees