JPH02279772A - Anti-fouling apparatus for structure brought into contact with sea water - Google Patents

Anti-fouling apparatus for structure brought into contact with sea water

Info

Publication number
JPH02279772A
JPH02279772A JP9977089A JP9977089A JPH02279772A JP H02279772 A JPH02279772 A JP H02279772A JP 9977089 A JP9977089 A JP 9977089A JP 9977089 A JP9977089 A JP 9977089A JP H02279772 A JPH02279772 A JP H02279772A
Authority
JP
Japan
Prior art keywords
conductive coating
contact
coating film
outer conductive
seawater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9977089A
Other languages
Japanese (ja)
Inventor
Masahiro Usami
正博 宇佐美
Kenji Ueda
健二 植田
Kiyomi Tomoshige
友重 清美
Tsutomu Horiguchi
堀口 勉
Hiroshi Yamazaki
弘 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIYOURIYOU ENG KK
Mitsubishi Heavy Industries Ltd
Choryo Engineering Co Ltd
Original Assignee
CHIYOURIYOU ENG KK
Mitsubishi Heavy Industries Ltd
Choryo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIYOURIYOU ENG KK, Mitsubishi Heavy Industries Ltd, Choryo Engineering Co Ltd filed Critical CHIYOURIYOU ENG KK
Priority to JP9977089A priority Critical patent/JPH02279772A/en
Publication of JPH02279772A publication Critical patent/JPH02279772A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To exhibit an excellent anti-fouling effect for a long time by forming successively an inner conductive coating and an outer conductive coating each with a specified constitution on the surface in contact with water where an insulating coating of a structure brought into contact with sea water is provided and feeding a direct current to generate chlorine. CONSTITUTION:An insulating coating 3 is formed on the surface in contact with water of a structure 1 brought into contact with sea water and an inner conductive coating 4 consisting of small pieces of a non-oxidizable and insoluble conductive material and an org. binder and with a small specific resistance is formed thereon. Furthermore, an outer conductive coating 5 consisting of small pieces of a non-oxidizable and insoluble conductive material and an org. binder and with an electric resistance larger than that of the inner conductive coating 4 is formed thereon. Then a conductor 6 facing the outer conductive coating 5 is set in sea water 2. Then, a direct current is fed to the inner conductive coating 4 from an energizing end 4a of the coating 4 and passed through the outer conductive coating 5 in the direction of the conductor 6 to generate chlorine on the outer conductive coating 5, which exhibits an anti-fouling effect.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は船舶、海洋構造物等海水に接する構造物の防汚
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an antifouling device for structures in contact with seawater, such as ships and marine structures.

〔従来の技術〕[Conventional technology]

船舶、海洋構造物等海水に接する構造物の防汚手段とし
ては、従来、構造物の接水部分に防汚塗料を塗装する手
段が一般的に採用されている。
BACKGROUND ART Conventionally, as antifouling means for structures that come into contact with seawater, such as ships and offshore structures, a method of applying an antifouling paint to the parts of the structure that come in contact with water has been generally adopted.

しかしながら、このような手段では、次のような欠点が
ある。
However, such means have the following drawbacks.

(1)防汚塗料の防汚成分溶出速度を調節することがで
きないので、季節、海流、水質変化等に自在に対応する
ことができない。
(1) Since the elution rate of the antifouling component of the antifouling paint cannot be adjusted, it is not possible to freely respond to changes in seasons, ocean currents, water quality, etc.

(2)防汚塗料中の毒物含有量に限度があるので、約2
年ごとに塗り替え作業が必要である。
(2) There is a limit to the amount of toxic substances in antifouling paint, so approximately 2
Repainting work is required every year.

そこで本出願人は、さきに、特願昭61−247032
号、特願昭61−248897号をもって、第4図模式
図1と示すように、海水2に接する構造物lに、エポキ
シ樹脂等の絶縁塗膜3と、カーボン粉等を有機質バイン
ダーに混合した導電塗膜05を塗り重ね、導電量@05
と鋼等からなる電気伝導体6との間に、直流電源7によ
り導電塗膜05を(士に電気伝導体6を←)にして通電
し、導電塗膜05上に、2C1−→czt + 2eの
作用で塩素を発生させる装置を提案した。
Therefore, the applicant first applied for patent application No. 61-247032.
No. 61-248897, as shown in Fig. 4 schematic diagram 1, an insulating coating 3 such as epoxy resin and carbon powder were mixed with an organic binder on a structure 1 in contact with seawater 2. Repeat coating of conductive coating film 05, conductivity amount @05
2C1-→czt+ We proposed a device that generates chlorine through the action of 2e.

しかしながら、このような装置には、次のような不具合
があることが判明した。
However, it has been found that such a device has the following problems.

(1)海水2中に流出する電流密度をある一定値以上に
保持する必要があるが、導電塗膜05の消耗による抵抗
上昇のため通電端近(に電流密度が集中し、防汚有効範
囲が狭(なる。
(1) It is necessary to maintain the current density flowing into the seawater 2 above a certain value, but due to the increase in resistance due to wear of the conductive coating 05, the current density is concentrated near the energized end (the area where the antifouling is effective). is narrow.

(2)導電塗膜05の膜厚のばらつきにより電流密度が
異なり、性能の維持が困難である。
(2) The current density varies due to variations in the thickness of the conductive coating film 05, making it difficult to maintain performance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、このような事情に鑑みて提案されたもので、
導電塗膜を用いる防汚装置における導電塗膜消耗による
抵抗上昇を防止できると\もに、導電塗膜の膜厚のばら
つきによる電流分布不均一化を解消することができる海
水に接する構造物の防汚装置を提供することを課題とす
る。
The present invention was proposed in view of these circumstances, and
It is possible to prevent resistance increases due to conductive coating wear in antifouling equipment that uses conductive coatings, and it is also possible to eliminate uneven current distribution due to variations in the thickness of the conductive coating for structures in contact with seawater. The objective is to provide an antifouling device.

(課題を解決するための手段〕 そのために本発明は、船舶、海洋構造物、等海水に接す
る構造物の接水面の電気絶縁体の外側を被覆し耐酸化性
不溶性の導電材の小片と有機バインダーとからなり通電
端が設けられている比抵抗の小さい内側導電塗膜と、上
記内側導電塗膜の外側を被覆し耐酸化性不溶性の導電材
の小片と有機バインダーとからなり上記内側導電塗膜よ
り電気抵抗の大きい外側導電塗膜と、上記外側導電塗膜
に対向し海水中に設置された電気伝導体と、上記内側導
電塗膜の通電端と上記電気伝導体との間に設置され上記
内側導電塗膜から上記外側導電塗膜を通して上記電気伝
導体方向に直流を通電する電源装置とを具えたことを特
徴とする。
(Means for Solving the Problems) To achieve this goal, the present invention covers the outside of an electrical insulator on the water contact surface of a structure in contact with seawater such as a ship, a marine structure, etc. an inner conductive coating film with a low specific resistance, which is made up of a binder and is provided with a current-carrying end; and an inner conductive coating film that covers the outside of the inner conductive coating film and consists of small pieces of an oxidation-resistant insoluble conductive material and an organic binder. an outer conductive coating having a higher electrical resistance than the membrane; an electrical conductor placed in seawater facing the outer conductive coating; and an electrical conductor installed between the current-carrying end of the inner conductive coating and the electrical conductor. The present invention is characterized by comprising a power supply device that supplies direct current from the inner conductive coating film through the outer conductive coating film in the direction of the electrical conductor.

〔作 用〕[For production]

上述゛の構成により、導電塗膜を用いる防汚装置におけ
る導電塗膜消耗による抵抗上昇を防止できると\もに、
導電塗膜の膜厚のばらつきによる電流分布不均一化を解
消することができる海水に接する構造物の防汚装置を得
ることができる。
With the above configuration, it is possible to prevent an increase in resistance due to conductive coating wear in an antifouling device using a conductive coating, and
It is possible to obtain an antifouling device for a structure in contact with seawater that can eliminate nonuniform current distribution caused by variations in the thickness of a conductive coating film.

(実施例〕 本発明海水に接する構造物の防汚装置の実施例を図面に
ついて説明すると、第1図はその第1実施例を示す模式
図、第2図は第1図の二層導電塗膜による通電有効距離
を従来装置と比較して示す線図、第3図はその第2実施
例を示す模式図である。
(Example) An example of the antifouling device for structures in contact with seawater according to the present invention will be explained with reference to the drawings. FIG. 3 is a diagram showing a comparison of the effective current-carrying distance of a membrane with a conventional device, and FIG. 3 is a schematic diagram showing a second embodiment thereof.

まず第1図において、1は海水2に接する鋼構造の外板
を構成する鋼板、3は鋼板1の外側を被覆するエポキシ
樹脂等よりなる電気絶縁体としての絶縁塗膜である。な
お外板がFRP製等の電気絶縁体である場合は絶縁塗膜
を省略してもよい。4は絶縁塗膜3の外側を被覆する比
抵抗の小さい耐酸化性不溶性の導電材と有機バインダー
とからなり、通電端4aが設けられている内側導電塗膜
で、耐酸化性不溶性の導電材としてはグラファイト、カ
ーボンブラック等の導電材がそれぞれ使用でき、また有
機バインダーとの混入の形状としては粉状、線状、フィ
ラー状又はフレーク状等の小片にして適用できる。
First, in FIG. 1, reference numeral 1 indicates a steel plate constituting the outer panel of the steel structure that is in contact with seawater 2, and 3 indicates an insulating coating film as an electrical insulator made of epoxy resin or the like that covers the outside of the steel plate 1. Note that if the outer panel is an electrical insulator such as FRP, the insulating coating may be omitted. Reference numeral 4 denotes an inner conductive coating film which is made of an oxidation-resistant insoluble conductive material with low specific resistance and an organic binder that covers the outside of the insulating coating film 3, and is provided with a current-carrying end 4a, which is made of an oxidation-resistant insoluble conductive material As the material, conductive materials such as graphite and carbon black can be used, and as for the form of mixing with the organic binder, it can be applied in the form of small pieces such as powder, linear, filler, or flake.

なお有機バインダーとしてはエポキシ樹脂、とニー^樹
脂、不飽和ポリエステル樹脂、アクリル樹脂、フェノー
ル樹脂、ウレタン樹脂、ビニールエステル系エポキシ樹
脂等が使用できる。
As the organic binder, epoxy resin, resin, unsaturated polyester resin, acrylic resin, phenol resin, urethane resin, vinyl ester epoxy resin, etc. can be used.

5は更に内側導電塗膜4の外側を被覆する耐酸化性不溶
性の導電材の小片と有機バインダーとからなる外側導電
塗膜で、耐酸化性不溶性の導電材の小片としてはグラフ
ァイト、カーボンブラック等が使用でき、有機バインダ
ーとしては上記同様の樹脂類が使用できる。またこの外
側導電塗膜5は内側導電塗膜4に比べ電気抵抗が太き(
なっている。
Reference numeral 5 denotes an outer conductive coating film made of small pieces of an oxidation-resistant insoluble conductive material and an organic binder that coats the outside of the inner conductive coating film 4. The small pieces of the oxidation-resistant insoluble conductive material include graphite, carbon black, etc. can be used, and the same resins as mentioned above can be used as the organic binder. In addition, this outer conductive coating film 5 has a thicker electrical resistance than the inner conductive coating film 4 (
It has become.

6は外側導電量115と対向して海水2中に設置された
鉄、鋼又は炭素等からなる電気伝導体としての陰極、7
は内側導電塗膜40通通電端aと陰極6との間に設置さ
れ、内側導電量1x4から外側導電塗膜5を通して陰極
6の方向へ直流を通電する直流電源である。8は鋼板1
と陰極6とを接続するリード線である。
6 is a cathode as an electrical conductor made of iron, steel, carbon, etc., which is placed in the seawater 2 facing the outer conductor 115;
is a DC power supply that is installed between the current-carrying end a of the inner conductive coating film 40 and the cathode 6, and supplies direct current from the inner conductive quantity 1x4 to the cathode 6 through the outer conductive coating film 5. 8 is steel plate 1
This is a lead wire that connects the cathode 6 and the cathode 6.

このような装置において、内側導電塗膜4から外側導電
塗膜5を通して、海水z中の陰極6の方向へ直流電流を
流出させると、外側導電塗膜5の表面は濃い塩素の膜に
覆われ、海洋生物がその表面へ付着することを防止する
In such a device, when a direct current flows from the inner conductive coating 4 through the outer conductive coating 5 toward the cathode 6 in seawater z, the surface of the outer conductive coating 5 is covered with a thick chlorine film. , preventing marine life from adhering to its surface.

この際の直流電流は、内側導電塗膜4に設けられている
通電端4aから、電気抵抗の小さい内側導電塗膜4のベ
ース電流を通して外側導電塗膜5の厚さ方向に供給され
ることになり、従って外側導電塗膜5が消耗しても通電
端4a近くに電流密度が集中するということはなく、安
定した均一な電流密度分布が長期にわたって維持てき、
ひいては少ない消費電力で高性能な防汚効果を奏するこ
とかできる。
At this time, the direct current is supplied from the current-carrying end 4a provided on the inner conductive coating 4 to the thickness direction of the outer conductive coating 5 through the base current of the inner conductive coating 4 having low electrical resistance. Therefore, even if the outer conductive coating 5 is worn out, the current density does not concentrate near the current-carrying end 4a, and a stable and uniform current density distribution is maintained over a long period of time.
As a result, high-performance antifouling effects can be achieved with low power consumption.

な招、リード線8により鋼板1を(−)電位に、内側、
外側の導電塗膜4.5を(+)電位になるようにしてい
るので、内側、外側の導電塗膜4.5が局部的に損傷破
壊し鋼板1に露出部が生じたときには、導電塗膜4.5
から流出した直流電流の一部が鋼板露出部に流入し、鋼
板1から直流電源7の(−)極に帰還され鋼板lの腐食
を防止する。
In addition, the steel plate 1 is brought to (-) potential by the lead wire 8, and the inside
Since the outer conductive coating 4.5 is set to a (+) potential, if the inner or outer conductive coating 4.5 is locally damaged or destroyed and an exposed part is formed on the steel plate 1, the conductive coating will be removed. Membrane 4.5
A part of the direct current flowing out from the steel plate 1 flows into the exposed portion of the steel plate and is returned from the steel plate 1 to the (-) pole of the DC power supply 7 to prevent corrosion of the steel plate 1.

なお外側導電塗膜5が損傷破壊し内側導電塗膜4が露出
した場合に、顔料として耐酸化性不溶性のグラファイト
、力〒ボンブラックを用いているため本装置の長期的安
定化のために有効である。
In addition, in the event that the outer conductive coating 5 is damaged and destroyed and the inner conductive coating 4 is exposed, the use of oxidation-resistant and insoluble graphite and carbon black as pigments is effective for long-term stability of the device. It is.

しかしてこのような装置においては、内側導電塗膜4の
鋼板1に平行な方向の電気抵抗R4<外側導電塗膜5の
鋼板1に平行な方向の電気抵抗R8の関係があり、通電
fi4aから受ける電流の95%程度を内側導電塗膜4
内を流し電流密度分布の均一化を図るには、R4/ R
* l= 0.1が好ましく、また導電塗膜4.5の厚
さは体積抵抗率や導電塗膜5の通電や外界の影響による
損耗を考慮して決める必要がある。
However, in such a device, there is a relationship of electrical resistance R4 of the inner conductive coating 4 in a direction parallel to the steel plate 1<electric resistance R8 of the outer conductive coating 5 in a direction parallel to the steel plate 1, and from the energization fi4a Approximately 95% of the current received is transferred to the inner conductive coating 4.
In order to make the current density distribution uniform by flowing inside R4/R
*l=0.1 is preferable, and the thickness of the conductive coating film 4.5 needs to be determined in consideration of the volume resistivity and the wear and tear of the conductive coating film 5 due to energization and external influences.

こ\で、実験例を第2図について説明すると、同図は本
発明装置と従来装置における導電塗膜の通電端からの通
電有効距離を比較して示すもので、それぞれの導電塗膜
の条件は次の通りである。
Now, an experimental example will be explained with reference to Fig. 2. The figure shows a comparison of the effective current-carrying distance from the current-carrying end of the conductive coating film in the device of the present invention and the conventional device, and the conditions of each conductive coating film are is as follows.

本発明装置 内側導電塗膜:抵抗1Ω−m、 膜厚200μ 外側導電塗膜:抵抗200Ω−m。Device of the present invention Inner conductive coating: resistance 1Ω-m, Film thickness 200μ Outer conductive coating: resistance 200 Ω-m.

膜厚20ON 従来装置 導電量1x:抵抗3Ω−m。Film thickness 20ON Conventional device Conductivity 1x: Resistance 3Ω-m.

膜厚200p このような導電塗膜に通電端からsomA通電したとき
、所要電流密度Aを保持Tるのに従来装置すは3mであ
るのに対し、本発明装置aは8mまで有効である。また
本発明装置において外側導電塗膜の厚さを200μから
50μまで変化しても有効距離は変化しなかったが、従
来装置ではCのように1mに減少した。
Film thickness: 200p When a current of somA is applied to such a conductive coating from the current-carrying end, the conventional device requires 3 m to maintain the required current density A, whereas the device a of the present invention is effective up to 8 m. Furthermore, in the device of the present invention, the effective distance did not change even when the thickness of the outer conductive coating was changed from 200 μm to 50 μm, but in the conventional device, it decreased to 1 m as shown in C.

次に、第3図の第2実施例において、第工図七同−の符
番はそれぞれ同図と同一の部材を示し、9は内側導電塗
膜4の外側を被覆する相溶に対するバリヤー的な中間導
電塗膜で、導電材の小片及び有機バインダーとしては、
外側導電塗膜5または内側導電塗膜4と同様のものが使
用できる。なお、中間導電塗膜の有機バインダーとして
は、外側導電塗膜5または内側導電塗膜4の少な(とも
どちらか一方の有機バインダーと相溶性の少ないものが
望ましく、特に反応硬化型のウレタン樹脂、エポキシ樹
脂等の方が好ましい。
Next, in the second embodiment shown in FIG. 3, the reference numbers in the construction drawing 7 indicate the same members as in the drawing, and 9 represents a barrier against compatibility that coats the outside of the inner conductive coating 4. In the intermediate conductive coating film, small pieces of conductive material and organic binder are
A material similar to the outer conductive coating 5 or the inner conductive coating 4 can be used. The organic binder for the intermediate conductive coating is preferably one that is less compatible with the organic binder of either the outer conductive coating 5 or the inner conductive coating 4. In particular, reaction-curing urethane resins, Epoxy resin or the like is preferable.

このような装置において、内側導電塗膜4から中間導電
塗膜9、外側導電塗膜5を通して、海水2中の陰極6の
方向へ直流電流を流出させると、外側導電塗膜5の表面
は濃い塩素の膜に覆われ、海洋生物がその表面へ付着す
ることを防止する。
In such a device, when a direct current flows from the inner conductive coating 4 through the intermediate conductive coating 9 and the outer conductive coating 5 toward the cathode 6 in the seawater 2, the surface of the outer conductive coating 5 becomes dark. It is covered with a chlorine film that prevents marine life from adhering to its surface.

その際の直流電流の基本的な流れ方は第1実施例と同一
であり、リード線8により鋼板1を(−)電位に、内側
、中間、外側導電塗膜4.9.5をそれぞれ(+)電位
になるようにしているので、内側、中間、外側導電塗膜
4.9.5が局部的に損傷破壊し鋼板1に露出部が生じ
たときには、内側、中間、外側導電塗膜4.9.5から
流出した直流電流の一部が鋼板1の露出部に流入し、鋼
板1から直流電源7の(−)極に帰還され鋼板1の腐食
を防止する。また内側、中間、外側導電塗膜4.9.5
の厚さは体積抵抗率や中間、外側導電塗膜9.5の通電
や外界の影響による損耗を考慮して決める必要がある。
The basic flow of direct current at that time is the same as in the first embodiment, and the steel plate 1 is brought to (-) potential by the lead wire 8, and the inner, intermediate, and outer conductive coatings 4, 9, and 5 are connected to ( +) potential, so if the inner, intermediate, and outer conductive coatings 4.9.5 are locally damaged or destroyed and an exposed part is created on the steel plate 1, the inner, intermediate, and outer conductive coatings 4. A part of the direct current flowing out from the steel plate 1 flows into the exposed portion of the steel plate 1, and is returned from the steel plate 1 to the (-) pole of the DC power supply 7, thereby preventing corrosion of the steel plate 1. Also, inner, middle, and outer conductive coatings 4.9.5
It is necessary to decide the thickness in consideration of the volume resistivity and wear and tear of the middle and outer conductive coatings 9.5 due to energization and external influences.

このような装置において、内側導電塗膜4と外側導電塗
膜5との間にバリヤーとして中間導電塗膜9を設けるこ
とにより、内側導電塗膜4の樹脂と外側導電塗膜5の樹
脂とが相溶し、内側導電塗膜4の抵抗が増大することを
防止することができる。
In such a device, by providing an intermediate conductive coating film 9 as a barrier between the inner conductive coating film 4 and the outer conductive coating film 5, the resin of the inner conductive coating film 4 and the resin of the outer conductive coating film 5 are separated. They are compatible and can prevent the resistance of the inner conductive coating film 4 from increasing.

このような装置によれば、内側導電塗膜上に特定の中間
導電塗膜を介して外側導電塗膜を塗り重ねることにより
、内側導電塗膜の導電性低下を防いでいるので、防汚範
囲が制限されず、従って経済性及び防汚性能を向上する
ことができる。
According to such a device, by coating the outer conductive coating over the inner conductive coating via a specific intermediate conductive coating, a decrease in the conductivity of the inner conductive coating is prevented. is not restricted, and therefore economical efficiency and antifouling performance can be improved.

また、第1の実施例において、内側導電塗膜の有機バイ
ンダー、と外側導電塗膜の有機バインダーとが互いに相
溶性の小さいものとすること+1′l橿 により、講#嘆#緊壌の効果を奏すると\もに、内側導
電塗膜の上に外側導電塗膜を直接塗り重ねても、それ等
の成膜の導電性が低下せず内側導電塗膜及び外側導電塗
膜が相応に結合し、その界面で眉間剥離が発生する惧れ
がない。
In addition, in the first embodiment, the organic binder of the inner conductive coating film and the organic binder of the outer conductive coating film are made to have low compatibility with each other. Therefore, even if the outer conductive coating is coated directly on top of the inner conductive coating, the conductivity of these films will not decrease and the inner and outer conductive coatings will bond appropriately. However, there is no risk of glabellar peeling occurring at that interface.

さらに、第2の実施例においても、中間導電塗膜の有機
バインダーが内側導電塗膜の有機バインダー及び外側導
電塗膜の有機バインダーの両方に対して相溶性の小さい
ものとすることにより、内側導電塗膜、中間導電塗膜、
外側導電塗膜を順次塗り重ねても、それ等の成膜の導電
性が低下せず内側導電塗膜、中間導電塗膜、外側導電塗
膜が相応に結合し、それ等の界面で層間剥離が発生する
惧れがな(、゛ 効果を一段と高めることができる。
Furthermore, in the second embodiment, the organic binder of the intermediate conductive coating film has low compatibility with both the organic binder of the inner conductive coating film and the organic binder of the outer conductive coating film. Coating film, intermediate conductive coating film,
Even if the outer conductive coating is coated one after another, the conductivity of these films will not decrease, and the inner conductive coating, intermediate conductive coating, and outer conductive coating will bond appropriately, and delamination will occur at the interface between them. There is a risk that this will occur (, ゛The effect can be further enhanced.

(発明の効果〕 本発明は、上述のとおり構成されているので、次に記載
する効果を奏する。
(Effects of the Invention) Since the present invention is configured as described above, it produces the following effects.

請求項(1)の海水に接する構造物の防汚装置において
は、船舶、海洋構造物等海水に接する構造物の接水面の
電気絶縁体の外側を被覆し耐酸化性不溶性の導電材の小
片と有機バインダーとからなり通電端が設けられている
比抵抗の小さい内側導電塗膜と、上記内側導電塗膜の外
側を被覆し耐酸化性不溶性の導電材の小片と有機バイン
ダーとからなり上記内側導電塗膜より電気抵抗の大きい
外側導電塗膜と、上記外側導電塗膜に対向し海水中に設
置された電気伝導体と、上記内側導電塗膜の通電端と上
記電気伝導体との間に設置され上記内側導電塗膜から上
記外側導電塗膜を通して上記電気伝導体方向に直流を通
電する電源装置とを具えたことにより、導電塗膜を用い
る防汚装置における導電塗膜消耗による抵抗上昇を防止
できると\もに、導電塗膜の膜厚のばらつきによる電流
分布不均一化を解消することができ、かつ低抵抗導電塗
膜で高性能な防汚効果を奏することができる海水に接す
る構造物の防汚装置を得る。
In the antifouling device for structures in contact with seawater according to claim (1), a small piece of an oxidation-resistant insoluble conductive material is used to coat the outside of an electrical insulator on a water-contact surface of a structure in contact with seawater such as a ship or a marine structure. and an organic binder, and an inner conductive coating film with a low specific resistance, which is provided with a current-carrying end; an outer conductive coating film having a higher electrical resistance than the conductive coating film, an electrical conductor placed in seawater facing the outer conductive coating film, and between the current-carrying end of the inner conductive coating film and the electrical conductor. By including a power supply device that is installed and supplies direct current from the inner conductive coating film to the outer conductive coating film in the direction of the electrical conductor, an increase in resistance due to conductive coating wear in an antifouling device using a conductive coating film can be prevented. If it can be prevented, it will also be possible to eliminate uneven current distribution due to variations in the thickness of the conductive coating, and a structure that comes into contact with seawater can provide a high-performance antifouling effect with a low-resistance conductive coating. Get an antifouling device for things.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明海水に接する構造物の防汚装置の第1実
施例を示す模式図、第2図は第1図の二層導電塗膜によ
る通電有効距離を従来装置と比較して示す線図、第3図
はその第2実施例を示す模式図である。 第4図は従来の防汚装置を示す模式図である。 工・・・鋼板、2・・・海水、3・・・絶縁塗膜、4・
・・内側導電塗膜、4a・・・通電端、5・・・外側導
電塗膜、6・・・陰極、7・・・直流電源、8・・・リ
ード線、9・・・中間導電塗膜。
Fig. 1 is a schematic diagram showing the first embodiment of the antifouling device for structures in contact with seawater according to the present invention, and Fig. 2 shows a comparison of the effective current carrying distance by the two-layer conductive coating shown in Fig. 1 with a conventional device. The diagram and FIG. 3 are schematic diagrams showing the second embodiment. FIG. 4 is a schematic diagram showing a conventional antifouling device. Engineering: steel plate, 2: seawater, 3: insulation coating, 4:
...Inner conductive coating, 4a... Current-carrying end, 5... Outer conductive coating, 6... Cathode, 7... DC power supply, 8... Lead wire, 9... Intermediate conductive coating film.

Claims (1)

【特許請求の範囲】[Claims] 船舶、海洋構造物等海水に接する構造物の接水面の電気
絶縁体の外側を被覆し耐酸化性不溶性の導電材の小片と
有機バインダーとからなり通電端が設けられている比抵
抗の小さい内側導電塗膜と、上記内側導電塗膜の外側を
被覆し耐酸化性不溶性の導電材の小片と有機バインダー
とからなり上記内側導電塗膜より電気抵抗の大きい外側
導電塗膜と、上記外側導電塗膜に対向し海水中に設置さ
れた電気伝導体と、上記内側導電塗膜の通電端と上記電
気伝導体との間に設置され上記内側導電塗膜から上記外
側導電塗膜を通して上記電気伝導体方向に直流を通電す
る電源装置とを具えたことを特徴とする海水に接する構
造物の防汚装置。
The inner side with low specific resistance is made of small pieces of oxidation-resistant insoluble conductive material and an organic binder, and is provided with a current-carrying end, covering the outside of the electrical insulator on the water-contacting surface of structures that come in contact with seawater, such as ships and offshore structures. a conductive coating film, an outer conductive coating coated on the outside of the inner conductive coating and comprising small pieces of an oxidation-resistant insoluble conductive material and an organic binder and having a higher electrical resistance than the inner conductive coating; an electric conductor installed in seawater facing the membrane; and an electric conductor installed between the current-carrying end of the inner conductive coating and the electric conductor, passing from the inner conductive coating to the outer conductive coating. An antifouling device for a structure in contact with seawater, characterized by comprising a power supply device that supplies direct current in a direction.
JP9977089A 1989-04-19 1989-04-19 Anti-fouling apparatus for structure brought into contact with sea water Pending JPH02279772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9977089A JPH02279772A (en) 1989-04-19 1989-04-19 Anti-fouling apparatus for structure brought into contact with sea water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9977089A JPH02279772A (en) 1989-04-19 1989-04-19 Anti-fouling apparatus for structure brought into contact with sea water

Publications (1)

Publication Number Publication Date
JPH02279772A true JPH02279772A (en) 1990-11-15

Family

ID=14256205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9977089A Pending JPH02279772A (en) 1989-04-19 1989-04-19 Anti-fouling apparatus for structure brought into contact with sea water

Country Status (1)

Country Link
JP (1) JPH02279772A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104395190A (en) * 2012-08-28 2015-03-04 艺科环球科技私人有限公司 System and method for prevention of adhesion of organisms in water to a substrate in contact with water

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63101464A (en) * 1986-10-17 1988-05-06 Mitsubishi Heavy Ind Ltd Electrically conductive coating film for use in electrolysis of sea water
JPS63103789A (en) * 1986-10-20 1988-05-09 Mitsubishi Heavy Ind Ltd Pollution preventing device for structure being in contact with sea water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63101464A (en) * 1986-10-17 1988-05-06 Mitsubishi Heavy Ind Ltd Electrically conductive coating film for use in electrolysis of sea water
JPS63103789A (en) * 1986-10-20 1988-05-09 Mitsubishi Heavy Ind Ltd Pollution preventing device for structure being in contact with sea water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104395190A (en) * 2012-08-28 2015-03-04 艺科环球科技私人有限公司 System and method for prevention of adhesion of organisms in water to a substrate in contact with water

Similar Documents

Publication Publication Date Title
JP2647498B2 (en) Antifouling equipment for structures in contact with seawater
EP1781533B1 (en) Multilayered submersible structure with fouling inhibiting characteristic
JPS6334192B2 (en)
US7241374B2 (en) Pulsed electric field method and apparatus for preventing biofouling on aquatic surfaces
JPH02279772A (en) Anti-fouling apparatus for structure brought into contact with sea water
JPH0814036B2 (en) Antifouling equipment for structures in contact with seawater
JP2601807B2 (en) Antifouling device and antifouling / anticorrosion device for structures in contact with seawater
JP2575866B2 (en) Antifouling equipment for structures in contact with seawater
JP3207718B2 (en) Marine organism adhesion prevention coating
JP3145390B2 (en) Conductive film for seawater electrolytic antifouling equipment
JPS63101464A (en) Electrically conductive coating film for use in electrolysis of sea water
JPS6473094A (en) Method for preventing corrosion of steel structure in seawater
JP2505608B2 (en) Antifouling equipment for structures in contact with seawater
JPH02196868A (en) Antifouling device for structure contacting with sea water
JP2809351B2 (en) Antifouling and anticorrosion methods for hull skin in contact with seawater
JPH03125690A (en) Antifouling device for construction touching seawater
JPH03132495A (en) Contamination preventive device for structure in contact with sea water
JPH02147493A (en) Anti-contamination device for marine structure
JPH0495597A (en) Pollution controller for structure adjoining to seawater
JPH048691A (en) Method for constructing antifouliong device for sea water contact structure
JPS6289884A (en) Apparatus for preventing corrosion of steel stock
JPH06107973A (en) Electrically-conductive coating compound for preventing adhesion of marine organism
JPH04337093A (en) Sea water electrolyzing and anti-fauling device for sea water contact structure
JPH0597091A (en) Fouling preventing device for structure contacting with sea water
JPS59182973A (en) Electrolytic protection method