JPH09304037A - Apparatus for measuring core shift amount between cylindrical objects - Google Patents

Apparatus for measuring core shift amount between cylindrical objects

Info

Publication number
JPH09304037A
JPH09304037A JP12421696A JP12421696A JPH09304037A JP H09304037 A JPH09304037 A JP H09304037A JP 12421696 A JP12421696 A JP 12421696A JP 12421696 A JP12421696 A JP 12421696A JP H09304037 A JPH09304037 A JP H09304037A
Authority
JP
Japan
Prior art keywords
measured
misalignment
amount
image
objects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12421696A
Other languages
Japanese (ja)
Inventor
Tomoaki Kodama
知晃 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12421696A priority Critical patent/JPH09304037A/en
Publication of JPH09304037A publication Critical patent/JPH09304037A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow an apparatus to be reduced in a size and a cost and to allow a shift in cores between cylindrical objects to be measured rapidly. SOLUTION: A first set of a light source 1, a diffusion plate 2 and a CCD camera 3 and a second set of a light source 4, a diffusion plate 5 and a CCD camera 6 are set to 90 degrees with respect to objects to be measured A, B for picking up their images. The images are acquired from the CCD cameras 3, 6 by an image acquisition part 7 for measuring respective shift amounts from the images by a core shift amount measuring circuit 8. From measurement results, the maximum of the core shift and a direction are calculated by a maximum core shift amount/direction calculating circuit 9. Use of two sets of image pickup means allows a core shift amount to be obtained by single image acquisition without rotating the objects A, B.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、二つの円筒状の物
体が重なっているときにその芯ずれ量と方向を測定する
円筒形状物体間の芯ずれ量測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the amount of misalignment between cylindrical objects which measures the amount and direction of misalignment when two cylindrical objects overlap each other.

【0002】[0002]

【従来の技術】図3は、従来の円筒形状物体間の芯ずれ
量測定装置の構成を示している。図3において、A、B
は被測定物、31は被測定物A、Bを回転させる被測定
物回転機構、32は光源、33は光源32からの光を拡
散させて被測定物A、Bに照射させる拡散板、34は被
測定物A、Bの透過光を受光するCCDカメラ、35は
CCDカメラ34から画像を取り込む画像取り込み部、
36は回転同期回路であり、被測定物回転機構31へ回
転同期信号を出力して被測定物A、Bを回転させると同
時に、画像取り込み部35へも画像を取り込むための同
期信号を出力する。37は芯ずれ最大量測定回路であ
り、画像取り込み部35の画像から被測定物A、Bの最
大芯ずれ量を測定する。
2. Description of the Related Art FIG. 3 shows the structure of a conventional apparatus for measuring the amount of misalignment between cylindrical objects. In FIG. 3, A, B
Is an object to be measured, 31 is an object rotating mechanism for rotating the objects to be measured A and B, 32 is a light source, 33 is a diffusion plate for diffusing light from the light source 32 and irradiating the objects to be measured A and B, 34 Is a CCD camera for receiving the transmitted light of the objects to be measured A and B, 35 is an image capturing section for capturing an image from the CCD camera 34,
A rotation synchronizing circuit 36 outputs a rotation synchronizing signal to the object rotating mechanism 31 to rotate the objects A and B to be measured, and at the same time, outputs a synchronizing signal for capturing an image to the image capturing section 35. . Reference numeral 37 denotes a maximum misalignment amount measuring circuit, which measures the maximum misalignment amount of the objects to be measured A and B from the image of the image capturing section 35.

【0003】以上の構成において、以下、その動作につ
いて説明する。光源32からの光は拡散板33を通して
被測定物A、Bに照射される。この透過光によりCCD
カメラ34で被測定物A、Bを撮像する。さらに回転同
期回路36からの同期信号により被測定物回転機構31
が被測定物A、Bを回転させると同時に、画像取り込み
部35が回転同期回路36からの同期信号により画像を
取り込む。そして、被測定物A、Bを回転させながら複
数回画像を取り込み、この画像から芯ずれ最大量測定回
路37により被測定物A、Bの芯ずれ量を測定してい
き、被測定物A、Bが一回転する間の測定値から最大量
を求めることにより、被測定物A、Bの最大芯ずれ量を
得ることができる。
The operation of the above configuration will be described below. The light from the light source 32 is applied to the objects to be measured A and B through the diffusion plate 33. CCD by this transmitted light
The objects to be measured A and B are imaged by the camera 34. Further, by the synchronizing signal from the rotation synchronizing circuit 36, the DUT rotating mechanism 31
Rotates the DUTs A and B, and at the same time, the image capturing section 35 captures an image by the synchronization signal from the rotation synchronization circuit 36. Then, images are captured a plurality of times while rotating the objects to be measured A and B, and the amount of misalignment of the objects to be measured A and B is measured from this image by the maximum misalignment amount measuring circuit 37. By obtaining the maximum amount from the measured value during one rotation of B, the maximum misalignment amount of the objects to be measured A and B can be obtained.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来例の円筒形状物体間の芯ずれ量測定装置では、被測定
物A、Bを一回転させるために被測定物回転機構31を
必要とするため、装置が大型、かつ高価になると同時
に、測定時間も長くなるという問題があった。
However, in the above-described conventional apparatus for measuring the amount of misalignment between cylindrical objects, the object rotating mechanism 31 is required to rotate the objects A and B once. However, there is a problem that the apparatus becomes large and expensive, and at the same time, the measurement time becomes long.

【0005】本発明は、このような従来の問題を解決す
るものであり、被測定物回転機構を用いないで被測定物
の芯ずれ量を測定することができ、したがって、装置の
小型化および低コスト化を図ることができ、また、被測
定物を回転させないで芯ずれ量を測定することができ、
したがって、短い時間で芯ずれ量を測定することができ
るようにした円筒形状物体間の芯ずれ量測定装置を提供
することを目的とするものである。
The present invention solves such a conventional problem, and can measure the amount of misalignment of the object to be measured without using the mechanism for rotating the object to be measured. The cost can be reduced, and the amount of misalignment can be measured without rotating the object to be measured.
Therefore, it is an object of the present invention to provide an apparatus for measuring the amount of misalignment between cylindrical objects, which is capable of measuring the amount of misalignment in a short time.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するため、重なっている円筒形状物体である被測定物
に対してほぼ90度の角度差で設定した2組の撮像手段
と、各組の撮像手段の画像を取り込む画像取り組み部
と、この画像取り込み部で取り込んだ2つの画像からそ
れぞれの芯ずれ量を測定する芯ずれ量測定回路と、それ
ぞれの芯ずれ量から最大芯ずれ量とずれ方向を計算する
芯ずれ最大量・方向計算回路とを備えたものである。
In order to achieve the above object, the present invention comprises two sets of image pickup means set with an angular difference of approximately 90 degrees with respect to an object to be measured which is an overlapping cylindrical object. An image approaching unit that captures images of each set of image pickup means, a misalignment amount measuring circuit that measures the amount of misalignment from each of the two images captured by this image capturing unit, and a maximum amount of misalignment from each amount of misalignment. And a maximum misalignment amount / direction calculation circuit for calculating the misalignment direction.

【0007】これにより、被測定物の画像を一度取り込
むだけで芯ずれ最大量と方向を得ることができ、装置の
小型化、低コスト化を図ることができ、また、測定の高
速化を図ることができる芯ずれ量測定装置が得られる。
As a result, the maximum amount and direction of misalignment can be obtained by only once capturing the image of the object to be measured, the size and cost of the device can be reduced, and the measurement speed can be increased. An apparatus for measuring the amount of misalignment can be obtained.

【0008】[0008]

【発明の実施の形態】本発明の請求項1に記載の発明
は、重なっている円筒形状物体である被測定物に対して
ほぼ90度の角度差で設定された2組の被測定物の撮像
手段と、各組の撮像手段から画像を取り込む画像取り込
み部と、この画像取り込み部で取り込んだ画像からずれ
量を測定する芯ずれ量測定回路と、この芯ずれ量測定回
路で測定したそれぞれの中心ずれ量から最大芯ずれ量と
方向を計算する芯ずれ量・方向計算回路とを備えたもの
であり、被測定物を回転させずに画像を一回取り込むこ
とで円筒形状物体間の最大芯ずれ量と方向を高速に得る
ことができるという作用を有する。
BEST MODE FOR CARRYING OUT THE INVENTION According to the first aspect of the present invention, two sets of objects to be measured set with an angular difference of approximately 90 degrees with respect to the objects to be measured which are overlapping cylindrical objects. Image pickup means, an image capturing section that captures an image from each set of image capturing means, a center shift amount measuring circuit that measures the shift amount from the image captured by the image capturing section, and each of the center shift amount measuring circuits that measure the shift amount. It is equipped with a center displacement amount / direction calculation circuit that calculates the maximum center displacement amount and direction from the center displacement amount, and the maximum center distance between cylindrical objects can be obtained by capturing an image once without rotating the DUT. It has an effect that the shift amount and direction can be obtained at high speed.

【0009】請求項2に記載の発明は、上記請求項1に
おいて、各組の撮像手段が、被測定物に光を照射する光
源と、この光源からの光を拡散させる拡散板と、上記光
源から上記拡散板を介して照射され、上記被測定物を透
過した光を受光し、被測定物の画像を得るためのCCD
カメラとを備えたものである。
According to a second aspect of the present invention, in the first aspect, the image pickup means of each set illuminates the object to be measured with light, a diffusion plate for diffusing the light from the light source, and the light source. CCD for receiving the light that has been transmitted from the DUT through the diffusion plate and transmitted through the DUT to obtain an image of the DUT.
It is equipped with a camera.

【0010】以下、本発明の一実施の形態について、図
面を参照しながら説明する。 (実施の形態1)図1は本発明の一実施の形態による円
筒形状物体間の芯ずれ量測定装置を示す概略構成図、図
2(a)、(b)は同芯ずれ量測定装置における測定動
作説明図である。図1において、1は光源、2は拡散板
であり、この拡散板2は光源1からの光を拡散させて重
なった2つの円筒状物体である被測定物A、Bを照射さ
せる。3はCCDカメラであり、光源1により照射され
た被測定物A、Bの透過光を受光して撮像する。4は光
源、5は拡散板であり、光源4からの光を拡散させて被
測定物A、Bを照射させる。6はCCDカメラであり、
光源4により照射された被測定物A、Bの透過光を受光
して撮像する。第2(X方向)の組の光源4、拡散板
5、CCDカメラ6は被測定物A、Bに対して第1(Y
方向)の組の光源1、拡散板2、CCDカメラ3に対し
てほぼ90度の角度で(直交方向)に設定される。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. (Embodiment 1) FIG. 1 is a schematic configuration diagram showing an apparatus for measuring the amount of misalignment between cylindrical objects according to an embodiment of the present invention, and FIGS. 2A and 2B show an apparatus for measuring the amount of misalignment. It is a measurement operation explanatory drawing. In FIG. 1, 1 is a light source, 2 is a diffusing plate, and this diffusing plate 2 diffuses the light from the light source 1 and irradiates two DUTs A and B, which are two overlapping cylindrical objects. Reference numeral 3 denotes a CCD camera, which receives and images the transmitted light of the objects to be measured A and B illuminated by the light source 1. Reference numeral 4 is a light source, and 5 is a diffusion plate, which diffuses the light from the light source 4 and irradiates the DUTs A and B. 6 is a CCD camera,
The transmitted light of the objects to be measured A and B emitted by the light source 4 is received and imaged. The second (X direction) set of the light source 4, the diffusion plate 5, and the CCD camera 6 are first (Y) relative to the objects to be measured A and B.
(Direction) with respect to the light source 1, the diffuser plate 2, and the CCD camera 3 of the set (angle direction) at an angle of approximately 90 degrees.

【0011】7は画像取り込み部であり、第1の組のC
CDカメラ3と第2の組のCCDカメラ6で撮像された
被測定物A、Bの画像を取り込む。8は芯ずれ量測定回
路であり、第1の組のCCDカメラ3と第2の組のCC
Dカメラ6による2つの画像からそれぞれの芯ずれ量を
測定する。9は芯ずれ最大量・方向計算回路であり、芯
ずれ量測定回路8で測定した芯ずれ量から芯ずれ最大量
・方向を計算する。
Reference numeral 7 denotes an image capturing unit, which is a first set of Cs.
The images of the objects to be measured A and B captured by the CD camera 3 and the second set of CCD cameras 6 are captured. Reference numeral 8 denotes a misalignment amount measuring circuit, which includes the first set of CCD cameras 3 and the second set of CCs.
The amounts of misalignment of the two images from the D camera 6 are measured. Reference numeral 9 denotes a maximum misalignment amount / direction calculating circuit, which calculates the maximum misalignment amount / direction from the misalignment amount measured by the misalignment amount measuring circuit 8.

【0012】以上の構成において、以下、その動作につ
いて説明する。第1の組の光源1から拡散板2を通して
被測定物A、Bに光を照射し、被測定物A、Bに対して
光源1と拡散板2の反対側に設定したCCDカメラ3が
その透過光を受光して被測定物A、Bを撮像する。一
方、第2の組の光源4から拡散板5を通して被測定物
A、Bに光を照射し、被測定物A、Bに対して光源4と
拡散板5の反対側に設定したCCDカメラ6がその透過
光を受光して被測定物A、Bを撮像する。
The operation of the above configuration will be described below. Light is emitted from the first set of light sources 1 to the objects A and B to be measured through the diffusion plate 2, and the CCD camera 3 set on the opposite side of the light sources 1 and the diffusion plate 2 with respect to the objects A and B to be measured. The transmitted light is received and the objects A and B to be measured are imaged. On the other hand, the light sources 4 of the second set irradiate the DUTs 5 through the diffuser plate 5 with light, and the CCD camera 6 is set on the opposite side of the light source 4 and the diffusing plate 5 with respect to the DUTs A and B. Receives the transmitted light and images the objects to be measured A and B.

【0013】第2の組の光源4、拡散板5、CCDカメ
ラ6は第1の組の光源1、拡散板2、CCDカメラ3に
対して90度の角度で設定されており、第1の組のCC
Dカメラ3と第2の組のCCDカメラ6によって撮像さ
れた画像は画像取り込み部7に取り込まれ、芯ずれ量測
定回路8でそれぞれの画像から芯ずれ量を測定する。
The light source 4, the diffuser plate 5, and the CCD camera 6 of the second set are set at an angle of 90 degrees with respect to the light source 1, the diffuser plate 2, and the CCD camera 3 of the first set. CC of set
The images captured by the D camera 3 and the second set of CCD cameras 6 are captured by the image capturing unit 7, and the misalignment amount measuring circuit 8 measures the misalignment amount from each image.

【0014】図2(a)に示すように、第1の組のCC
Dカメラ3からの画像より被測定物Aの中心点A1と被
測定物Bの中心点B1のY方向位置を求めて芯ずれ量Y
を測定し、第2の組のCCDカメラ6からの画像より被
測定物Aの中心点A1と被測定物Bの中心点B1のX方
向位置を求めて芯ずれ量Xを測定する。芯ずれ最大量・
方向計算回路9では芯ずれ量測定回路8で測定した芯ず
れ量Xと芯ずれ量Yから最大芯ずれ量11を次の式より
計算する。
As shown in FIG. 2 (a), the first set of CCs
The position of the center point A1 of the object to be measured A and the center point B1 of the object to be measured B in the Y direction is obtained from the image from the D camera 3 and the misalignment amount Y
Is measured, the X-direction positions of the center point A1 of the object to be measured A and the center point B1 of the object to be measured B are obtained from the images from the second set of CCD cameras 6, and the misalignment amount X is measured. Maximum misalignment
The direction calculation circuit 9 calculates the maximum misalignment amount 11 from the misalignment amount X and the misalignment amount Y measured by the misalignment amount measurement circuit 8 according to the following equation.

【0015】[0015]

【数1】 [Equation 1]

【0016】また、芯ずれ方向12を次の式より計算す
る。
The misalignment direction 12 is calculated by the following equation.

【0017】[0017]

【数2】 [Equation 2]

【0018】このように上記実施の形態によれば、90
度の角度で設定された第1の組の光源1、拡散板2、C
CDカメラ3と第2の組の光源4、拡散板5、CCDカ
メラ6により被測定物A、Bを撮像し、画像取り込み部
7で取り込んだ画像から芯ずれ量測定回路8で芯ずれ量
Xと芯ずれ量Yを測定し、芯ずれ最大量・方向計算回路
9で最大芯ずれ量11と芯ずれ方向12を計算すること
により、円筒形状物体間の芯ずれ量を得ることができ
る。そして、画像取り込みが一度で測定が可能であるの
で、被測定物A、Bを停止させることなく移動中に画像
を取り込んで測定することにより高速な測定を可能とし
ている。
As described above, according to the above embodiment, 90
First set of light source 1, diffuser plate 2, C set in degrees
The CD camera 3, the light source 4 of the second set, the diffusion plate 5, and the CCD camera 6 capture images of the objects A and B to be measured, and the misalignment amount measuring circuit 8 decenters the misalignment amount X from the image captured by the image capturing unit 7. By measuring the amount of misalignment Y and the maximum amount of misalignment / direction calculation circuit 9 and calculating the maximum amount of misalignment 11 and the misalignment direction 12, the amount of misalignment between the cylindrical objects can be obtained. Further, since the image can be captured once and measured, the measurement can be performed at high speed by capturing and measuring the image during movement without stopping the objects to be measured A and B.

【0019】[0019]

【発明の効果】以上説明したように本発明によれば、重
なっている円筒形状物体である被測定物に対してほぼ9
0度の角度で設定した2組の撮像手段で、被測定物を撮
像し、それぞれの画像から芯ずれ量X、芯ずれ量Yを測
定し、最大芯ずれ量と芯ずれ方向を得るので、被測定物
を回転させずに測定が可能となり、従来のような被測定
物回転機構と同期信号回路が不要になり、装置の小型化
および低コスト化を図ることができる。また、画像の取
り込みが1度だけであるので、高速な測定が可能とな
る。
As described above, according to the present invention, it is possible to obtain almost 9 objects with respect to an object to be measured which is an overlapping cylindrical object.
Since the object to be measured is imaged by the two sets of imaging means set at an angle of 0 degree, the amount of misalignment X and the amount of misalignment Y are measured from each image, and the maximum amount of misalignment and the direction of misalignment are obtained. The measurement can be performed without rotating the DUT, the conventional DUT rotation mechanism and the synchronizing signal circuit are not required, and the size and cost of the device can be reduced. Moreover, since the image is captured only once, high-speed measurement is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態による円筒形状物体間の
芯ずれ量測定装置を示す概略構成図
FIG. 1 is a schematic configuration diagram showing a misalignment amount measuring device between cylindrical objects according to an embodiment of the present invention.

【図2】(a)は同芯ずれ量測定装置により芯ずれ量を
測定する動作説明図 (b)は同芯ずれ量測定装置により最大芯ずれ量と芯ず
れ量方向を得る動作説明図
FIG. 2A is an operation explanatory diagram for measuring the misalignment amount by the concentricity deviation amount measuring device, and FIG. 2B is an operation explanatory diagram for obtaining the maximum misalignment amount and the misalignment amount direction by the concentricity deviation amount measuring device.

【図3】従来の円筒形状物体間の芯ずれ量測定装置を示
す概略構成図
FIG. 3 is a schematic configuration diagram showing a conventional misalignment amount measuring device between cylindrical objects.

【符号の説明】[Explanation of symbols]

1 光源 2 拡散板 3 CCDカメラ 4 光源 5 拡散板 6 CCDカメラ 7 画像取り込み部 8 芯ずれ量測定回路 9 芯ずれ最大量・方向計算回路 A 被測定物 B 被測定物 1 light source 2 diffuser plate 3 CCD camera 4 light source 5 diffuser plate 6 CCD camera 7 image capturing part 8 misalignment amount measurement circuit 9 misalignment maximum amount / direction calculation circuit A measured object B measured object

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重なっている円筒形状物体である被測定
物に対してほぼ90度の角度差で設定された2組の被測
定物の撮像手段と、各組の撮像手段から画像を取り込む
画像取り込み部と、この画像取り込み部で取り込んだ画
像からずれ量を測定する芯ずれ量測定回路と、この芯ず
れ量測定回路で測定したそれぞれの中心ずれ量から最大
芯ずれ量と方向を計算する芯ずれ量・方向計算回路とを
備えた円筒形状物体間の芯ずれ量測定装置。
1. A pair of image pickup means for measuring the object to be measured, which are set at an angle difference of approximately 90 degrees with respect to the object to be measured, which are overlapping cylindrical objects, and an image for capturing an image from the image pickup means of each set. Capture unit, core misalignment amount measurement circuit that measures the amount of misalignment from the image captured by this image capture unit, and core that calculates the maximum misalignment amount and direction from each center misalignment amount measured by this misalignment amount measurement circuit An apparatus for measuring the amount of misalignment between cylindrical objects provided with a misalignment amount / direction calculation circuit.
【請求項2】 各組の撮像手段が、被測定物に光を照射
する光源と、この光源からの光を拡散させる拡散板と、
上記光源から上記拡散板を介して照射され、上記被測定
物を透過した光を受光し、被測定物の画像を得るための
CCDカメラとを備えた請求項1記載の円筒形状物体間
の芯ずれ量測定装置。
2. A light source for irradiating the object to be measured with light, and a diffusing plate for diffusing the light from the light source.
The core between the cylindrical objects according to claim 1, further comprising: a CCD camera for receiving light emitted from the light source through the diffusion plate and transmitted through the object to be measured, and obtaining an image of the object to be measured. Deviation amount measuring device.
JP12421696A 1996-05-20 1996-05-20 Apparatus for measuring core shift amount between cylindrical objects Pending JPH09304037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12421696A JPH09304037A (en) 1996-05-20 1996-05-20 Apparatus for measuring core shift amount between cylindrical objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12421696A JPH09304037A (en) 1996-05-20 1996-05-20 Apparatus for measuring core shift amount between cylindrical objects

Publications (1)

Publication Number Publication Date
JPH09304037A true JPH09304037A (en) 1997-11-28

Family

ID=14879879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12421696A Pending JPH09304037A (en) 1996-05-20 1996-05-20 Apparatus for measuring core shift amount between cylindrical objects

Country Status (1)

Country Link
JP (1) JPH09304037A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103737427A (en) * 2013-12-27 2014-04-23 华中科技大学 Machine tool multiple motion shaft parallelism detecting device and method
DE102004043472B4 (en) * 2003-09-10 2017-06-29 Denso Corporation Method and apparatus for measuring a coaxial relationship between two mechanical parts
CN108120375A (en) * 2017-12-22 2018-06-05 株洲硬质合金集团有限公司 A kind of cylinder bar Linearity surveying method and its application system
JP2018523832A (en) * 2015-07-06 2018-08-23 コネクレーンズ グローバル コーポレーション Device and method for checking chain condition
CN111267250A (en) * 2020-03-30 2020-06-12 南京宝光检测技术有限公司 Method for matching diamond center line and turntable center line based on symmetric rotation
CN113280760A (en) * 2021-05-28 2021-08-20 大连理工大学 Eccentricity measurement error compensation method based on double-machine vision

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004043472B4 (en) * 2003-09-10 2017-06-29 Denso Corporation Method and apparatus for measuring a coaxial relationship between two mechanical parts
CN103737427A (en) * 2013-12-27 2014-04-23 华中科技大学 Machine tool multiple motion shaft parallelism detecting device and method
CN103737427B (en) * 2013-12-27 2016-04-13 华中科技大学 A kind of lathe is done more physical exercises the checkout gear of the axle depth of parallelism and method
JP2018523832A (en) * 2015-07-06 2018-08-23 コネクレーンズ グローバル コーポレーション Device and method for checking chain condition
US10634484B2 (en) 2015-07-06 2020-04-28 Konecranes Global Corporation Arrangement and a method for inspecting the condition of a chain
CN108120375A (en) * 2017-12-22 2018-06-05 株洲硬质合金集团有限公司 A kind of cylinder bar Linearity surveying method and its application system
CN111267250A (en) * 2020-03-30 2020-06-12 南京宝光检测技术有限公司 Method for matching diamond center line and turntable center line based on symmetric rotation
CN111267250B (en) * 2020-03-30 2021-12-17 南京宝光检测技术有限公司 Method for matching diamond center line and turntable center line based on symmetric rotation
CN113280760A (en) * 2021-05-28 2021-08-20 大连理工大学 Eccentricity measurement error compensation method based on double-machine vision
CN113280760B (en) * 2021-05-28 2022-03-29 大连理工大学 Eccentricity measurement error compensation method based on double-machine vision

Similar Documents

Publication Publication Date Title
US5298963A (en) Apparatus for inspecting the surface of materials
US8064068B2 (en) Multi-source sensor for three-dimensional imaging using phased structured light
JP4358889B1 (en) Wafer defect inspection equipment
US8059280B2 (en) Method for three-dimensional imaging using multi-phase structured light
WO2001050760A1 (en) Solder paste inspection system
WO2016163840A1 (en) Three-dimensional shape measuring apparatus
JPH09304037A (en) Apparatus for measuring core shift amount between cylindrical objects
JP2004191112A (en) Defect examining method
JPH09101122A (en) Wheel shape measuring device and its method
JP4191295B2 (en) Semiconductor package inspection equipment
JP3347490B2 (en) Positioning method, projection exposure apparatus and position deviation measuring apparatus by the method
JP2675307B2 (en) Preliner equipment
KR20080088946A (en) Apparatus for inspection of three-dimensional shape and method for inspection by the same
KR100229070B1 (en) Inspection method and device of cream solder of pcb
JP2000275183A (en) Image-capturing apparatus
JPS63280435A (en) Device for prealignment of wafer
JPH0347737B2 (en)
JP2004286533A (en) Height measuring method and its apparatus
JPH0587742A (en) Device for observing three-dimensional object
JPH10308938A (en) Image pickup method
JPH07103740A (en) Apparatus and method for detecting cylindrical object
JP2001153817A (en) X-ray laminographic device
JPH0989534A (en) Three-dimensional configuration measuring device
JP2011039082A (en) Image measuring apparatus
KR20080089314A (en) Apparatus for inspection of three-dimensional shape and method for inspection by the same