JPH09303373A - Laminated sliding member and sliding bearing - Google Patents

Laminated sliding member and sliding bearing

Info

Publication number
JPH09303373A
JPH09303373A JP12490596A JP12490596A JPH09303373A JP H09303373 A JPH09303373 A JP H09303373A JP 12490596 A JP12490596 A JP 12490596A JP 12490596 A JP12490596 A JP 12490596A JP H09303373 A JPH09303373 A JP H09303373A
Authority
JP
Japan
Prior art keywords
alloy
laminated
bearing
sliding
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12490596A
Other languages
Japanese (ja)
Inventor
Hiroe Okawa
川 広 衛 大
Naoto Mizuno
野 直 人 水
Masahiko Shioda
田 正 彦 塩
Kenji Ushijima
嶋 研 史 牛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NDC Co Ltd
Nissan Motor Co Ltd
Nippon Dia Clevite Co Ltd
Original Assignee
NDC Co Ltd
Nissan Motor Co Ltd
Nippon Dia Clevite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NDC Co Ltd, Nissan Motor Co Ltd, Nippon Dia Clevite Co Ltd filed Critical NDC Co Ltd
Priority to JP12490596A priority Critical patent/JPH09303373A/en
Publication of JPH09303373A publication Critical patent/JPH09303373A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laminated sliding member and a sliding bearing in which both antinomic characteristics such as fatigue resistant property and surface performance can be obtained at a high level. SOLUTION: This laminated sliding member is formed in such a way that as a surface layer, an alloy B consisting of Sn, less than 6 to 15%; one or two selected from Pb and Sb, 0.1 to 10%; Si, 0.1-4.5%; one or two selected from Cu and Cr, 0.1-2.0%; respectively in weight%, and substantially Al for the rest, is laminated on a Cu-Pb series high lead bronze bearing alloy A consisting of Pb, 5 to 50%; Sn, 5 % or below, respectively in weight %, and substantially Cu for the rest. A back plate is arranged on the rear surface of the laminated sliding member.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自動車,工作機
械,農業機械等の各種機械装置の構造部品として使用さ
れる軸受ならびに摺動部材用の素材として適する積層摺
動部材および滑り軸受に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing used as a structural part of various mechanical devices such as automobiles, machine tools, agricultural machines and the like, and a laminated sliding member and a sliding bearing suitable as materials for sliding members. is there.

【0002】[0002]

【従来の技術】近年、特に内燃機関用の軸受合金とし
て、耐熱・耐摩耗性,耐疲労性等の観点から、ケルメッ
ト(Cu−Pb系高鉛青銅軸受合金の総称)が広く用い
られている。
2. Description of the Related Art In recent years, Kelmet (a general term for Cu-Pb-based high lead bronze bearing alloys) has been widely used as a bearing alloy for internal combustion engines, particularly from the viewpoint of heat resistance, wear resistance, fatigue resistance and the like. .

【0003】[0003]

【発明が解決しようとする課題】しかしながら、ケルメ
ットは耐疲労性等には優れる反面、そのままでは耐焼付
性に劣るため、Pb−Sn系のオーバーレイ層を表面に
形成させる必要があった。
However, although Kelmet is excellent in fatigue resistance and the like, it is inferior in seizure resistance as it is. Therefore, it was necessary to form a Pb-Sn overlay layer on the surface.

【0004】ところが、高速・高荷重域では、Pb−S
n系のオーバーレイ層を表面にもつものは、熱伝導性の
良いAl系合金の表面層をもつ軸受合金にくらべ著しい
摩擦増加を示すことが実験にて確認された。
However, in the high speed and high load range, Pb-S
Experiments have confirmed that those having an n-type overlay layer on the surface show a remarkable increase in friction as compared to a bearing alloy having an Al-based alloy surface layer having good thermal conductivity.

【0005】従来の常識によれば、高速・高荷重域で
は、潤滑油が高温になると油粘度が低下して、油膜が薄
くなり、その結果、油のせん断抵抗力としての摩擦が減
少する。この際、軸受材質の違いは影響しない。
According to the conventional wisdom, in the high speed / high load range, when the temperature of the lubricating oil becomes high, the oil viscosity decreases, and the oil film becomes thin, and as a result, the friction as the shearing resistance of the oil decreases. At this time, the difference in bearing material has no effect.

【0006】本発明者らの一部は、潤滑油が高温になっ
た場合の軸受の摩擦挙動について研究を重ねた結果、高
速・高荷重域では、油が高温になると粘度が低下し、油
膜が薄くなるが、油膜圧力が増大することになり、その
結果、高圧下での油粘度が著しく増大し、かえって、油
のせん断抵抗力としての摩擦が増大することを見いだし
た。また、このような条件下では、局所的な高い油膜圧
力のため、当然のことながら軸受の耐疲労性を損ねるこ
とになる。
As a result of some research conducted by the present inventors on the frictional behavior of the bearing when the temperature of the lubricating oil becomes high, the viscosity decreases as the temperature of the oil becomes high, and the oil film However, it was found that the oil film pressure was increased, and as a result, the oil viscosity under high pressure was significantly increased, which in turn increased the friction as the shear resistance of the oil. Further, under such a condition, the local high oil film pressure naturally impairs the fatigue resistance of the bearing.

【0007】[0007]

【発明の目的】本発明は、このような従来の課題にかん
がみてなされたもので、高速・高荷重域での摩擦を低減
するには、メカニズムの発端である油膜の温度を下げる
ことが有効であり、そのためには、従来は無関係とされ
ていた軸受材質に関して、介在する油の局所的な発熱を
すばやく抜熱する役目も担っている軸受合金の熱伝導率
を高くすることが重要であることに基づいている。
SUMMARY OF THE INVENTION The present invention has been made in view of such conventional problems, and it is effective to lower the temperature of the oil film, which is the starting point of the mechanism, in order to reduce friction in a high speed / high load range. For that purpose, it is important to increase the thermal conductivity of the bearing alloy, which is also irrelevant in the past, which also plays a role of quickly removing the local heat generation of the intervening oil. Is based on that.

【0008】表面層の熱伝導率向上により軸受合金を高
熱伝導化することで、高速・高荷重域での潤滑油中の摩
擦損失を従来の滑り軸受より大幅に低減させることがで
きる。
By increasing the thermal conductivity of the bearing alloy by improving the thermal conductivity of the surface layer, the friction loss in the lubricating oil in the high speed / high load range can be significantly reduced as compared with the conventional sliding bearing.

【0009】さらに、軸受合金の強度向上に加え、高熱
伝導率の本発明の軸受を使用することによる介在する油
膜圧力の低減によっても、耐疲労性を向上させるととも
に、表面性能も従来にない水準で実現できる。
Further, in addition to improving the strength of the bearing alloy, by using the bearing of the present invention having high thermal conductivity to reduce the intervening oil film pressure, the fatigue resistance is improved and the surface performance is at a level unprecedented. Can be achieved with.

【0010】したがって、本発明の目的は、耐疲労性お
よび表面性能という二律背反的な特性の両方共が従来に
ない高い水準で得ることができる積層摺動部材および滑
り軸受を提供することにある。
Therefore, an object of the present invention is to provide a laminated sliding member and a sliding bearing which can obtain both anti-fatigue properties and surface properties, which are trade-off characteristics, at a high level which has never been obtained.

【0011】[0011]

【課題を解決するための手段】本発明に係わる積層摺動
部材は、請求項1に記載しているように、重量%で、P
b:5〜50%、Sn:5%以下、残部が実質的にCu
からなるケルメット合金であるCu−Pb系高鉛青銅軸
受合金Aの上に、表面層として、重量%で、Sn:6〜
15未満%、Pb,Sbのうちから選ばれる1種または
2種:0.1〜10%、Si:0.1〜4.5%、C
u,Crのうちから選ばれる1種または2種:0.1〜
2.0%、残部が実質的にAlからなる合金Bを積層し
てなる構成としたことを特徴としている。
A laminated sliding member according to the present invention has a P content of% by weight, as defined in claim 1.
b: 5 to 50%, Sn: 5% or less, the balance being substantially Cu
On a Cu-Pb-based high lead bronze bearing alloy A which is a Kelmet alloy consisting of Sn as a surface layer in a weight percentage of Sn: 6 to
Less than 15%, one or two selected from Pb and Sb: 0.1 to 10%, Si: 0.1 to 4.5%, C
one or two selected from u and Cr: 0.1 to
It is characterized in that an alloy B having a composition of 2.0% and the remainder being substantially Al is laminated.

【0012】そして、本発明に係わる積層摺動部材の実
施態様においては、請求項2に記載しているように、合
金Bに歪み除去のための熱処理が施されているものとす
ることができる。
In the embodiment of the laminated sliding member according to the present invention, as described in claim 2, the alloy B may be subjected to heat treatment for strain relief. .

【0013】本発明に係わる積層滑り軸受は、請求項3
に記載しているように、請求項1または2に記載された
積層摺動部材の背面に裏金が設けられている構成とした
ことを特徴としている。
The laminated plain bearing according to the present invention is characterized in claim 3.
As described in (1), the laminated sliding member according to claim 1 or 2 is characterized in that a back metal is provided on the back surface.

【0014】そして、本発明に係わる積層滑り軸受の実
施態様においては、請求項4に記載しているように、裏
金は鋼板であるものとすることができ、また、請求項5
に記載しているように、合金Aと合金Bとの間に純Al
層を介在させてなるものとすることができ、および/ま
たは、請求項6に記載しているように、合金Aと合金B
との間にSn,Pb,Sbを含まないAl合金層を介在
させてなるものとすることができる。
In the embodiment of the laminated sliding bearing according to the present invention, as described in claim 4, the back metal can be a steel plate.
Between alloy A and alloy B, pure Al
Intervening layers and / or alloy A and alloy B as claimed in claim 6.
And an Al alloy layer containing no Sn, Pb, or Sb may be interposed between and.

【0015】[0015]

【発明の作用】本発明に係わる積層摺動部材は、請求項
1に記載しているように、重量%で、Pb:5〜50
%、Sn:5%以下、残部が実質的にCuからなるケル
メット合金であるCu−Pb系高鉛青銅軸受合金Aの上
に、表面層として、重量%で、Sn:6〜15未満%、
Pb,Sbのうちから選ばれる1種または2種:0.1
〜10%、Si:0.1〜4.5%、Cu,Crのうち
から選ばれる1種または2種:0.1〜2.0%、残部
が実質的にAlからなる合金Bを積層してなる構成とし
たものであるが、以下に、それぞれの成分および数値の
限定理由について各元素の作用と共に説明する。
The laminated sliding member according to the present invention, as defined in claim 1, has a Pb of 5 to 50% by weight.
%, Sn: 5% or less, and a balance of Sn: 6 to less than 15% by weight as a surface layer on a Cu-Pb-based high lead bronze bearing alloy A which is a Kelmet alloy whose balance is substantially Cu.
One or two selected from Pb and Sb: 0.1
-10%, Si: 0.1 to 4.5%, one or two selected from Cu and Cr: 0.1 to 2.0%, and an alloy B having the balance substantially Al is laminated. The reason for limiting each component and numerical value will be described below together with the action of each element.

【0016】まず、合金Aの成分および数値の限定理由
について各元素の作用と共に説明する。
First, the reasons for limiting the components and numerical values of alloy A will be described together with the action of each element.

【0017】(A−1)Pb:5〜50% Pbは潤滑成分として有効であり、耐焼付性を向上させ
るのに役立つものであるが、合金Aの場合は、これを下
部層とし合金Bを表面層として積層するときになじみ性
や異物埋収性は必要でなく、合金Bが摩耗した場合の焼
付防止のために添加するものである。しかし、添加量が
5%未満ではその効果が少なく、50%を超えるとCu
マトリックスの強度が低下し耐疲労性が劣る傾向になる
と共に熱伝導率が低下し、本発明の積層摺動部材および
滑り軸受の特徴の1つである高温の潤滑油中での摩擦損
失の増大を抑制する能力が損なわれる。
(A-1) Pb: 5 to 50% Pb is effective as a lubricating component and serves to improve seizure resistance. In the case of alloy A, this is used as a lower layer and alloy B is used. When the alloy B is laminated as a surface layer, the conformability and the foreign matter embedding property are not required, and it is added to prevent seizure when the alloy B is worn. However, if the addition amount is less than 5%, the effect is small, and if it exceeds 50%, Cu
The strength of the matrix decreases, the fatigue resistance tends to deteriorate, and the thermal conductivity decreases, increasing friction loss in high temperature lubricating oil, which is one of the features of the laminated sliding member and sliding bearing of the present invention. The ability to suppress is impaired.

【0018】(A−2)Sn:5%以下 SnはCuマトリックスに固溶しこれを強化すると共
に、耐腐食性を向上させる。しかし、添加量が5%を超
えると伸びを減じ、積層時の密度強度が低下するため、
摺動性能ないしは軸受性能を低下させる。
(A-2) Sn: 5% or less Sn forms a solid solution in the Cu matrix and strengthens it, and at the same time improves the corrosion resistance. However, if the addition amount exceeds 5%, the elongation is reduced and the density strength during lamination is lowered,
Sliding performance or bearing performance is degraded.

【0019】次に、合金Bの成分および数値の限定理由
について各元素の作用と共に説明する。
Next, the reasons for limiting the components and numerical values of alloy B will be explained together with the action of each element.

【0020】(B−1)Sn:6〜15未満%、Pb,
Sbのうちから選ばれる1種または2種:0.1〜10
% Sn,Pb,Sbは潤滑成分として有効であり、耐焼付
性に優れたものである。また、表面層として用いる合金
Bのなじみ性、異物埋収性を高める。
(B-1) Sn: 6 to less than 15%, Pb,
One or two selected from Sb: 0.1 to 10
% Sn, Pb, and Sb are effective as lubricating components and have excellent seizure resistance. Further, the compatibility of the alloy B used as the surface layer and the foreign matter embedding property are enhanced.

【0021】しかし、Snが6%未満、Pb,Sbの合
計が0.1%未満ではその効果が少なく、Snが15%
以上、Pb,Sbの合計が10%を超えると、熱伝導率
が低下し、本発明の積層摺動部材および滑り軸受の特徴
の1つである高温の潤滑油中での摩擦損失の増大を抑制
する能力が損なわれる。
However, when Sn is less than 6% and the total amount of Pb and Sb is less than 0.1%, the effect is small, and Sn is 15%.
As described above, when the total amount of Pb and Sb exceeds 10%, the thermal conductivity decreases, and an increase in friction loss in high temperature lubricating oil, which is one of the features of the laminated sliding member and the sliding bearing of the present invention, is increased. The ability to suppress is impaired.

【0022】(B−2)Si:0.1〜4.5% Siは表面層である合金Bの耐焼付性の向上に寄与する
が、0.1%未満ではその効果が少なく、4.5%を超
えるとなじみ性、圧延等の加工性が低下する。
(B-2) Si: 0.1 to 4.5% Si contributes to the improvement of seizure resistance of the alloy B as the surface layer, but if less than 0.1%, its effect is small. If it exceeds 5%, the conformability and workability such as rolling deteriorate.

【0023】(B−3)Cu,Crのうちから選ばれる
1種または2種:0.1〜2.0% Cu,Crは表面層である合金Bの耐荷重性、耐熱性を
向上させるが、0.1%未満ではその効果が少なく、
2.0%を超えるとなじみ性、圧延等の加工性が低下す
る。
(B-3) One or two selected from Cu and Cr: 0.1 to 2.0% Cu and Cr improve the load resistance and heat resistance of the alloy B as the surface layer. However, if less than 0.1%, the effect is small,
If it exceeds 2.0%, the conformability and workability such as rolling deteriorate.

【0024】次に、本発明による積層摺動部材におい
て、表面層として使用する合金Bの製造法については、
通常は板状の鋳造材を圧延していく方法をとるが、Pb
が4%を超えると鋳造法では偏析が生じ、均一な材料組
織となりにくいため、板材を粉末圧延、焼結法で作って
も良いし、溶射により合金Aの上に直接積層することも
可能である。
Next, with respect to the method for producing the alloy B used as the surface layer in the laminated sliding member according to the present invention,
Usually, a method of rolling a plate-like cast material is used.
If it exceeds 4%, segregation occurs in the casting method and it is difficult to form a uniform material structure. Therefore, the plate material may be made by powder rolling or sintering, or it can be directly laminated on the alloy A by thermal spraying. is there.

【0025】そして、請求項2に記載しているように、
合金Bに対して、必要に応じて歪み除去のための熱処理
を行うこともよい。
Then, as described in claim 2,
The alloy B may be subjected to a heat treatment for strain removal, if necessary.

【0026】本発明に係わる積層滑り軸受は、請求項3
に記載しているように、請求項1または2の積層摺動部
材の背面に裏金が設けられている構成としたものであ
り、このような構成のものとすることによって、耐疲労
性および表面性能という二律背反的な特性の両方共が従
来にない高い水準で得られることとなる。
The laminated plain bearing according to the present invention is characterized by claim 3.
As described in claim 1, the laminated sliding member according to claim 1 or 2 has a structure in which a back metal is provided on the back surface. By adopting such a structure, fatigue resistance and surface Both of the trade-off characteristics of performance will be obtained at a high level that has never been seen before.

【0027】そして、この場合の裏金としては、請求項
4に記載しているように、鋼板を用いることができ、鋼
板を用いることによって、軸受として必要な剛性を備え
たものとなる。
As the back metal in this case, a steel plate can be used as described in claim 4, and the use of the steel plate provides the bearing with the rigidity required.

【0028】また、合金B中のSn量が多くなると、ク
ラッド条件によっては、合金Aとの密着性が悪くなるこ
とがある。この場合は、請求項5,6に記載しているよ
うに、合金Aと合金Bとの間に1〜15μm程度の純A
l層および/またはSn,Pb,Sbを含まないAl合
金層を密着性向上のために介在させてもよい。
If the amount of Sn in alloy B increases, the adhesion with alloy A may deteriorate depending on the cladding conditions. In this case, as described in claims 5 and 6, between the alloy A and the alloy B, pure A of about 1 to 15 μm is provided.
The 1 layer and / or the Al alloy layer not containing Sn, Pb, or Sb may be interposed for improving the adhesion.

【0029】[0029]

【発明の効果】本発明に係わる積層摺動部材は、請求項
1に記載しているように、重量%で、Pb:5〜50
%、Sn:5%以下、残部が実質的にCuからなるケル
メット合金(Cu−Pb系軸受合金)Aの上に、表面層
として、重量%で、Sn:6〜15未満%、Pb,Sb
のうちから選ばれる1種または2種:0.1〜10%、
Si:0.1〜4.5%、Cu,Crのうちから選ばれ
る1種または2種:0.1〜2.0%、残部が実質的に
Alからなる合金Bを積層してなる構成としたものであ
るから、耐疲労性および表面性能という二律背反的な特
性の両方共が従来にない高い水準で実現され、特に、高
温の潤滑条件において、流体潤滑性能の向上による耐疲
労性の向上、および摩擦発熱の低減による温度上昇の抑
制、などが従来の摺動部材に比べ著しく優れているとい
う顕著な効果がもたらされる。
As described in claim 1, the laminated sliding member according to the present invention has a Pb of 5 to 50% by weight.
%, Sn: 5% or less, and a balance of Sn: 6 to less than 15%, Pb, Sb as a surface layer on a Kelmet alloy (Cu-Pb-based bearing alloy) A whose balance is substantially Cu.
One or two selected from among: 0.1 to 10%,
Si: 0.1 to 4.5%, one or two kinds selected from Cu and Cr: 0.1 to 2.0%, and a structure in which an alloy B composed of the balance substantially Al is laminated Therefore, both anti-fatigue properties such as fatigue resistance and surface performance are realized at unprecedented high levels, and especially under high temperature lubrication conditions, improvement of fluid lubrication performance improves fatigue resistance. , And suppression of temperature rise due to reduction of frictional heat generation are significantly superior to conventional sliding members.

【0030】そして、本発明に係わる積層摺動部材の実
施態様においては、請求項2に記載しているように、合
金Bに歪み除去のための熱処理が施されているものとす
ることによって、靭性に優れそしてまた安定性の良い摺
動部材を得ることが可能であるという著しく優れた効果
がもたらされる。
In the embodiment of the laminated sliding member according to the present invention, as described in claim 2, the alloy B is subjected to heat treatment for strain relief, It is possible to obtain a remarkably excellent effect that a sliding member having excellent toughness and stability can be obtained.

【0031】また、本発明に係わる積層滑り軸受は、請
求項3に記載しているように、請求項1または2に記載
の積層摺動部材の背面に裏金が設けられている構成とし
たものであるから、耐疲労性および表面性能という二律
背反的な特性の両方共が従来にない高い水準で実現さ
れ、特に、高温の潤滑条件において、流体潤滑性能の向
上による耐疲労性の向上、および軸受合金の抜熱性向上
による油膜温度上昇の抑制、などが従来の滑り軸受に比
べ著しく優れているという顕著な効果がもたらされる。
The laminated slide bearing according to the present invention has a structure in which a backing is provided on the back surface of the laminated sliding member according to claim 1 or 2 as described in claim 3. Therefore, both anti-fatigue properties such as fatigue resistance and surface performance have been achieved at a high level that has never been achieved, and especially under high temperature lubrication conditions, fluid lubrication performance improves fatigue resistance and The remarkable effect that the suppression of the temperature rise of the oil film due to the improvement of the heat removal property of the alloy is remarkably superior to the conventional plain bearings is brought about.

【0032】そして、本発明に係わる積層滑り軸受の実
施態様においては、請求項4に記載しているように、裏
金は鋼板であるものとすることによって、軸受として必
要な強度を得ることが可能となり、請求項5に記載して
いるように、合金Aと合金Bとの間に純Al層を介在さ
せてなるものとし、および/または、請求項6に記載し
ているように、合金Aと合金Bとの間にSn,Pb,S
bを含まないAl合金層を介在させてなるものとするこ
とによって、合金Aと合金Bとの間における密着性をよ
り一層向上させることが可能になるという著しく優れた
効果がもたらされる。
In the embodiment of the laminated slide bearing according to the present invention, as described in claim 4, the back metal is a steel plate, so that the strength required for the bearing can be obtained. And a pure Al layer is interposed between the alloy A and the alloy B as described in claim 5, and / or the alloy A as described in claim 6. Between Sn and alloy B, Sn, Pb, S
By interposing the Al alloy layer not containing b, the remarkably excellent effect that the adhesion between the alloy A and the alloy B can be further improved is brought about.

【0033】[0033]

【実施例】次に、実施例について比較例と共に説明す
る。
Next, examples will be described together with comparative examples.

【0034】実施例1〜4,比較例1〜4 まず、表1の合金A(下部層)の欄に示す実施例1〜
4,比較例1〜4の組成を有するCu−Pb系合金を溶
製したのち、連続的に鋼板上に注湯し、注湯後すぐに鋼
板の下面より水冷却することによって急冷して、鋼板上
にデンドライト組織をもつ鋳造ケルメット合金(Cu−
Pb系高鉛青銅軸受合金)を積層した積層材を作製し
た。
Examples 1 to 4 and Comparative Examples 1 to 4 First, Examples 1 to 1 shown in the column of alloy A (lower layer) in Table 1
4, after the Cu-Pb-based alloy having the composition of Comparative Examples 1 to 4 is melted, it is continuously poured onto the steel plate, and immediately after the pouring, water is cooled from the lower surface of the steel plate to rapidly cool, Cast Kelmet alloy (Cu-
A Pb-based high lead bronze bearing alloy) was laminated to produce a laminated material.

【0035】一方、表1の合金B(表面層)の欄に示す
実施例1〜4,比較例1〜4の組成を有するAl−Sn
系合金を連続鋳造により厚さ20mmの板状材として鋳
造し、各鋳造ビレットの上下面を1mm面切削し、続い
て冷間圧延により1mmの厚さまで圧下した。この状態
で200〜300℃の熱処理を行ってひずみを除去し
た。
On the other hand, Al-Sn having the composition of Examples 1 to 4 and Comparative Examples 1 to 4 shown in the column of alloy B (surface layer) in Table 1
A series alloy was cast by a continuous casting as a plate-shaped material having a thickness of 20 mm, the upper and lower surfaces of each cast billet were cut by 1 mm, and then cold rolled to a thickness of 1 mm. In this state, a heat treatment at 200 to 300 ° C. was performed to remove the strain.

【0036】次に、上記積層材に寸法調整を施し、この
積層材と合金Bにおいて各々密着面を清浄にした後、積
層材の合金Aを下部層とし、合金Bを表面層としてクラ
ッドをおこなった。
Next, the above laminated material is subjected to dimensional adjustment, and the contact surfaces of the laminated material and the alloy B are cleaned, respectively, and then the alloy A of the laminated material is used as a lower layer and the alloy B is used as a surface layer to perform cladding. It was

【0037】続いて、さらに表面を機械的に除去し、そ
の結果、裏金としての鋼板の厚さが約1.20mm、下
部層としての合金Aの層厚さが約0.25mm、表面層
としての合金Bの層厚さが約0.05mmで合計厚さが
約1.5mmの滑り軸受を得た。
Subsequently, the surface was further mechanically removed. As a result, the thickness of the steel plate as the back metal was about 1.20 mm, the layer thickness of alloy A as the lower layer was about 0.25 mm, and the surface layer was A plain bearing having a layer thickness of alloy B of about 0.05 mm and a total thickness of about 1.5 mm was obtained.

【0038】実施例5〜6 還元性雰囲気の中で、表1の合金A(下部層)の欄に示
す実施例5〜6の組成を有するCu−Pb系合金粉末を
連続的に鋼板上に散布し、750〜900℃の温度で焼
結して、これを圧下した後さらにもう一度焼結,圧下を
行い、鋼板上に焼結ケルメット合金(Cu−Pb系高鉛
青銅軸受合金)を積層した積層材を作製した。
Examples 5 to 6 Cu-Pb alloy powders having the compositions of Examples 5 to 6 shown in the column of alloy A (lower layer) in Table 1 were continuously applied on a steel sheet in a reducing atmosphere. After spraying and sintering at a temperature of 750 to 900 ° C., this was pressed and then sintered and pressed again, and a sintered Kelmet alloy (Cu-Pb type high lead bronze bearing alloy) was laminated on the steel plate. A laminated material was produced.

【0039】一方、表1の合金B(表面層)の欄に示す
実施例5〜6の組成を有するAl−Sn系合金を連続鋳
造により厚さ20mmの板状材として鋳造し、各鋳造ビ
レットの上下面を1mm面切削し、続いて冷間圧延によ
り1mmの厚さまで圧下した。この状態で200〜30
0℃の熱処理を行ってひずみを除去した。
On the other hand, Al-Sn alloys having the compositions of Examples 5 to 6 shown in the column of alloy B (surface layer) in Table 1 were cast by continuous casting as a plate material having a thickness of 20 mm, and each cast billet. The upper and lower surfaces were cut by 1 mm and then cold rolled to a thickness of 1 mm. 200-30 in this state
The strain was removed by heat treatment at 0 ° C.

【0040】次に、上記積層材に寸法調整を施し、この
積層材と合金Bにおいて各々密着面を清浄にした後、積
層材の合金Aを下部層とし、合金Bを表面層としてクラ
ッドをおこなった。
Next, the above laminated material is subjected to dimensional adjustment, and the contact surfaces of the laminated material and the alloy B are cleaned, respectively, and then the alloy A of the laminated material is used as a lower layer and the alloy B is used as a surface layer to perform cladding. It was

【0041】続いて、さらに表面を機械的に除去し、そ
の結果、裏金としての鋼板の厚さが約1.20mm、下
部層としての合金Aの層厚さが約0.25mm、表面層
としての合金Bの層厚さが約0.05mmで合計厚さが
約1.5mmの滑り軸受を得た。
Subsequently, the surface was further mechanically removed. As a result, the thickness of the steel plate as the back metal was about 1.20 mm, the layer thickness of alloy A as the lower layer was about 0.25 mm, and the surface layer was A plain bearing having a layer thickness of alloy B of about 0.05 mm and a total thickness of about 1.5 mm was obtained.

【0042】比較例5〜6 表1の合金A(下部層)の欄に示す比較例5〜6の組成
を有するCu−Pb系合金を溶製したのち、連続的に鋼
板上に注湯し、注湯後すぐに鋼板の下面より水冷却する
ことによって急冷して、鋼板上にデンドライト組織をも
つ鋳造ケルメット合金(Cu−Pb系高鉛青銅軸受合
金)を積層した積層材を作製した。次いで、この積層材
に寸法調整を施し、その結果、裏金としての鋼板の厚さ
が約1.20mm、鋳造ケルメットの層厚さが約0.3
mmで合計厚さが約1.5mmの滑り軸受を得た。
Comparative Examples 5 and 6 Cu-Pb type alloys having the compositions of Comparative Examples 5 and 6 shown in the column of alloy A (lower layer) in Table 1 were melted and then continuously poured onto a steel plate. Immediately after pouring, water was cooled from the lower surface of the steel sheet to quench it, thereby producing a laminated material in which a cast kelmet alloy (Cu-Pb-based high lead bronze bearing alloy) having a dendrite structure was laminated on the steel sheet. Then, the laminated material was subjected to dimensional adjustment, and as a result, the thickness of the steel plate as the back metal was about 1.20 mm, and the layer thickness of the cast kelmet was about 0.3.
A plain bearing with a total thickness of about 1.5 mm in mm was obtained.

【0043】比較例7 表1の合金B(表面層)の欄に示す比較例7(実施例
1,5と同じ)の組成を有するAl−Sn系合金を連続
鋳造により厚さ20mmの板状材として鋳造し、鋳造ビ
レットの上下面を1mm面切削し、続いて冷間圧延によ
り1mmの厚さまで圧下した。この状態で200〜30
0℃の熱処理を行ってひずみを除去した。
Comparative Example 7 An Al—Sn alloy having the composition of Comparative Example 7 (same as Examples 1 and 5) shown in the column of alloy B (surface layer) in Table 1 was continuously cast into a plate shape with a thickness of 20 mm. It was cast as a material, the upper and lower surfaces of the cast billet were cut by 1 mm, and then cold-rolled to a thickness of 1 mm. 200-30 in this state
The strain was removed by heat treatment at 0 ° C.

【0044】その後、裏金となる鋼板の上に合金Bをク
ラッドした後、表面を機械的に除去し、その結果、裏金
としての鋼板の厚さが約1.2mm、表面層としての合
金Bの層厚さが約0.3mmで合計厚さが約1.5mm
の滑り軸受を得た。
After that, the alloy B was clad on the steel plate to be the back metal, and the surface was mechanically removed. As a result, the thickness of the steel plate as the back metal was about 1.2 mm and Layer thickness is about 0.3 mm and total thickness is about 1.5 mm
Got a plain bearing.

【0045】比較例8 表1の合金A(下部層)の欄に示す比較例8の組成を有
するCu−Pb系合金を溶製したのち、連続的に鋼板上
に注湯し、注湯後すぐに鋼板の下面より水冷却すること
によって急冷して、鋼板上にデンドライト組織をもつ鋳
造ケルメット合金(Cu−Pb系高鉛青銅軸受合金)を
積層した積層材を作製した。次いで、この積層材に寸法
調整を施した後、ケルメット表面に脱脂等の前処理を施
し、その上に10重量%Sn,2重量%Cuを含むPb
−Sn−Cuめっきを20μmの厚さで施して、合計厚
さが約1.5mmの滑り軸受を得た。
Comparative Example 8 A Cu-Pb alloy having the composition of Comparative Example 8 shown in the column of Alloy A (lower layer) in Table 1 was melted, and then continuously poured onto a steel plate, after pouring. Immediately, the lower surface of the steel sheet was rapidly cooled by water cooling to produce a laminated material in which a cast kelmet alloy (Cu-Pb-based high lead bronze bearing alloy) having a dendrite structure was laminated on the steel sheet. Then, after dimensional adjustment of this laminated material, pretreatment such as degreasing is performed on the surface of Kelmet, and Pb containing 10 wt% Sn and 2 wt% Cu is further applied thereto.
—Sn—Cu plating was applied to a thickness of 20 μm to obtain a slide bearing having a total thickness of about 1.5 mm.

【0046】[0046]

【表1】 [Table 1]

【0047】(耐焼付性試験)実施例1〜6、比較例1
〜2および比較例5〜8で得た各滑り軸受から、幅35
mm,長さ35mmの試験片を切り出し、鈴木式摩耗試
験機を用いて、表2に示す条件で耐焼付性試験を行っ
た。その結果を表3に示す。
(Seizure resistance test) Examples 1 to 6 and Comparative Example 1
2 and each of the plain bearings obtained in Comparative Examples 5 to 8 had a width of 35
A test piece having a length of 35 mm and a length of 35 mm was cut out, and a seizure resistance test was performed using a Suzuki abrasion tester under the conditions shown in Table 2. Table 3 shows the results.

【0048】[0048]

【表2】 [Table 2]

【0049】[0049]

【表3】 [Table 3]

【0050】表3より明らかなように、本発明実施例1
〜6の滑り軸受は、従来より耐焼付性に優れるとされて
きた比較例8の滑り軸受と同等であるかあるいはそれ以
上の耐焼付性を有していることがわかる。
As is clear from Table 3, Example 1 of the present invention
It can be seen that the slide bearings of Nos. 6 to 6 have seizure resistance equivalent to or higher than that of the slide bearing of Comparative Example 8, which has been considered to have excellent seizure resistance.

【0051】一方、表面層である合金Bの成分が本発明
から外れる比較例1,2の滑り軸受は、本発明実施例の
滑り軸受よりも耐焼付性が劣っており、合金Bに相当す
る表面層を設けず、ケルメット合金Aを表面層とした比
較例5の滑り軸受では耐焼付性がさらに劣っていること
がわかる。
On the other hand, the sliding bearings of Comparative Examples 1 and 2 in which the component of the alloy B as the surface layer is out of the present invention are inferior to the sliding bearings of the examples of the present invention in seizure resistance and correspond to alloy B. It can be seen that the sliding bearing of Comparative Example 5 in which the surface layer is not provided and the Kelmet alloy A is used as the surface layer is further inferior in seizure resistance.

【0052】また、比較例5と同様に合金Aが表面層で
その成分も本発明から外れている比較例6の滑り軸受に
おいては著しく耐焼付性が劣っており、仮にこの上に実
施例の滑り軸受と同様の表面層を設けたとしても、表面
層が摩耗した場合に軸受として必要な摺動性能の維持が
難しいことがわかる。
Further, as in Comparative Example 5, the sliding bearing of Comparative Example 6 in which the alloy A is the surface layer and the composition of which is out of the present invention has remarkably inferior seizure resistance. It can be seen that even if the same surface layer as that of the plain bearing is provided, it is difficult to maintain the sliding performance required for the bearing when the surface layer is worn.

【0053】(高温摩擦性)実施例1〜6,比較例8で
得た各滑り軸受を半割軸受形状に加工し、本発明者らの
一部が開発した軸受単体試験機(日本機械学会 第71
期全国大会講演論文集 vol.D,1993年 p3
32−334)により、表4に示す条件で、摺動面が高
温になった場合の摩擦力を測定した。摺動面が130℃
の時の摩擦トルクを表5に示す。
(High temperature friction property) Each of the plain bearings obtained in Examples 1 to 6 and Comparative Example 8 was processed into a half bearing shape, and a bearing unit testing machine developed by a part of the inventors (Japan Society of Mechanical Engineers). 71st
National Conference Lecture Collection Vol. D, 1993 p3
32-334), the frictional force when the sliding surface became high temperature was measured under the conditions shown in Table 4. Sliding surface is 130 ° C
Table 5 shows the friction torque at that time.

【0054】[0054]

【表4】 [Table 4]

【0055】[0055]

【表5】 [Table 5]

【0056】表5より明らかなように、本発明実施例1
〜6の滑り軸受は、表面にPb−Sn−Cuオーバーレ
イ層を有する比較例8の滑り軸受よりも優れた摩擦特性
を有することがわかる。
As is clear from Table 5, Example 1 of the present invention
It can be seen that the plain bearings Nos. 6 to 6 have better friction characteristics than the plain bearing of Comparative Example 8 having the Pb-Sn-Cu overlay layer on the surface.

【0057】(耐疲労試験)実施例1〜6,比較例1〜
5および比較例7で得た各滑り軸受をエンジン部品とし
て適用するべく半割軸受形状に加工し、表6に示す条件
でアンダーウッド試験を行った。その結果を表7に示
す。
(Fatigue Resistance Test) Examples 1 to 6 and Comparative Examples 1 to 1
Each slide bearing obtained in Example 5 and Comparative Example 7 was processed into a half bearing shape so as to be applied as an engine part, and an underwood test was conducted under the conditions shown in Table 6. The results are shown in Table 7.

【0058】[0058]

【表6】 [Table 6]

【0059】[0059]

【表7】 [Table 7]

【0060】表7より明らかなように、表面層(合金
B)の成分が本発明から外れる比較例1および下部層
(合金A)の成分が本発明から外れる比較例3,4、さ
らに合金Bに相当する表面層を設けずケルメット合金を
表面層とした比較例5の滑り軸受5の滑り軸受、ならび
に下部層を設けない比較例7の滑り軸受は、実施例の滑
り軸受よりも耐疲労性が劣っている。
As is clear from Table 7, Comparative Example 1 in which the components of the surface layer (alloy B) are out of the present invention and Comparative Examples 3 and 4 in which the components of the lower layer (alloy A) are out of the present invention, and further alloy B The sliding bearing of the sliding bearing 5 of Comparative Example 5 in which the surface layer corresponding to the above was not used and the sliding bearing of Comparative Example 5 in which the Kelmet alloy was used as the surface layer, and the sliding bearing of Comparative Example 7 in which the lower layer was not provided were more fatigue resistant than the sliding bearings of the Examples. Is inferior.

【0061】これら3種の試験結果により、本発明によ
る滑り軸受が耐焼付性,耐疲労性および高温潤滑油中で
の摩擦損失の低減を同時に成立させていることが明らか
であり、従来の各種軸受合金では不可能であった性能を
有していることがわかった。
From these three types of test results, it is clear that the sliding bearing according to the present invention simultaneously achieves seizure resistance, fatigue resistance and reduction of friction loss in high temperature lubricating oil. It was found that the bearing alloy had performances that were impossible.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 塩 田 正 彦 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 牛 嶋 研 史 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masahiko Shioda 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Prefecture Inside Nissan Motor Co., Ltd. (72) Inventor Kenshi Ushijima 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Inside the corporation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、Pb:5〜50%、Sn:5
%以下、残部が実質的にCuからなるCu−Pb系高鉛
青銅軸受合金Aの上に、表面層として、重量%で、S
n:6〜15未満%、Pb,Sbのうちから選ばれる1
種または2種:0.1〜10%、Si:0.1〜4.5
%、Cu,Crのうちから選ばれる1種または2種:
0.1〜2.0%、残部が実質的にAlからなる合金B
を積層してなることを特徴とする積層摺動部材。
1. Pb: 5 to 50%, Sn: 5 by weight
% Or less, and the balance being substantially Cu, on a Cu-Pb-based high lead bronze bearing alloy A, as a surface layer, by weight%, S
n: 6 to less than 15%, 1 selected from Pb and Sb
Type or 2 types: 0.1 to 10%, Si: 0.1 to 4.5
%, Cu, or one or two selected from Cr:
Alloy B consisting of 0.1 to 2.0% and the balance substantially Al
A laminated sliding member comprising:
【請求項2】 合金Bに歪み除去のための熱処理が施さ
れている請求項1に記載の積層摺動部材。
2. The laminated sliding member according to claim 1, wherein the alloy B is heat-treated for strain relief.
【請求項3】 請求項1または2に記載の積層摺動部材
の背面に裏金が設けられていることを特徴とする積層滑
り軸受。
3. A laminated slide bearing, wherein a back metal is provided on the back surface of the laminated slide member according to claim 1.
【請求項4】 裏金は鋼板である請求項3に記載の積層
滑り軸受。
4. The laminated sliding bearing according to claim 3, wherein the back metal is a steel plate.
【請求項5】 合金Aと合金Bとの間に純Al層を介在
させてなる請求項3または4に記載の積層滑り軸受。
5. The laminated slide bearing according to claim 3, wherein a pure Al layer is interposed between alloy A and alloy B.
【請求項6】 合金Aと合金Bとの間にSn,Pb,S
bを含まないAl合金層を介在させてなる請求項3ない
し4のいずれかに記載の積層滑り軸受。
6. Sn, Pb, S between alloy A and alloy B
The laminated slide bearing according to claim 3, wherein an Al alloy layer not containing b is interposed.
JP12490596A 1996-05-20 1996-05-20 Laminated sliding member and sliding bearing Pending JPH09303373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12490596A JPH09303373A (en) 1996-05-20 1996-05-20 Laminated sliding member and sliding bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12490596A JPH09303373A (en) 1996-05-20 1996-05-20 Laminated sliding member and sliding bearing

Publications (1)

Publication Number Publication Date
JPH09303373A true JPH09303373A (en) 1997-11-25

Family

ID=14897021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12490596A Pending JPH09303373A (en) 1996-05-20 1996-05-20 Laminated sliding member and sliding bearing

Country Status (1)

Country Link
JP (1) JPH09303373A (en)

Similar Documents

Publication Publication Date Title
Pratt Materials for plain bearings
JP2679920B2 (en) Sliding bearing material with overlay with excellent anti-seizure property
JP5399645B2 (en) Aluminum base bearing alloy
JP2535126B2 (en) Multilayer plain bearings and bearing assemblies
US5028393A (en) Al-based alloy for use as sliding material, superior in fatigue resistance and anti-seizure property
GB2367070A (en) An aluminium bearing alloy
JP2532790B2 (en) Copper-lead alloy bearing with overlay
JP2525538B2 (en) Copper alloy plain bearing having high strength backing and method of manufacturing the same
JP2769421B2 (en) Copper-lead bearing alloy material excellent in corrosion resistance and method for producing the same
US5665480A (en) Copper-lead alloy bearing
EP2041327B1 (en) Aluminium bearing alloy aluminiumlagerlegierung
US5512242A (en) Tin-base white metal bearing alloy excellent in heat resistance and fatigue resistance
US5453244A (en) Aluminum alloy bearing
US5424138A (en) Copper-alloy slide bearing for low-rigidity housing and method for producing same
JPS5844140B2 (en) Composite sliding material
US4994235A (en) Wear-resistance aluminum bronze alloy
JPH09303373A (en) Laminated sliding member and sliding bearing
JPH08157993A (en) Sliding member and plain bearing, made of al-sn alloy
US5766777A (en) Composite copper alloy bearing
JP3776228B2 (en) Heat treatment reinforced aluminum sliding material and method for producing the same
JPS58113342A (en) Bearing aluminum alloy
JPH10152742A (en) Laminated sliding member made of al alloy and sliding bearing
JP2001140890A (en) Aluminum based bearing alloy
JPH09202932A (en) Sliding member made of al alloy and plain bearing
JPH08261240A (en) Sliding bearing made of aluminium alloy