JPH0930213A - Pneumatic tire - Google Patents

Pneumatic tire

Info

Publication number
JPH0930213A
JPH0930213A JP8100218A JP10021896A JPH0930213A JP H0930213 A JPH0930213 A JP H0930213A JP 8100218 A JP8100218 A JP 8100218A JP 10021896 A JP10021896 A JP 10021896A JP H0930213 A JPH0930213 A JP H0930213A
Authority
JP
Japan
Prior art keywords
tire circumferential
tire
width
length
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8100218A
Other languages
Japanese (ja)
Other versions
JP3002419B2 (en
Inventor
Masahiro Hanya
正裕 半谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP8100218A priority Critical patent/JP3002419B2/en
Publication of JPH0930213A publication Critical patent/JPH0930213A/en
Application granted granted Critical
Publication of JP3002419B2 publication Critical patent/JP3002419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0318Tread patterns irregular patterns with particular pitch sequence

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve operational stability and at the same time reduce tire pattern noise by specifying the range of the ratio of the rate of change of the length of a tire flat portion, which is represented by the ratio of the shortest length to the longest length of the flat portion in the circumferential direction, to the rate of change of a translot width, which is represented by the ratio of the shortest width to the longest width of the translot of the tire in the circumferential direction. SOLUTION: Among blocks 11A to 11E of a flat portion L1, it is preferable to define the ratio of the tire circumferential length or the shortest block 11E tire circumferential length Bss to the tire circumferential length B11 of the longest flat portion 11A as a flat portion length rate of change BR and set the flat portion rate of change to approximately 1.1 to 1.5. Regarding a translot 10A, the ratio of the tire circumferential width Gss, which has the narrowest tire circumferential width, to the widest tire circumferential width G11 of the longest translot is defined as a translot width rate of change GR. The ratio of the fiat portion length rate of change BR to the translot width rate of change GR (GR/BR) is regulated within the range of 1.2 to 1.5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、パターンノイズの
低減を維持しつつ操縦安定性を向上しうる空気入りタイ
ヤに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pneumatic tire capable of improving steering stability while maintaining reduction of pattern noise.

【0002】[0002]

【従来の技術】ブロック、ラグなどの陸部が一定のピッ
チで並んでいるトレッドパターンを有する空気入りタイ
ヤは、タイヤ走行時に特定周波数の音が大きくなる、い
わゆるパターンノイズが発生しやすい。
2. Description of the Related Art A pneumatic tire having a tread pattern in which land portions such as blocks and lugs are arranged at a constant pitch is liable to generate so-called pattern noise, in which sound of a specific frequency becomes loud when the tire is running.

【0003】従来より、かかるパターンノイズを低減さ
せる手法として、前記ブロック、ラグなどに周方向長さ
が異なる複数種類のブロックを用いること、又はこれら
のブロックに挟まれる横溝の周方向巾を異ならせること
により、特定の周波数領域の音の分散化を図って共振を
防止する、バリアブルピッチ手法を採用したタイヤが、
例えば特開平2−127103号公報などにより提案さ
れている。
Conventionally, as a method for reducing such pattern noise, a plurality of types of blocks having different circumferential lengths are used for the blocks, lugs, or the lateral widths of the lateral grooves sandwiched between these blocks are made different. As a result, tires that employ the variable pitch method, which aims to disperse the sound in a specific frequency range and prevent resonance,
For example, it is proposed by Japanese Patent Laid-Open No. 2-127103.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、かかる
バリアブルピッチ手法は、ノイズ低減効果を発揮するた
めには、前記ブロックのタイヤ周方向長さの変化率、つ
まり最小ブロックのタイヤ周方向長さaと最大ブロック
の周方向長さbとの比(b/a)などを大きく設定する
必要があるため、ブロック剛性の不均一を招き、操縦安
定性を低下させ、しかもタイヤの前後方向の力の変動成
分であるトラクティブフォースバリエーションなどが大
きくなり、タイヤユニフォミティをも悪化させるという
問題がある。
However, in order to exert the noise reducing effect, such a variable pitch method has a rate of change in the tire circumferential direction length of the block, that is, the tire circumferential direction length a of the minimum block. Since it is necessary to set a large ratio (b / a) to the maximum block circumferential length b, etc., the block rigidity becomes non-uniform, the steering stability is reduced, and the tire longitudinal force fluctuations occur. There is a problem that the tractive force variation, which is a component, becomes large, and the tire uniformity is deteriorated.

【0005】本発明者は、パターンノイズ低減効果のあ
るバリアブルピッチ手法の採用を前提とし、操縦安定性
などを向上させる点について鋭意研究を重ねた結果、前
記ブロックなどの陸部の変化率を、横溝のタイヤ周方向
巾の変化率と関連させて一定範囲に規制することを基本
として、ノイズの分散を有効に図りつつ、ブロックの剛
性差を極力無くすことにより操縦安定性を高いレベルに
まで向上しうることを見い出し本発明を完成させたので
ある。
The present inventor has conducted extensive studies on the point of improving steering stability on the assumption that a variable pitch method having a pattern noise reducing effect is adopted, and as a result, the rate of change of the land portion such as the block is calculated as follows. Basically, it is regulated within a certain range in relation to the rate of change in the width of the lateral groove in the tire circumferential direction, while effectively distributing noise, while minimizing the difference in block rigidity to improve steering stability to a high level. The inventors have discovered what is possible and have completed the present invention.

【0006】即ち、本発明は、パターンノイズの低減を
図りつつ操縦安定性を向上しうる空気入りタイヤを提供
することを目的としている。
[0006] That is, an object of the present invention is to provide a pneumatic tire capable of improving steering stability while reducing pattern noise.

【0007】[0007]

【課題を解決するための手段】本発明は、トレッド面
に、タイヤ周方向に交わる向きにのびる横溝を設けるこ
とにより、前記横溝に挟まれる陸部がタイヤ周方向に並
ぶ陸部列を形成するとともに、この陸部列は、タイヤ周
方向長さが異なる複数種類の陸部を用いたバリアブルピ
ッチの空気入りタイヤであって、タイヤ周方向長さが最
短の陸部のタイヤ周方向長さBssと、最長の陸部のタ
イヤ周方向長さBllとの比(Bll/Bss)で表さ
れる陸部長さ変化率BRは、タイヤ周方向の巾が最短の
横溝のタイヤ周方向巾Gssと、最長の横溝のタイヤ周
方向巾Gllとの比(Gll/Gss)で表される横溝
巾変化率GRとの比(GR/BR)を1.2〜1.5の
範囲としたことを特徴とする空気入りタイヤである。
According to the present invention, a lateral groove extending in a direction intersecting with a tire circumferential direction is provided on a tread surface to form a land portion row in which land portions sandwiched by the lateral groove are arranged in the tire circumferential direction. Along with this, the land portion row is a variable-pitch pneumatic tire using a plurality of types of land portions having different tire circumferential lengths, and the tire circumferential length Bss of the land portion having the shortest tire circumferential length. And the land portion length change rate BR represented by a ratio (Bll / Bss) to the tire circumferential direction length Bll of the longest land portion is the tire circumferential direction width Gss of the lateral groove having the shortest tire circumferential direction width, The ratio (GR / BR) to the lateral groove width change rate GR represented by the ratio of the longest lateral groove to the tire circumferential width Gll (Gll / Gss) is set to a range of 1.2 to 1.5. It is a pneumatic tire that does.

【0008】なお前記陸部列は、前記陸部のタイヤ周方
向長さの種類数と、前記横溝のタイヤ周方向巾の種類数
とを同じとし、かつ陸部をタイヤ周方向長さBiの順に
並べ、しかも横溝をタイヤ周方向巾Giの順に並べたと
きにおいて、陸部のタイヤ周方向の一方の縁に、この陸
部と同じ順位の横溝が隣り合うように構成することが望
ましい。
In the land portion row, the number of types of tire circumferential direction lengths of the land portions is the same as the number of types of lateral groove tire circumferential direction widths, and the land portions are of tire circumferential length Bi. When the lateral grooves are arranged in this order, and when the lateral grooves are arranged in the order of the tire circumferential width Gi, it is desirable that the lateral groove of the same rank as the land portion is adjacent to one edge of the land portion in the tire circumferential direction.

【0009】本発明者等の実験結果によれば、前記陸部
長さ変化率BRは、横溝巾変化率GRとの比(GR/B
R)を1.2〜1.5の範囲に規制することにより、各
陸部の剛性が不均一となるのを極力無くすることがで
き、操縦安定性がいわゆるピーク的に向上するととも
に、特定周波数領域の音の分散化を図ることによりパタ
ーンノイズを低減しうる。
According to the results of experiments conducted by the present inventors, the rate of change BR of the land portion length is a ratio (GR / B) to the rate of change of the lateral groove width GR.
By controlling R) in the range of 1.2 to 1.5, it is possible to minimize the unevenness of the rigidity of each land portion, improve the steering stability in a so-called peak, and specify Pattern noise can be reduced by distributing the sound in the frequency domain.

【0010】[0010]

【発明の実施の形態】以下本発明の実施の形態の一例を
図面に基づき説明する。図1において、空気入りタイヤ
1は、ビードコア2を有する一対のビード部3と、各ビ
ード部3からタイヤ半径方向外方にのびるサイドウォー
ル部4と、このサイドウォール部4の外端間を継ぐトレ
ッド部5とを有し、本例ではタイヤ最大巾WTに対する
タイヤ断面高さHの比である偏平率H/WTを80%以
下、好ましくは60%以下とした乗用車用の偏平タイヤ
として形成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, a pneumatic tire 1 connects a pair of bead portions 3 each having a bead core 2, a sidewall portion 4 extending from each bead portion 3 outward in the tire radial direction, and an outer end of the sidewall portion 4 connected to each other. It is formed as a flat tire for passenger cars having a tread portion 5 and a flatness ratio H / WT, which is a ratio of the tire cross-sectional height H to the tire maximum width WT, is 80% or less, preferably 60% or less in this example. It

【0011】又空気入りタイヤ1には、トレッド部5か
らサイドウォール部4をへてビードコア2の廻りで折り
返されて係止されるカーカス6が架け渡されるととも
に、このカーカス6の外側かつトレッド部5の内方には
強靱なベルト層7が巻装され、前記カーカス6にタガ効
果を付与する。
Further, a carcass 6 which is folded around the bead core 2 from the tread portion 5 to the side wall portion 4 and is locked is bridged over the pneumatic tire 1, and at the outside of the carcass 6 and the tread portion. A tough belt layer 7 is wound around the inside of the carcass 5 to impart a hoop effect to the carcass 6.

【0012】前記カーカス6は、カーカスコードをタイ
ヤ赤道Cに対して60〜90度の角度で配列したいわゆ
るラジアル又はセミラジアル構造の1枚以上のカーカス
プライからなり、カーカスコードとして、スチール又は
ナイロン、レーヨン若しくはポリエステル等の有機繊維
コードが採用される。
The carcass 6 is composed of one or more carcass plies having a so-called radial or semi-radial structure in which the carcass cords are arranged at an angle of 60 to 90 degrees with respect to the tire equator C, and the carcass cords are steel or nylon, An organic fiber cord such as rayon or polyester is adopted.

【0013】又ベルト層7は、ベルトコードをタイヤ赤
道Cに対して30度以下の角度で配列した1枚以上、本
例では内外2枚のベルトプライ7A、7Bから形成さ
れ、各プライ7A、7Bはベルトコードがプライ間相互
で交差するように向きを違えて重置されている。なおベ
ルトコードとしては、カーカスコードと同様に、ナイロ
ン、ポリエステル、レーヨン等の有機繊維コード又はス
チール等の金属コードが用いられる。
The belt layer 7 is formed by one or more, in this example, two belt plies 7A, 7B in which belt cords are arranged at an angle of 30 degrees or less with respect to the tire equator C, and in this example, each ply 7A, 7B is piled up in different directions so that the belt cords cross each other between the plies. As the belt cord, as with the carcass cord, an organic fiber cord such as nylon, polyester or rayon or a metal cord such as steel is used.

【0014】又トレッド部5のトレッド面Kは、トレッ
ドパターンを図2に展開して示すように、本実施例では
タイヤ周方向にのびる縦溝9と、この縦溝9と交わる向
きにのびる横溝10とを含むトレッド溝を形成すること
により、前記トレッド面Kに、前記横溝10に挟まれる
陸部、例えばブロック11、12、などがタイヤ周方向
に並ぶ陸部列L1、L2を形成したブロックパターン又
はブロック・リブパターンを形成している。なお、図2
は、ブロックの周方向長さの違いを強調して示してお
り、実測とは異なる。
As shown in the developed tread pattern in FIG. 2, the tread surface K of the tread portion 5 has a longitudinal groove 9 extending in the tire circumferential direction and a lateral groove extending in a direction intersecting with the longitudinal groove 9 in this embodiment. By forming a tread groove including 10 and a land portion row L1 and L2 in which the land portion sandwiched by the lateral groove 10, for example, blocks 11 and 12, are arranged in the tire circumferential direction on the tread surface K. A pattern or block / rib pattern is formed. Note that FIG.
Shows the difference in the circumferential length of the block in an emphasized manner, which is different from the actual measurement.

【0015】この陸部列L1、L2は、本例では、タイ
ヤ周方向長さが異なる3〜5種類などの複数種類、本例
では5種類のブロック11A〜11E、12A〜12E
をともに用いるとともに、これらのブロック11A〜1
1E、12A〜12Eをタイヤ周方向長さの順に並べた
バリアブルピッチを採用している。なお図2に示す符号
を用いて説明すれば、各ブロックの周方向長さは、次の
ような関係である。 Bll>Bl>Bm>Bs>Bss
The land portion rows L1 and L2 are a plurality of types such as 3 to 5 types having different tire circumferential lengths in this example, and 5 types of blocks 11A to 11E and 12A to 12E in this example.
Together with these blocks 11A-1
A variable pitch in which 1E and 12A to 12E are arranged in the order of the length in the tire circumferential direction is used. In addition, if it demonstrates using the code | symbol shown in FIG. 2, the circumferential direction length of each block will have the following relationships. Bll>Bl>Bm>Bs> Bss

【0016】次に、前記縦溝9は、本例では、タイヤ赤
道Cの両側を通る内の縦溝9A、9Aと、その外側に配
する外の縦溝9B、9Bとの合計4本からなり、各縦溝
9A、9Bは、夫々トレッド面K上での溝巾GW1を、
トレッド巾TWの3%以上しかも5mm以上として形成す
るとともに、本例では溝深さをタイヤ全周に亘って略一
定とした直線状溝としたものを例示するが、屈曲させて
もよい。
Next, in the present embodiment, the vertical grooves 9 are composed of a total of four internal grooves 9A, 9A passing on both sides of the tire equator C, and external vertical grooves 9B, 9B arranged outside thereof. The vertical grooves 9A and 9B have a groove width GW1 on the tread surface K, respectively.
Although the groove is formed to be 3% or more and 5 mm or more of the tread width TW and the groove depth is substantially constant over the entire circumference of the tire in this example, it may be bent.

【0017】又前記横溝10は、トレッド巾TWの範囲
内で、本例ではトレッド面Kを左右のトレッド縁Ea、
Ebからタイヤ軸方向内側に向けてのびかつタイヤ赤道
Cの近傍で途切れる左右の横溝10A、10B…とから
なり、各横溝の溝深さを一定としている。なお各横溝1
0A、10Bのタイヤ軸方向内端は、夫々タイヤ赤道C
をこえた近傍位置で途切れてもよく、又左右のトレッド
縁Ea、Ebを継ぐような連続溝として形成しても良
い。
The lateral groove 10 has a tread width TW, and in this example, the tread surface K is formed on the left and right tread edges Ea,
The lateral grooves 10A, 10B, ... Extend from Eb toward the inner side in the tire axial direction and are interrupted near the tire equator C, and the groove depth of each lateral groove is constant. Each lateral groove 1
The inner ends of the tires 0A and 10B in the axial direction are the tire equator C, respectively.
It may be interrupted at a position in the vicinity of over, or may be formed as a continuous groove connecting the left and right tread edges Ea and Eb.

【0018】さらに前記横溝10A、10Bは、各陸部
列L1、L2において、タイヤ周方向の巾GW2(以
下、単に「溝巾GW2」という)を異ならせた複数種
類、本例では前記ブロック11、12のタイヤ周方向長
さの種類数と同じ5種類にて形成しており、溝巾GW2
は、図2に示す符号を用いて説明すれば次のような関係
となる。 Gll>Gl>Gm>Gs>Gss
Further, the lateral grooves 10A, 10B are a plurality of types having different widths GW2 (hereinafter simply referred to as "groove width GW2") in the tire circumferential direction in the respective land portion rows L1, L2. , 12 in the circumferential direction of the tire in the same number of types, and the groove width GW2
Will have the following relationship if explained using the symbols shown in FIG. Gll>Gl>Gm>Gs> Gss

【0019】又前記各陸部列L1は、トレッド周方向部
分にそのタイヤ周方向長さBll、Bl、Bm、Bs、
Bssの順(陸部列L1について示す)に並べ、しかも
横溝10A、10Bをタイヤ周方向巾Gll、Gl、G
m、Gs、Gssの順に並べて配するとともに、各ブロ
ック11A〜11Eのタイヤ周方向の一方の縁に、この
ブロックと同じ順位の横溝を隣り合わせて配しているも
のを例示している。
In addition, each of the land portion rows L1 has tire circumferential lengths Bll, Bl, Bm, Bs, at the tread circumferential portion.
They are arranged in the order of Bss (shown for the land portion row L1), and the lateral grooves 10A and 10B are provided in the tire circumferential widths Gll, Gl, G.
An example is shown in which m, Gs, and Gss are arranged in this order, and lateral grooves of the same order as the blocks are arranged side by side on one edge in the tire circumferential direction of each block 11A to 11E.

【0020】又本例では、各ブロックは、その周方向巾
を、 …Bm、Bl、Bll、Bl、Bm、Bs、Bss、B
s、Bm、Bl… という様にブロックの周長さが増大後、減少するという
配列を繰り返すとともにタイヤ周方向に隣接するブロッ
クの周方向巾の差を一定としたものを示している。
In this example, the width of each block in the circumferential direction is ... Bm, Bl, Bll, Bl, Bm, Bs, Bss, B.
s, Bm, Bl ... The block circumferential length increases and then decreases, and the circumferential width difference between adjacent blocks in the tire circumferential direction is made constant.

【0021】なお、横溝10A、10B及び陸部列L2
も、この陸部列L1と同様の構成をなしたものを例示す
るが、図2から明らかなように、陸部列L1とL2とは
互いに1順位ずらせて前記各ブロック11、12を夫々
配している。なお、ブロックは、周方向長さが最大のも
のBllと、最小のものBssとが隣接することはない
が、一つとび、例えばBllとBm、BsとBlなどが
隣接することは差し支えなく、又同一寸法のブロックを
連続させても良い。
The lateral grooves 10A, 10B and the land portion row L2
Also, an example of a configuration similar to that of the land portion row L1 is illustrated, but as is clear from FIG. 2, the land portion rows L1 and L2 are shifted one order from each other and the blocks 11 and 12 are arranged respectively. are doing. In the block, the block Bll having the maximum length in the circumferential direction and the block Bss having the minimum circumferential length are not adjacent to each other, but one block, for example, Bll and Bm or Bs and Bl may be adjacent to each other. Further, blocks having the same size may be continuous.

【0022】又本例では、左右のトレッド面部K1、K
2の各パターン形状は、円周方向に位相を違えた対称パ
ターンをなし、以下、左のトレッド面部K1の、とりわ
け陸部列L1を用いて説明する。
In this example, the left and right tread surface portions K1, K
The respective pattern shapes of No. 2 are symmetrical patterns having different phases in the circumferential direction, and will be described below using the left tread surface portion K1, particularly the land portion row L1.

【0023】先ず、陸部列L1のブロック11A〜11
Eのうち、タイヤ周方向長さが最短のブロック11Eの
タイヤ周方向長さBssと、最長の陸部11Aのタイヤ
周方向長さBllとの比(Bll/Bss)を陸部長さ
変化率BRとして定義し、本実施例では、この陸部長さ
変化率BRを好ましい範囲として1.1〜1.5程度と
するのが望ましい。又前記の如く、各ブロック間でのタ
イヤ長方向長さの差を均一とするのが良い。
First, the blocks 11A-11 of the land row L1
Of the E, the ratio (Bll / Bss) between the tire circumferential length Bss of the block 11E having the shortest tire circumferential length and the longest tire circumferential length Bll of the land portion 11A is defined as a land length change rate BR. In the present embodiment, it is desirable that the land portion length change rate BR is set to about 1.1 to 1.5 as a preferable range. Further, as described above, it is preferable to make the difference in the tire length direction length between the blocks uniform.

【0024】この陸部長さ変化率BRが、前記1.1の
値よりも小であるときには、ブロック11の剛性は均一
化する傾向にある反面、パターンノイズの低減を維持で
きない傾向にあり、逆に陸部長さ変化率BRが前記1.
5の値よりも大であるときには、ブロック11の剛性の
不均一化が進み、操縦安定性が低下しがちとなり、しか
もタイヤユニフォミティの悪化を招く傾向にある。さら
に好ましくは、前記陸部長さ変化率BRは、1.15〜
1.25程度とするのが良く、前記ブロック同様、一単
位において隣り合う横溝とのタイヤ周方向の巾の差を均
一としている。
When the land portion length change rate BR is smaller than the value of 1.1, the rigidity of the block 11 tends to be uniform, but the pattern noise reduction tends to be unmaintainable. The land length change rate BR is 1.
When the value is larger than 5, the rigidity of the block 11 becomes uneven, the steering stability tends to be deteriorated, and the tire uniformity tends to be deteriorated. More preferably, the land length change rate BR is 1.15.
It is preferable that the width is about 1.25, and the difference in width in the tire circumferential direction between adjacent lateral grooves in one unit is uniform, as in the above block.

【0025】次に、横溝10Aにおいて、タイヤ周方向
の巾が最短の横溝のタイヤ周方向巾Gssと、最長の横
溝のタイヤ周方向巾Gllとの比(Gll/Gss)を
横溝巾変化率GRとして定義しており、この横溝巾変化
率GRが大きいほど、パターンノイズの低減に効果があ
るのは言うまでもない。
Next, in the lateral groove 10A, the ratio (Gll / Gss) between the tire circumferential width Gss of the lateral groove having the shortest width in the tire circumferential direction and the tire circumferential width Gll of the longest lateral groove is defined as the lateral groove width change rate GR. Needless to say, the larger the lateral groove width change rate GR, the more effective the pattern noise is in reducing.

【0026】そして、これら陸部長さ変化率BRと横溝
巾変化率GRとの比(GR/BR)を1.2〜1.5の
範囲に規制している。このように、陸部長さ変化率BR
と横溝巾変化率GRとの比(GR/BR)を規制してい
るのは、比(GR/BR)と、操縦安定性などの関係を
調べた結果の図3に示すようなグラフに基づいている。
なお操縦安定性は10段階評価の指数で、又パターンノ
イズは(GR/BR)=1を基準として、その差で示し
ている。
The ratio (GR / BR) between the land length change rate BR and the lateral groove width change rate GR is regulated within the range of 1.2 to 1.5. In this way, the land length change rate BR
The ratio (GR / BR) between the horizontal groove width change rate GR and the lateral groove width change rate GR is regulated based on the graph shown in FIG. 3 which is the result of examining the relationship between the ratio (GR / BR) and steering stability. ing.
The steering stability is indicated by an index of 10 grades, and the pattern noise is indicated by the difference based on (GR / BR) = 1.

【0027】先ず操縦安定性においては、前記比(GR
/BR)が1.2以上において著しく向上することが判
明した。これは、陸部の変化率が小さくなることによ
り、ブロックなどの剛性が均一化されることに基づいて
おり、前記比が1.5を越えるあたりでほぼ頭打ちとな
る。
First, regarding the steering stability, the ratio (GR
It has been found that / BR) is significantly improved when 1.2 or more. This is based on the fact that the rigidity of the blocks and the like is made uniform by reducing the rate of change of the land portion, and reaches a level when the ratio exceeds 1.5.

【0028】又パターンノイズについては、前記比(G
R/BR)が1.5以下において低減しうることが理解
でき、逆に1.5を越えるとブロックの長さの変化が小
さくなりパターンノイズの低減効果が得られない。よっ
て、パターンノイズの低減を維持しつつ操縦安定性を向
上するためには前記比(GR/BR)を1.2〜1.5
の範囲とする必要がある。
For pattern noise, the ratio (G
It can be understood that R / BR) can be reduced when it is 1.5 or less, and conversely, when it exceeds 1.5, the change in the block length becomes small and the pattern noise reduction effect cannot be obtained. Therefore, in order to improve the steering stability while maintaining the reduction of pattern noise, the ratio (GR / BR) is set to 1.2 to 1.5.
Must be within the range.

【0029】なお前記比(GR/BR)がこの範囲であ
れば、タイヤユニフォミティについても標準レベルを保
持しうることが判明している。
It has been found that when the ratio (GR / BR) is within this range, the tire uniformity can be maintained at the standard level.

【0030】なお前記比(GR/BR)は、陸部列L1
について説明したが、陸部列L2についても、同様の構
成を採用することが望ましく本例では陸部列L1と同様
の構成を採用しており、又前記ブロックの周方向長さ、
及び横溝の周方向巾は、タイヤの任意の円周断面におい
て測定することにより定め、当該断面にて前記規制を充
足すれば足りる。
The above-mentioned ratio (GR / BR) is the land line L1.
However, it is desirable to employ the same configuration for the land portion row L2 as well, and in this example, the same configuration as the land portion row L1 is adopted, and the circumferential length of the block,
The width of the lateral groove in the circumferential direction is determined by measuring it on an arbitrary circumferential cross section of the tire, and it suffices to satisfy the regulation at the cross section.

【0031】[0031]

【実施例】 タイヤサイズが、205/60R15であり、かつ
本発明に従って周方向長さがBll、Bl、Bm、B
s、Bssの5種類のブロック及び周方向巾がGll、
Gl、Gm、Gs、Gssの5種類の横溝を具え図1の
トレッドパターンを有するラジアルタイヤを、表1に示
す仕様にて複数種試作するとともに(実施例1〜3)、
本発明の構成外であり、前記比(GR/BR)=1であ
るタイヤ(従来例)、及び同比が1.2〜1.5の範囲
外のタイヤ(比較例1、2)についても併せて試作し、
性能を比較するテストを行った。なお中心となるブロッ
ク周方向長さBm、および横溝の周方向巾Gmは、 Bm=23.41mm、Gm=4.68mm の値を用いた。テスト条件は、以下の通りである。
EXAMPLES Tire size is 205 / 60R15 and circumferential lengths according to the invention are Bll, Bl, Bm, B.
Five types of blocks, s and Bss, and a circumferential width of Gll,
A plurality of radial tires having five types of lateral grooves of Gl, Gm, Gs, and Gss and having the tread pattern of FIG. 1 were prototyped according to the specifications shown in Table 1 (Examples 1 to 3).
A tire (conventional example) having a ratio (GR / BR) of 1 and a tire having a ratio outside the range of 1.2 to 1.5 (comparative examples 1 and 2), which are outside the configuration of the present invention, are also included. And made a prototype,
Tests were performed to compare performance. For the central block circumferential length Bm and the lateral groove circumferential width Gm, values of Bm = 23.41 mm and Gm = 4.68 mm were used. The test conditions are as follows.

【0032】イ)パターンノイズ 試験タイヤを15×6−JJのアルミホイールリムに内
圧200Kpa(前後同一)でリム組み後、2500c
cの後輪駆動車の4輪に装着して、1名乗車にてスムー
ス路面を速度80km/hにて走行させた。このとき、
運転席窓側右耳許でのオーバーオールの騒音レベルdB
(A)を測定するとともに、従来例との偏差を表示し
た。
B) Pattern noise After the test tire was mounted on a 15 × 6-JJ aluminum wheel rim at an internal pressure of 200 Kpa (the front and rear are the same), 2500c
The vehicle was mounted on four wheels of a rear-wheel-drive vehicle of c, and was run by one person on a smooth road surface at a speed of 80 km / h. At this time,
Overall noise level dB on the right side of the driver's window
(A) was measured and the deviation from the conventional example was displayed.

【0033】ロ)ロードノイズ 前記と同一条件で、ドライアスファルトの荒れた路面を
速度50km/hにて走行させ、ロードノイズ計測器を
用いて定常走行時におけるオーバーオールの騒音レベル
dB(A)を測定するとともに、従来例を基準とした音
圧レベル差を表示した。
B) Road noise Under the same conditions as above, the road noise was measured by running on a rough road surface of dry asphalt at a speed of 50 km / h and using a road noise measuring instrument during steady running. In addition, the sound pressure level difference based on the conventional example is displayed.

【0034】ハ)タイヤユニフォミティ コーナリング試験機を用い、速度80km/hにおい
て、タイヤの前後方向の力の変動成分であるトラクティ
ブフォースバリエーション(TFV)を測定した。従来
例を基準とした差で表示している。数値が小さいほどタ
イヤ前後の変動成分が小さく、タイヤユニフォミティに
優れている。
C) A tire uniformity cornering tester was used to measure the tractive force variation (TFV), which is a fluctuation component of the force in the longitudinal direction of the tire, at a speed of 80 km / h. The difference is based on the conventional example. The smaller the value, the smaller the fluctuation component before and after the tire, and the better the tire uniformity.

【0035】ニ)操縦安定性(DRY、WET)および
乗り心地 前記イ)のパターンノイズテストと同一条件で、タイヤ
テストコースのドライアスファルト路面、ウエットアス
ファルト路面をそれぞれ走行し、ドライバーの官能評価
により従来例を6(基準)とする10段階評価で表示し
ている。数値がの大きい方が良好であり、評価8では相
当良好なレベルに達する。テストの結果を表1に示す。
D) Driving stability (DRY, WET) and ride comfort Under the same conditions as the pattern noise test of the above-mentioned a), the tire was run on the dry asphalt road surface and the wet asphalt road surface of the tire test course, respectively, and it was judged by the driver's sensory evaluation. The example is displayed in 10-level evaluation with 6 (reference). The larger the numerical value is, the better, and the evaluation 8 reaches a considerably good level. The test results are shown in Table 1.

【0036】[0036]

【表1】 [Table 1]

【0037】テストの結果、実施例1〜3は、ブロック
長さ変化率BRが小さくなる程、パターンノイズを大と
する傾向にあるものの、依然としてパターンノイズの低
減を維持しつつ操縦安定性を向上しうることが確認でき
た。特に、操縦安定性の評価指数「8」は、著しくその
性能が向上していることを示している。
As a result of the test, in Examples 1 to 3, although the pattern noise tends to increase as the block length change rate BR becomes smaller, the steering stability is improved while maintaining the reduction of the pattern noise. It was confirmed that it was possible. In particular, the steering stability evaluation index "8" indicates that the performance is remarkably improved.

【0038】比較例1については、(GR/BR)が小
さいため操縦安定性の向上は見られず、又比較例2では
操縦安定性は高めうるが、パターンノイズの低減を維持
しえない。
In Comparative Example 1, since (GR / BR) is small, the steering stability is not improved, and in Comparative Example 2, the steering stability can be increased, but the reduction of the pattern noise cannot be maintained.

【0039】 タイヤサイズが205/60R15で
あり、かつ周方向長さがBll、Bm、Bssの3種類
のブロック及び周方向巾がGll、Gm、Gssの3種
類の横溝を具え、実施例と同様のトレッドパターンを
有するラジアルタイヤを、表2に示す仕様にて複数種試
作するとともに(実施例4、5)、本発明の構成外であ
り、前記比(GR/BR)=1であるタイヤ(従来
例)、及び同比が1.2〜1.5の範囲外のタイヤ(比
較例3、4)についても併せて試作し、実施例と同様
の性能を比較するテストを行った。なお中心となるブロ
ック周方向長さBm、および横溝の周方向巾Gmは Bm=23.41mm、Gm=4.68mm の値を用いた。
The tire size is 205 / 60R15, and there are three types of blocks having a circumferential length of Bll, Bm, and Bss and three types of lateral grooves having a circumferential width of Gll, Gm, and Gss. A plurality of radial tires having the tread pattern of No. 1 were prototyped according to the specifications shown in Table 2 (Examples 4 and 5), and the tires which are outside the configuration of the present invention and have the ratio (GR / BR) = 1 ( Conventional examples) and tires having the same ratio outside the range of 1.2 to 1.5 (Comparative Examples 3 and 4) were also prototyped, and a test for comparing the same performance as that of the example was performed. For the central block circumferential length Bm and the lateral groove circumferential width Gm, values of Bm = 23.41 mm and Gm = 4.68 mm were used.

【0040】[0040]

【表2】 [Table 2]

【0041】実施例においても、本発明品である実施
例4、5は、従来例、比較例3、4に比べ良好な結果を
得た。
Also in Examples, Examples 4 and 5, which are the products of the present invention, obtained better results than the conventional examples and Comparative Examples 3 and 4.

【0042】[0042]

【発明の効果】叙上の如く本発明の空気入りタイヤは、
パターンノイズの低減を維持しつつ操縦安定性やタイヤ
ユニフォミティなどを向上しうる。
As described above, the pneumatic tire of the present invention has the following features.
It is possible to improve steering stability and tire uniformity while maintaining reduction of pattern noise.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す空気入りタイヤの断面図
である。
FIG. 1 is a cross-sectional view of a pneumatic tire showing an embodiment of the present invention.

【図2】本発明の空気入りタイヤのトレッドパターンを
展開して示す平面図である。
FIG. 2 is a plan view showing a developed tread pattern of the pneumatic tire of the present invention.

【図3】比(GR/BR)と操縦安定性などの関係を示
す線図である。
FIG. 3 is a diagram showing a relationship between a ratio (GR / BR) and steering stability.

【符号の説明】[Explanation of symbols]

10 横溝 11、12 ブロック L1、L2 陸部列 K トレッド面 Ea、Eb トレッド縁 10 Transverse grooves 11, 12 Blocks L1, L2 Land line row K Tread surface Ea, Eb Tread edge

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】トレッド面に、タイヤ周方向に交わる向き
にのびる横溝を設けることにより、前記横溝に挟まれる
陸部がタイヤ周方向に並ぶ陸部列を形成するとともに、 この陸部列は、タイヤ周方向長さが異なる複数種類の陸
部を用いたバリアブルピッチの空気入りタイヤであっ
て、 タイヤ周方向長さが最短の陸部のタイヤ周方向長さBs
sと、最長の陸部のタイヤ周方向長さBllとの比(B
ll/Bss)で表される陸部長さ変化率BRは、 タイヤ周方向の巾が最短の横溝のタイヤ周方向巾Gss
と、最長の横溝のタイヤ周方向巾Gllとの比(Gll
/Gss)で表される横溝巾変化率GRとの比(GR/
BR)を1.2〜1.5の範囲としたことを特徴とする
空気入りタイヤ。
1. A tread surface is provided with a lateral groove extending in a direction intersecting with a tire circumferential direction to form a land portion row in which land portions sandwiched by the lateral groove are arranged in the tire circumferential direction. A variable pitch pneumatic tire using a plurality of types of land portions having different tire circumferential lengths, wherein the tire circumferential length Bs of the land portion having the shortest tire circumferential length is Bs.
The ratio of s to the longest tire circumferential length Bll of the land (B
11 / Bss) is the land portion length change rate BR, which is the tire circumferential width Gss of the lateral groove having the shortest tire circumferential width.
To the width Gll of the longest lateral groove in the tire circumferential direction (Gll
/ Gss) Ratio of lateral groove width change rate GR (GR /
A pneumatic tire having a BR) of 1.2 to 1.5.
【請求項2】前記陸部列は、前記陸部のタイヤ周方向長
さの種類数と、前記横溝のタイヤ周方向巾の種類数とを
同じとし、かつ陸部をタイヤ周方向長さBiの順に並
べ、しかも横溝をタイヤ周方向巾Giの順に並べたとき
において、 陸部のタイヤ周方向の一方の縁に、この陸部と同じ順位
の横溝が隣り合ってなる請求項1記載の空気入りタイ
ヤ。
2. The land portion row has the same number of types of tire circumferential direction lengths of the land portions and the same number of types of lateral groove tire circumferential direction widths, and the land portions have tire circumferential direction lengths Bi. 2. The air according to claim 1, wherein when the lateral grooves are arranged in the order of the tire circumferential width Gi, the lateral groove having the same rank as the land portion is adjacent to one edge of the land portion in the tire circumferential direction. Included tires.
JP8100218A 1995-05-15 1996-04-22 Pneumatic tire Expired - Fee Related JP3002419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8100218A JP3002419B2 (en) 1995-05-15 1996-04-22 Pneumatic tire

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11583695 1995-05-15
JP7-115836 1995-05-15
JP8100218A JP3002419B2 (en) 1995-05-15 1996-04-22 Pneumatic tire

Publications (2)

Publication Number Publication Date
JPH0930213A true JPH0930213A (en) 1997-02-04
JP3002419B2 JP3002419B2 (en) 2000-01-24

Family

ID=26441286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8100218A Expired - Fee Related JP3002419B2 (en) 1995-05-15 1996-04-22 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP3002419B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005329834A (en) * 2004-05-20 2005-12-02 Toyo Tire & Rubber Co Ltd Pneumatic radial tire
JP2014091408A (en) * 2012-11-02 2014-05-19 Toyo Tire & Rubber Co Ltd Pneumatic tire
WO2014185198A1 (en) * 2013-05-13 2014-11-20 横浜ゴム株式会社 Pneumatic tire
JP2016002982A (en) * 2014-06-19 2016-01-12 横浜ゴム株式会社 Pneumatic tire
JP2016002981A (en) * 2014-06-19 2016-01-12 横浜ゴム株式会社 Pneumatic tire

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005329834A (en) * 2004-05-20 2005-12-02 Toyo Tire & Rubber Co Ltd Pneumatic radial tire
JP4530264B2 (en) * 2004-05-20 2010-08-25 東洋ゴム工業株式会社 Pneumatic radial tire
JP2014091408A (en) * 2012-11-02 2014-05-19 Toyo Tire & Rubber Co Ltd Pneumatic tire
WO2014185198A1 (en) * 2013-05-13 2014-11-20 横浜ゴム株式会社 Pneumatic tire
JPWO2014185198A1 (en) * 2013-05-13 2017-02-23 横浜ゴム株式会社 Pneumatic tire
US11214099B2 (en) 2013-05-13 2022-01-04 The Yokohama Rubber Co., Ltd. Pneumatic tire
JP2016002982A (en) * 2014-06-19 2016-01-12 横浜ゴム株式会社 Pneumatic tire
JP2016002981A (en) * 2014-06-19 2016-01-12 横浜ゴム株式会社 Pneumatic tire

Also Published As

Publication number Publication date
JP3002419B2 (en) 2000-01-24

Similar Documents

Publication Publication Date Title
EP1189770B1 (en) High-performance tyre for a motor vehicle
US7918256B2 (en) Heavy duty tire having ground contacting face at 70% and 100% maximum tire load
JP3218230B2 (en) Pneumatic tire
JP2643065B2 (en) Pneumatic tire
US11548321B2 (en) Pneumatic tire
JPH10175406A (en) Radial tire for heavy load
EP0688685A2 (en) Pneumatic Tires
JPH0924707A (en) Pneumatic tire and its usage
US6568444B1 (en) Pneumatic radial tire having small negative ratio and small tread ground contacting width to rim width
JP3901743B2 (en) Pneumatic tire
RU2245257C2 (en) High-efficiency type for automobile
CN105102240B (en) Pneumatic tire
US20180056728A1 (en) Pneumatic Tire
JP3002419B2 (en) Pneumatic tire
EP0659593B1 (en) Pneumatic tyre
EP0678403B1 (en) Pneumatic tyre
JP2816880B2 (en) Pneumatic radial tires for passenger cars
US6415836B1 (en) Pneumatic tire including axial grooves having different widths and tread elements having different lengths
JP2989758B2 (en) Pneumatic tire
JP3336052B2 (en) Pneumatic radial tire for winter
JP2003146015A (en) Pneumatic tire
EP0677405B1 (en) Pneumatic tyre
JP3124851B2 (en) Heavy duty tire
JP3188542B2 (en) Arrangement structure of pneumatic tires in vehicles
JP2742363B2 (en) Pneumatic tire

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees