JPH092981A - Production of cycloolefin - Google Patents

Production of cycloolefin

Info

Publication number
JPH092981A
JPH092981A JP7156255A JP15625595A JPH092981A JP H092981 A JPH092981 A JP H092981A JP 7156255 A JP7156255 A JP 7156255A JP 15625595 A JP15625595 A JP 15625595A JP H092981 A JPH092981 A JP H092981A
Authority
JP
Japan
Prior art keywords
catalyst
ruthenium
reaction
water
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7156255A
Other languages
Japanese (ja)
Inventor
Toshiyuki Suzuki
敏之 鈴木
Takahiko Takewaki
隆彦 武脇
Naoko Fujita
直子 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP7156255A priority Critical patent/JPH092981A/en
Publication of JPH092981A publication Critical patent/JPH092981A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE: To obtain a cycloolefin in high selectivity by using a specific catalyst in a partial hydrogenation reaction of a monocyclic aromatic hydrocarbon. CONSTITUTION: In this method for producing a cycloolefin by the partial hydrogenation reaction of a monocyclic aromatic hydrocarbon in the presence of a catalyst and water, a reduced substance comprising (1) rethenium and (2) a promotor containing at least one selected from the group consisting of manganese, cobalt, nickel, zinc, chromium and lanthanide is formed so as to previously reduce the weight ratio of the promotor component to ruthenium in the reduced substance and used as a catalyst.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、単環芳香族炭化水素を
部分水素化して対応するシクロオレフィン類、特にシク
ロヘキセンを製造する方法に関するものである。シクロ
オレフィンは、ラクタム類、ジカルボン酸等のポリアミ
ド原料、リジン、医薬、農薬などの重要な中間原料とし
て有用な化合物である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for partially hydrogenating a monocyclic aromatic hydrocarbon to produce corresponding cycloolefins, particularly cyclohexene. Cycloolefin is a compound useful as a raw material for polyamide such as lactams and dicarboxylic acids, and as an important intermediate raw material for lysine, pharmaceuticals, agricultural chemicals and the like.

【0002】[0002]

【従来の技術】シクロオレフィンの製造方法としては、
従来より単環芳香族炭化水素の部分水素化反応、シクロ
アルカノールの脱水反応、及びシクロアルカンの脱水素
反応、酸化脱水素反応など多くの方法が知られている。
なかでも、単環芳香族炭化水素の部分水素化によりシク
ロオレフィンを効率よく得ることができれば、最も簡略
化された反応工程となり、プロセス上好ましい。
2. Description of the Related Art As a method for producing cycloolefin,
Many methods such as partial hydrogenation reaction of monocyclic aromatic hydrocarbons, dehydration reaction of cycloalkanol, dehydrogenation reaction of cycloalkane, and oxidative dehydrogenation reaction have been known.
Among them, if the cycloolefin can be efficiently obtained by the partial hydrogenation of the monocyclic aromatic hydrocarbon, the reaction step becomes the most simplified, which is preferable in the process.

【0003】単環芳香族炭化水素の部分水素化によるシ
クロオレフィンの製造方法としては、触媒として主にル
テニウム金属が使用され、水の存在下で水素化反応を行
う方法が一般的である。また、このルテニウム触媒は、
一般にはシクロオレフィンの選択率を高めるためには、
ルテニウムと共にマンガン、鉄、コバルト、ニッケル、
亜鉛等の助触媒成分を併用することが特に好ましいとさ
れている(特開昭53−63350、、特開平4−74
141等)。
As a method for producing a cycloolefin by partial hydrogenation of a monocyclic aromatic hydrocarbon, ruthenium metal is mainly used as a catalyst, and a hydrogenation reaction is generally performed in the presence of water. Also, this ruthenium catalyst
Generally, in order to increase the selectivity of cycloolefin,
With ruthenium, manganese, iron, cobalt, nickel,
It is said that it is particularly preferable to use a cocatalyst component such as zinc in combination (JP-A-53-63350, JP-A-4-74).
141 etc.).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
方法はいずれも何らかの問題点を抱えており、工業的に
必ずしも有利な方法が確立していない。例えば、ルテニ
ウムと助触媒から成る触媒を用いた場合、シクロオレフ
ィンの選択率の向上効果の一方で、活性が低下する傾向
がありシクロオレフィンを効率よく製造することができ
ないというような問題がある。
However, all the conventional methods have some problems, and an industrially advantageous method is not always established. For example, when a catalyst comprising ruthenium and a co-catalyst is used, the cycloolefin selectivity is improved, but on the other hand, there is a problem that the activity tends to decrease and the cycloolefin cannot be efficiently produced.

【0005】[0005]

【課題を解決するための手段】本発明者等は、ルテニウ
ムと共存させる助触媒成分に着目し詳細に検討を行った
ところ、ルテニウムと助触媒成分から成る特定の触媒を
用いれば上記課題を解決できることを見いだし、本発明
に到達した。即ち、本発明の要旨は、単環芳香族炭化水
素を触媒と水の存在下で部分水素化するシクロオレフィ
ンの製造方法において、(1)ルテニウム及び(2)マ
ンガン、鉄、コバルト、ニッケル、亜鉛、クロム、ラン
タンからなる群から選ばれた少なくとも一種を含む助触
媒成分からなる還元物を、予め該還元物中のルテニウム
に対する助触媒成分の重量比を減少させ、これを触媒と
して用いることを特徴とするシクロオレフィンの製造方
法に存する。
Means for Solving the Problems The present inventors have made a detailed study by paying attention to a cocatalyst component that coexists with ruthenium, and found that the above problem can be solved by using a specific catalyst composed of ruthenium and the cocatalyst component. They have found what they can do and have reached the present invention. That is, the gist of the present invention is (1) ruthenium and (2) manganese, iron, cobalt, nickel, zinc in a method for producing a cycloolefin in which a monocyclic aromatic hydrocarbon is partially hydrogenated in the presence of a catalyst and water. Characterized in that a reduced product of a cocatalyst component containing at least one selected from the group consisting of chromium, lanthanum and lanthanum is previously used as a catalyst by reducing the weight ratio of the cocatalyst component to ruthenium in the reduced product. And a method for producing cycloolefin.

【0006】以下本発明を詳細に説明する。本発明にお
ける触媒は、(1)ルテニウム及び(2)マンガン、
鉄、コバルト、ニッケル、亜鉛、クロム、ランタンから
なる群から選ばれた少なくとも一種を含む助触媒成分か
らなるものであり、触媒の各金属成分の原料化合物とし
ては、各金属のハロゲン化物、硝酸塩、酢酸塩、硫酸
塩、各金属を含む錯体化合物などが使用される。
Hereinafter, the present invention will be described in detail. The catalyst in the present invention includes (1) ruthenium and (2) manganese,
Iron, cobalt, nickel, zinc, chromium, which consists of a co-catalyst component containing at least one selected from the group consisting of lanthanum, the raw material compound of each metal component of the catalyst, halides of each metal, nitrates, Acetates, sulfates, complex compounds containing each metal and the like are used.

【0007】触媒の原料化合物における各金属成分のル
テニウム触媒は、ルテニウムに対するマンガン、鉄、コ
バルト、ニッケル、亜鉛、クロム、ランタンからなる群
から選ばれた少なくとも一種を含む助触媒金属の重量比
は通常0.01〜10、好ましくは0.05〜5、更に
好ましくは0.1〜2である。助触媒金属成分として
は、特に亜鉛が好ましい。なお、以上の助触媒成分の他
に、金、銀、銅、白金、タングステン、モリブデンなど
を第三の助触媒金属成分として使用してもよい。
The ruthenium catalyst of each metal component in the raw material compound of the catalyst is usually the weight ratio of the promoter metal containing at least one selected from the group consisting of manganese, iron, cobalt, nickel, zinc, chromium and lanthanum to ruthenium. It is 0.01 to 10, preferably 0.05 to 5, and more preferably 0.1 to 2. As the promoter metal component, zinc is particularly preferable. In addition to the above promoter components, gold, silver, copper, platinum, tungsten, molybdenum, etc. may be used as the third promoter metal component.

【0008】従来の一般的なルテニウム触媒は、以上の
触媒原料化合物の混合物を還元して得られる金属ルテニ
ウムを含むものが用いられる。還元法としては、水素ガ
スによる接触還元法、あるいはホルマリン、水素化ホウ
素ナトリウム、ヒドラジン等による化学還元法が用いら
れる。このうち、好ましくは水素ガスによる接触還元で
あり、通常80〜500℃、好ましくは100〜450
℃の条件化で還元活性化する。還元温度が80℃未満で
は、ルテニウムの還元率が著しく低下し、また、500
℃を越えるとルテニウムの凝集が起こりやすくなり、シ
クロオレフィン生成の収率、選択率が低下する原因とな
る。
As a conventional general ruthenium catalyst, one containing metal ruthenium obtained by reducing a mixture of the above-mentioned catalyst raw material compounds is used. As the reduction method, a catalytic reduction method using hydrogen gas or a chemical reduction method using formalin, sodium borohydride, hydrazine or the like is used. Of these, catalytic reduction with hydrogen gas is preferable, and is usually 80 to 500 ° C., preferably 100 to 450.
Reductively activated under conditions of ℃. When the reduction temperature is lower than 80 ° C., the reduction ratio of ruthenium is remarkably reduced, and
If the temperature exceeds ℃, agglomeration of ruthenium is likely to occur, which causes a decrease in the yield and selectivity of cycloolefin production.

【0009】また、ルテニウム触媒はルテニウムを含む
還元金属粒子のまま使用してもよいが、担体に担持させ
た担持触媒として使用してもよい。担体としては、硫酸
バリウム、硫酸カルシウムなどの金属塩、シリカ、アル
ミナ、ジルコニア、チタニア、クロミナ、希土類金属の
酸化物、あるいは、シリカ−アルミナ、シリカ−ジルコ
ニア、ケイ酸ジルコニウムなどの複合酸化物、さらに
は、ジルコニアなどの金属酸化物で修飾したシリカ等が
例示される。触媒成分の担持方法としては、触媒成分液
に担体を浸漬後、攪拌しながら溶媒を蒸発させ活性成分
を固定化する蒸発乾固法、担体を乾燥状態に保ちながら
触媒活性成分液を噴霧するスプレー法、あるいは、触媒
活性成分液に担体を浸漬後、ろ過する方法などの公知の
含浸担持法が好適に用いられる。共担持する助触媒金属
成分は、ルテニウム原料と同時に担体に担持してもよい
し、予めルテニウムを担持後、担持してもよいし、先に
これらの金属を担持した後、ルテニウムを後から担持し
てもよい。また、触媒調製時の活性成分を担持する際使
用する溶媒としては、水、またはアルコール、アセト
ン、テトラヒドロフラン、ヘキサン、トルエンなどの有
機溶媒が使用される。ルテニウムの担持量は、通常0.
001〜10重量%、好ましくは0.1〜5重量%であ
る。
The ruthenium catalyst may be used as it is as the reduced metal particles containing ruthenium, or may be used as a supported catalyst supported on a carrier. As the carrier, barium sulfate, metal salts such as calcium sulfate, silica, alumina, zirconia, titania, chromina, oxides of rare earth metals, or silica-alumina, silica-zirconia, composite oxides such as zirconium silicate, Examples include silica modified with a metal oxide such as zirconia. As a method for supporting the catalyst component, after dipping the carrier in the catalyst component liquid and then evaporating the solvent by stirring to evaporate the solvent to fix the active component, a spray method in which the catalyst active component liquid is sprayed while keeping the carrier in a dry state Or a known impregnation-supporting method such as a method of immersing the carrier in the catalytically active component liquid and then filtering. The cocatalyst metal component to be co-loaded may be loaded on the carrier at the same time as the ruthenium raw material, or may be loaded after ruthenium is loaded in advance, or after these metals are loaded in advance, ruthenium is loaded afterwards. You may. In addition, as a solvent used for supporting the active component at the time of catalyst preparation, water or an organic solvent such as alcohol, acetone, tetrahydrofuran, hexane, and toluene is used. The amount of ruthenium supported is usually 0.
It is 001 to 10% by weight, preferably 0.1 to 5% by weight.

【0010】以上の方法で得られる(1)ルテニウム及
び(2)マンガン、鉄、コバルト、ニッケル、亜鉛、ク
ロム、ランタンからなる群から選ばれた少なくとも一種
を含む助触媒成分からなる還元物は、このまま触媒とし
て使用することができるものであるが、本発明において
は、予めこの還元物中のルテニウムに対する助触媒成分
の重量比を減少させて成る触媒を反応に用いることを特
徴とする。
The reduced product comprising a promoter component containing at least one selected from the group consisting of (1) ruthenium and (2) manganese, iron, cobalt, nickel, zinc, chromium and lanthanum obtained by the above method is Although it can be used as it is as a catalyst, the present invention is characterized in that a catalyst obtained by previously reducing the weight ratio of the promoter component to ruthenium in the reduced product is used in the reaction.

【0011】還元物中のルテニウムに対する助触媒成分
の重量比を減少させる方法としては特に制限はないが、
通常、還元物を溶媒と接触させて助触媒成分を溶出させ
る方法が採用される。この溶媒としては水、アルコー
ル、有機酸などの極性溶媒が例示されるが、好ましくは
水である。還元処理を行った還元物中の(1)のルテニ
ウム成分については水との接触処理による水中への溶出
は殆ど認められないが、(2)のマンガン、鉄、コバル
ト、ニッケル、亜鉛、クロム、ランタンの助触媒成分に
ついては水との接触処理の条件によってはかなりの量が
水中に溶出する。
There are no particular restrictions on the method for reducing the weight ratio of the promoter component to ruthenium in the reduced product,
Usually, a method of bringing the reduced product into contact with a solvent to elute the promoter component is adopted. Examples of this solvent include polar solvents such as water, alcohols and organic acids, but water is preferable. Almost no ruthenium component (1) in the reduced product subjected to the reduction treatment was dissolved in water by the contact treatment with water, but (2) manganese, iron, cobalt, nickel, zinc, chromium, A considerable amount of the lanthanum co-catalyst component is eluted in water depending on the conditions of the contact treatment with water.

【0012】触媒中の助触媒含有量を減らすことは、触
媒としての性能に一見悪影響があるように思われるが、
実際は驚いたことに、触媒活性が向上し、選択性も向上
する効果が達成される。従来、触媒の選択性を高めるた
めには、一般に助触媒成分がルテニウムに対してある程
度の量は必要であるが、一方で触媒活性の低下の弊害が
問題であったが、本発明の触媒ではかかる問題が解消さ
れる。
Reducing the content of co-catalyst in the catalyst appears to have a detrimental effect on its performance as a catalyst,
In fact, surprisingly, the effect of improving the catalytic activity and the selectivity is achieved. Conventionally, in order to increase the selectivity of the catalyst, a certain amount of the cocatalyst component is generally required with respect to ruthenium, but on the other hand, the problem of the deterioration of the catalytic activity has been a problem. This problem is solved.

【0013】以上の本発明の効果の原因は明確ではない
が、触媒調製の際、ルテニウム成分を初めに還元する段
階では助触媒成分がある程度過剰に存在させた方が望ま
しくても、ルテニウムが還元された段階において、反応
に寄与する助触媒成分は触媒中の一部に限られることが
推定される。
Although the cause of the effect of the present invention is not clear, ruthenium is reduced even if it is desirable that a certain amount of the cocatalyst component is present in the step of initially reducing the ruthenium component during catalyst preparation. It is estimated that the cocatalyst component that contributes to the reaction at the given stage is limited to a part of the catalyst.

【0014】ルテニウムに対する助触媒成分の重量比と
しては、接触処理する前の重量比を基準として、通常8
0%以下、好ましくは50%以下に減少させることが望
ましい。また、助触媒成分の重量比の下限値は特になく
助触媒成分が微量に存在しても効果が認められるが、好
ましくは0.1%以上である。接触処理は、触媒に対し
て、通常0.01〜100重量倍、好ましくは0.1〜
10重量倍の水に浸漬するなどして実施される。処理条
件としては、通常、常圧から加圧下、室温〜250℃、
好ましくは室温〜200℃で、通常10分以上、好まし
くは1〜20時間行う。触媒処理の雰囲気は、通常、不
活性ガス雰囲気下あるいは水素ガス雰囲気下であり、好
ましくは水素ガス雰囲気下である。接触処理後の触媒
は、通常、乾燥して使用する。また、乾燥後、水素ガス
雰囲気下で接触処理することにより、更に触媒活性を高
めることも可能である。
The weight ratio of the promoter component to ruthenium is usually 8 based on the weight ratio before the contact treatment.
It is desirable to reduce it to 0% or less, preferably 50% or less. The lower limit of the weight ratio of the cocatalyst component is not particularly limited, and the effect can be recognized even if a small amount of the cocatalyst component is present, but it is preferably 0.1% or more. The contact treatment is usually 0.01 to 100 times by weight, preferably 0.1 to 100 times the weight of the catalyst.
It is carried out by immersing in 10 times by weight of water. The processing conditions are usually from normal pressure to pressurized, room temperature to 250 ° C,
The reaction is preferably performed at room temperature to 200 ° C., usually for 10 minutes or more, preferably for 1 to 20 hours. The catalyst treatment atmosphere is usually an inert gas atmosphere or a hydrogen gas atmosphere, preferably a hydrogen gas atmosphere. The catalyst after the contact treatment is usually dried before use. Further, the catalytic activity can be further enhanced by performing a contact treatment in a hydrogen gas atmosphere after drying.

【0015】また、以上の接触処理に用いる水として
は、純水のほかに、金属塩の水溶液であってもよい。該
金属塩水溶液と接触処理を行うと触媒活性の更なる向上
が期待できるので望ましい。使用する金属塩としては、
リチウム、ナトリウム、カリウムなど1族元素、マグネ
シウム、カルシウム、ストロンチウムなどの2族元素、
およびマンガン、鉄、ニッケル、コバルト、亜鉛などの
金属塩、例えば炭酸塩、酢酸塩などの弱酸塩、硫酸塩、
硝酸塩などの強酸塩が使用される。また、水溶液中の金
属塩の濃度としては、水に対して、通常1×10-5〜1
重量倍、好ましくは1×10-4〜0.2重量倍である。
接触処理後の触媒は、通常、金属塩水溶液をろ別し、純
水で洗浄し、乾燥して使用する。また、乾燥後、水素ガ
ス雰囲気下で還元処理することにより、更に触媒活性を
高めることもできる。
The water used in the above contact treatment may be not only pure water but also an aqueous solution of a metal salt. It is desirable to carry out contact treatment with the aqueous metal salt solution, because further improvement in catalytic activity can be expected. As the metal salt used,
Group 1 elements such as lithium, sodium and potassium, Group 2 elements such as magnesium, calcium and strontium,
And metal salts of manganese, iron, nickel, cobalt, zinc, etc., for example, weak acid salts such as carbonates, acetates, sulfates,
A strong acid salt such as nitrate is used. The concentration of the metal salt in the aqueous solution is usually 1 × 10 -5 to 1 with respect to water.
It is 1 times by weight, preferably 1 × 10 −4 to 0.2 times by weight.
The catalyst after the contact treatment is usually used after filtering a metal salt aqueous solution, washing with pure water, and drying. Further, the catalytic activity can be further enhanced by performing a reduction treatment in a hydrogen gas atmosphere after drying.

【0016】本発明は以上のルテニウム触媒を使用する
ことを特徴とするが、本発明を実施する場合、反応原料
の単環芳香族炭化水素としては、ベンゼン、トルエン、
キシレン、および、炭素数1〜4程度の低級アルキル基
置換ベンゼン類などが挙げられる。また、本発明の反応
系には、水の存在が必要である。水の量としては、反応
形式によって異なるが、一般的には単環芳香族炭化水素
の0.01〜10重量倍であり、好ましくは0.1〜5
重量倍である。かかる条件では、原料及び生成物を主成
分とする有機液相(油相)と水を含む液相(水相)との
2相を形成することになる。油相と水相の割合が極端な
場合は2相の形成が困難となり、分液が困難となる。ま
た、水の量が少なすぎても、多すぎても水の存在効果が
減少し、更に、水が多すぎる場合は反応器を大きくする
必要があるので好ましくない。
The present invention is characterized by using the above-mentioned ruthenium catalyst. When the present invention is carried out, benzene, toluene,
Xylene and lower alkyl group-substituted benzenes having about 1 to 4 carbon atoms are exemplified. Further, the reaction system of the present invention requires the presence of water. The amount of water varies depending on the reaction mode, but is generally 0.01 to 10 times by weight of the monocyclic aromatic hydrocarbon, preferably 0.1 to 5 times.
Weight times. Under these conditions, two phases are formed: an organic liquid phase (oil phase) containing the raw materials and products as main components, and a liquid phase (water phase) containing water. When the ratio between the oil phase and the aqueous phase is extreme, it is difficult to form two phases, and liquid separation is difficult. Further, if the amount of water is too small or too large, the effect of the presence of water is reduced, and if the amount of water is too large, it is necessary to enlarge the reactor, which is not preferable.

【0017】また、本発明の反応系にはシクロヘキセン
の選択率を高めるなどの効果を目的として金属塩を存在
させてもよく、周期表のリチウム、ナトリウム、カリウ
ムなどの1族金属、マグネシウム、カルシウムなどの2
族金属(族番号はIUPAC無機化学命名法改訂版(1
989)による)、あるいは亜鉛、マンガン、コバルト
などの金属の硝酸塩、塩化物、硫酸塩、酢酸塩、燐酸塩
が例示され、特に硫酸亜鉛を併用するのが好ましい。金
属塩の使用量は、通常、反応系の水に対して1×10-5
〜1重量倍、好ましくは1×10-4〜0.1重量倍であ
る。
In addition, a metal salt may be present in the reaction system of the present invention for the purpose of increasing the selectivity of cyclohexene, and Group 1 metals such as lithium, sodium and potassium in the periodic table, magnesium and calcium. Such as 2
Group metals (group numbers are IUPAC inorganic chemical nomenclature revised version (1
989)), or nitrates, chlorides, sulfates, acetates and phosphates of metals such as zinc, manganese and cobalt, and it is particularly preferable to use zinc sulfate in combination. The amount of metal salt used is usually 1 × 10 −5 with respect to the water in the reaction system.
˜1 times by weight, preferably 1 × 10 −4 to 0.1 times by weight.

【0018】本発明の反応条件としては、反応温度は、
通常50〜250℃、好ましくは100〜220℃の範
囲から選択される。250℃以上ではシクロオレフィン
の選択率が低下し、50℃以下では反応速度が著しく低
下し好ましくない。また、反応時の水素の圧力は、通常
0.1〜20MPa、好ましくは0.5〜10MPaの
範囲から選ばれる。20MPaを超えると工業的に不利
であり、一方、0.1MPa未満では反応速度が著しく
低下し設備上不経済である。反応は気相反応、液相反応
のいずれも実施することができるが、好ましくは液相反
応である。反応型式としては、一槽または二槽以上の反
応槽を用いて、回分式に行うこともできるし、連続的に
行うことも可能であり、特に限定されない。
The reaction conditions of the present invention are as follows:
It is usually selected from the range of 50 to 250 ° C, preferably 100 to 220 ° C. When the temperature is 250 ° C or higher, the selectivity of cycloolefin is lowered, and when the temperature is 50 ° C or lower, the reaction rate is remarkably lowered, which is not preferable. The hydrogen pressure during the reaction is usually selected from the range of 0.1 to 20 MPa, preferably 0.5 to 10 MPa. When it exceeds 20 MPa, it is industrially disadvantageous, while when it is less than 0.1 MPa, the reaction rate remarkably decreases and it is uneconomical in terms of equipment. The reaction can be carried out in either a gas phase reaction or a liquid phase reaction, but is preferably a liquid phase reaction. The reaction system is not particularly limited, and it can be carried out batchwise or continuously using one or two or more reaction tanks.

【0019】[0019]

【実施例】以下に実施例を記すが、本発明はこれらの実
施例によって限定されるものではない。なお、実施例お
よび比較例中に示される転化率、選択率は次式によって
定義される。
EXAMPLES Examples will be described below, but the present invention is not limited to these examples. The conversion rate and selectivity shown in Examples and Comparative Examples are defined by the following equations.

【0020】[0020]

【数1】 [Equation 1]

【0021】比較例1 オキシ硝酸ジルコニウム2水和物0.87gを20ml
の純水に溶解させた水溶液に、シリカ(富士シリシア化
学製、商品名:CARIACT50)8.0gを加え、
室温にて浸漬後、水を留去し、乾燥させた。次に、空気
流通下、1000℃にて4時間焼成し、シリカに対して
5重量%のジルコニアで修飾したシリカ担体を調製し
た。
Comparative Example 1 20 ml of 0.87 g of zirconium oxynitrate dihydrate
8.0 g of silica (manufactured by Fuji Silysia Chemical Ltd., trade name: CARIACT50) was added to the aqueous solution of pure water.
After immersion at room temperature, water was distilled off and the product was dried. Next, it was calcined at 1000 ° C. for 4 hours under air flow to prepare a silica carrier modified with 5% by weight of zirconia with respect to silica.

【0022】所定量の塩化ルテニウムと、塩化亜鉛を含
有した水溶液に、上記のジルコニア修飾シリカ担体を加
え、60℃にて1時間浸漬後、水を留去し、乾燥させ
た。このようにして得られた、ルテニウム(Ru)、亜
鉛(Zn)を担体に対して各々0.5重量%を担持させ
た触媒を水素気流中にて200℃で3時間還元して活性
化した。以上の触媒中に含まれるルテニウム及び亜鉛の
含有量を蛍光X線法によって測定した。亜鉛/ルテニウ
ムの重量比の分析結果を表−1に示す。
The above-mentioned zirconia-modified silica carrier was added to an aqueous solution containing a predetermined amount of ruthenium chloride and zinc chloride, and the mixture was immersed at 60 ° C. for 1 hour, water was distilled off, and it was dried. The thus-obtained catalyst supporting 0.5 wt% of ruthenium (Ru) and zinc (Zn) on the carrier was reduced and activated in a hydrogen stream at 200 ° C. for 3 hours. . The contents of ruthenium and zinc contained in the above catalyst were measured by the fluorescent X-ray method. Table 1 shows the analysis results of the weight ratio of zinc / ruthenium.

【0023】次に、内容積500mlのオ−トクレ−ブ
に硫酸亜鉛6重量%の水溶液150ml、上記触媒3.
75g、ベンゼン100mlを仕込んだ。反応温度15
0℃、圧力50MPaの条件下、水素ガスを57Nl/
Hrの流量で供給し、1000rpmの攪拌を行いベン
ゼンの部分水素化反応を実施した。反応器に設置したノ
ズルより反応液を適宜抜き出し、油相をガスクロマトグ
ラフで分析した。結果を表−1に示す。
Next, in an autoclave having an internal volume of 500 ml, 150 ml of an aqueous solution containing 6% by weight of zinc sulfate, the catalyst 3.
75 g and 100 ml of benzene were charged. Reaction temperature 15
Under conditions of 0 ° C. and a pressure of 50 MPa, hydrogen gas was added at 57 Nl /
It was supplied at a flow rate of Hr and stirred at 1000 rpm to carry out a partial hydrogenation reaction of benzene. The reaction liquid was appropriately extracted from the nozzle installed in the reactor, and the oil phase was analyzed by gas chromatography. The results are shown in Table 1.

【0024】実施例1 比較例1で調製した触媒5gと、硫酸亜鉛6重量%の水
溶液100mlを、内容積500mlのTi製オ−トク
レ−ブに仕込み、温度200℃、圧力5.0MPaの条
件下、600rpmで攪拌を行い、5時間処理した。該
処理後、触媒を取出し、純水で洗浄した。洗浄は、触媒
に30倍量の純水を加えて1時間撹拌などにより充分に
混合し、実質的に平衡状態となった際の洗浄水中の亜鉛
濃度が0.1ppm以下になるまで行った。更に、該触
媒を乾燥後、水素気流中にて200℃で3時間保持し
た。該触媒中に含まれる亜鉛/ルテニウムの重量比の分
析結果を表−1に示す。
Example 1 5 g of the catalyst prepared in Comparative Example 1 and 100 ml of an aqueous solution containing 6% by weight of zinc sulfate were charged into a Ti autoclave having an internal volume of 500 ml, and the temperature was 200 ° C. and the pressure was 5.0 MPa. Then, the mixture was stirred at 600 rpm for 5 hours. After the treatment, the catalyst was taken out and washed with pure water. Washing was performed by adding 30 times the amount of pure water to the catalyst and mixing them sufficiently for 1 hour with stirring, etc., until the zinc concentration in the wash water at the time of substantially equilibrium became 0.1 ppm or less. Further, the catalyst was dried and then kept in a hydrogen stream at 200 ° C. for 3 hours. Table 1 shows the analysis results of the weight ratio of zinc / ruthenium contained in the catalyst.

【0025】以上の触媒を使用した以外は比較例1と同
様の方法でベンゼンの部分水素化反応を実施した。反応
結果を表−1に示す。
A partial hydrogenation reaction of benzene was carried out in the same manner as in Comparative Example 1 except that the above catalyst was used. The reaction results are shown in Table 1.

【0026】[0026]

【表1】 [Table 1]

【0027】比較例2 比較例1において使用した担体の代わりに市販のケイ酸
ジルコニウム(第一稀元素社製)を使用した以外は、比
較例1と同様の方法で触媒を調製した。該触媒中に含ま
れる亜鉛/ルテニウムの重量比の分析結果を表−1に示
す。また、本触媒を使用した以外は比較例1と同様の方
法でベンゼンの部分水素化反応を実施した。反応結果を
表−2に示す。
Comparative Example 2 A catalyst was prepared in the same manner as in Comparative Example 1 except that commercially available zirconium silicate (manufactured by Daiichi Rare Elements Co., Ltd.) was used instead of the carrier used in Comparative Example 1. Table 1 shows the analysis results of the weight ratio of zinc / ruthenium contained in the catalyst. A partial hydrogenation reaction of benzene was carried out in the same manner as in Comparative Example 1 except that this catalyst was used. Table 2 shows the reaction results.

【0028】実施例2 実施例1において使用した担体の代わりに市販のケイ酸
ジルコニウム(第一稀元素社製)を使用した以外は、実
施例1と同様の方法で触媒を調製した。該触媒中に含ま
れる亜鉛/ルテニウムの重量比の分析結果を表−1に示
す。また、本触媒を使用した以外は比較例1と同様の方
法でベンゼンの部分水素化反応を実施した。反応結果を
表−2に示す。
Example 2 A catalyst was prepared in the same manner as in Example 1 except that commercially available zirconium silicate (manufactured by Daiichi Rare Elements Co., Ltd.) was used in place of the carrier used in Example 1. Table 1 shows the analysis results of the weight ratio of zinc / ruthenium contained in the catalyst. A partial hydrogenation reaction of benzene was carried out in the same manner as in Comparative Example 1 except that this catalyst was used. Table 2 shows the reaction results.

【0029】[0029]

【表2】 [Table 2]

【0030】実施例3 比較例1の方法で調製した触媒7.0g、純水30m
l、硫酸亜鉛7水和物3.6gをオ−トクレ−ブに仕込
み、温度150℃、水素加圧下(5.0MPa)にて5
時間攪拌処理した。該処理後本触媒を取出し、実施例1
と同様に洗浄、乾燥後、水素気流中で保持した。該触媒
中に含まれる亜鉛/ルテニウムの重量比の分析結果を表
−3に示す。本触媒を6.0g、ベンゼン80ml、純
水120ml、硫酸亜鉛7水和物14.4gをオ−トク
レ−ブに仕込み、温度150℃、水素加圧50MPaの
条件にてベンゼンの部分水素化反応を実施した。反応結
果を表−3に示す。
Example 3 7.0 g of the catalyst prepared by the method of Comparative Example 1, 30 m of pure water
1, and 3.6 g of zinc sulfate heptahydrate were charged into an autoclave, and the temperature was 150 ° C. and the pressure was 5 (5.0 MPa) under hydrogen pressure.
Stir for a period of time. After the treatment, the present catalyst was taken out, and Example 1
After washing and drying in the same manner as above, the sample was held in a hydrogen stream. Table 3 shows the analysis results of the weight ratio of zinc / ruthenium contained in the catalyst. 6.0 g of this catalyst, 80 ml of benzene, 120 ml of pure water, and 14.4 g of zinc sulfate heptahydrate were charged into an autoclave, and the partial hydrogenation reaction of benzene was performed under the conditions of a temperature of 150 ° C. and a hydrogen pressure of 50 MPa. Was carried out. The reaction results are shown in Table-3.

【0031】実施例4 比較例1の方法で調製した触媒7.0g、純水30m
l、硫酸リチウム1水和物3.6gをオ−トクレ−ブに
仕込み、温度150℃、水素加圧下(5.0MPa)に
て5時間攪拌処理した。該処理後、触媒を取出し、実施
例1と同様に洗浄、乾燥後、水素気流中で保持した。該
触媒中に含まれる亜鉛/ルテニウムの重量比の分析結果
を表−3に示す。本触媒を使用した以外は、実施例3と
同様の方法でベンゼンの部分水素化反応を実施した。反
応結果を表−3に示す。
Example 4 7.0 g of the catalyst prepared by the method of Comparative Example 1, 30 m of pure water
1, and 3.6 g of lithium sulfate monohydrate were placed in an autoclave, and stirred at a temperature of 150 ° C. under hydrogen pressure (5.0 MPa) for 5 hours. After the treatment, the catalyst was taken out, washed in the same manner as in Example 1, dried and then held in a hydrogen stream. Table 3 shows the analysis results of the weight ratio of zinc / ruthenium contained in the catalyst. A partial hydrogenation reaction of benzene was carried out in the same manner as in Example 3 except that this catalyst was used. The reaction results are shown in Table-3.

【0032】実施例5 比較例1の方法で調製した触媒7.0g、純水30m
l、硫酸コバルト7水和物3.6gをオ−トクレ−ブに
仕込み、温度150℃、水素加圧下(5.0MPa)に
て5時間攪拌処理した。該処理後本触媒を取出し、実施
例1と同様に洗浄、乾燥後、水素気流中で保持した。該
触媒中に含まれる亜鉛/ルテニウムの重量比の分析結果
を表−3に示す。本触媒を使用した以外は、実施例3と
同様の方法でベンゼンの部分水素化反応を実施した。反
応結果を表−3に示す。
Example 5 7.0 g of the catalyst prepared by the method of Comparative Example 1 and 30 m of pure water
1, and 3.6 g of cobalt sulfate heptahydrate were placed in an autoclave, and stirred at a temperature of 150 ° C. under hydrogen pressure (5.0 MPa) for 5 hours. After the treatment, the present catalyst was taken out, washed and dried in the same manner as in Example 1, and then held in a hydrogen stream. Table 3 shows the analysis results of the weight ratio of zinc / ruthenium contained in the catalyst. A partial hydrogenation reaction of benzene was carried out in the same manner as in Example 3 except that this catalyst was used. The reaction results are shown in Table-3.

【0033】比較例3 比較例1の方法で調製した触媒を使用した以外は、実施
例3と同様の方法でベンゼンの部分水素化反応を実施し
た。反応結果を表−3に示す。
Comparative Example 3 The partial hydrogenation reaction of benzene was carried out in the same manner as in Example 3 except that the catalyst prepared by the method of Comparative Example 1 was used. The reaction results are shown in Table-3.

【0034】[0034]

【表3】 [Table 3]

【0035】実施例6 比較例1の方法で調製した触媒7.0g、純水30ml
をオ−トクレ−ブに仕込み、温度150℃、水素加圧下
(5.0MPa)にて5時間攪拌処理した。該処理後、
触媒を取出し、実施例1と同様に洗浄、乾燥後、水素気
流中で保持した。該触媒中に含まれる亜鉛/ルテニウム
の重量比の分析結果を表−4に示す。本触媒3.0gを
使用した以外は実施例3と同様の方法でベンゼンの部分
水素化反応を実施した。反応結果を表−4に示す。
Example 6 7.0 g of the catalyst prepared by the method of Comparative Example 1 and 30 ml of pure water
Was charged into an autoclave, and stirred at a temperature of 150 ° C. under hydrogen pressure (5.0 MPa) for 5 hours. After the processing,
The catalyst was taken out, washed in the same manner as in Example 1, dried and then held in a hydrogen stream. Table 4 shows the analysis results of the weight ratio of zinc / ruthenium contained in the catalyst. A partial hydrogenation reaction of benzene was carried out in the same manner as in Example 3 except that 3.0 g of this catalyst was used. The reaction results are shown in Table-4.

【0036】比較例4 比較例1の方法で調製した触媒を使用した以外は、実施
例6と同様の方法でベンゼンの部分水素化反応を実施し
た。反応結果を表−4に示す。 比較例5 比較例1の調製方法において塩化亜鉛の使用量を調整
し、担体に対してルテニウムを0.5重量%、亜鉛を
0.25重量%担持させて得た触媒を使用した以外は、
実施例6と同様の方法でベンゼンの部分水素化反応を実
施した。反応結果を表−4に示す。
Comparative Example 4 A partial hydrogenation reaction of benzene was carried out in the same manner as in Example 6 except that the catalyst prepared by the method of Comparative Example 1 was used. The reaction results are shown in Table-4. Comparative Example 5 Except that the catalyst obtained by adjusting the amount of zinc chloride used in the preparation method of Comparative Example 1 and supporting 0.5% by weight of ruthenium and 0.25% by weight of zinc on the carrier was used.
The partial hydrogenation reaction of benzene was carried out in the same manner as in Example 6. The reaction results are shown in Table-4.

【0037】[0037]

【表4】 [Table 4]

【0038】実施例7 実施例4で反応に使用した触媒と同じ触媒2g、ベンゼ
ン80ml、純水120mlをオ−トクレ−ブに仕込
み、温度150℃、水素加圧5.0MPaの条件にてベ
ンゼンの部分水素化反応を行った。反応成績を表−5に
示す。
Example 7 2 g of the same catalyst used in the reaction in Example 4, 80 ml of benzene and 120 ml of pure water were charged into an autoclave, and benzene was heated under the conditions of a temperature of 150 ° C. and a hydrogen pressure of 5.0 MPa. Was partially hydrogenated. The reaction results are shown in Table-5.

【0039】比較例6 比較例4で反応に使用した触媒と同じ触媒2g、ベンゼ
ン80ml、純水120mlをオ−トクレ−ブに仕込
み、温度150℃、水素加圧5.0MPaの条件にてベ
ンゼンの部分水素化反応を行った。反応成績を表−5に
示す。
Comparative Example 6 2 g of the same catalyst used in the reaction in Comparative Example 4, 80 ml of benzene and 120 ml of pure water were charged into an autoclave, and benzene was heated at a temperature of 150 ° C. and a hydrogen pressure of 5.0 MPa. Was partially hydrogenated. The reaction results are shown in Table-5.

【0040】[0040]

【表5】 [Table 5]

【0041】[0041]

【発明の効果】本発明によれば、単環芳香族炭化水素の
部分水素化反応によりシクロオレフィンを高選択率でか
つ効率よく製造することができる。
According to the present invention, a cycloolefin can be efficiently produced with a high selectivity by a partial hydrogenation reaction of a monocyclic aromatic hydrocarbon.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/89 B01J 23/56 301X C07C 5/11 23/64 103X // C07B 61/00 300 104X ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01J 23/89 B01J 23/56 301X C07C 5/11 23/64 103X // C07B 61/00 300 104X

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 単環芳香族炭化水素を触媒と水の存在下
で部分水素化するシクロオレフィンの製造方法におい
て、(1)ルテニウム及び(2)マンガン、鉄、コバル
ト、ニッケル、亜鉛、クロム、ランタンからなる群から
選ばれた少なくとも一種を含む助触媒成分からなる還元
物を、予め該還元物中のルテニウムに対する助触媒成分
の重量比を減少させ、これを触媒として用いることを特
徴とするシクロオレフィンの製造方法。
1. A method for producing a cycloolefin in which monocyclic aromatic hydrocarbons are partially hydrogenated in the presence of a catalyst and water, wherein (1) ruthenium and (2) manganese, iron, cobalt, nickel, zinc, chromium, A reduced product comprising a cocatalyst component containing at least one selected from the group consisting of lanthanum, which is used as a catalyst by previously reducing the weight ratio of the promoter component to ruthenium in the reduced product. Process for producing olefin.
【請求項2】 還元物中のルテニウムに対する助触媒成
分の重量比を80%以下に減少させて成る触媒を用いる
ことを特徴とする請求項1の方法。
2. The method according to claim 1, wherein a catalyst is used in which the weight ratio of the promoter component to ruthenium in the reduced product is reduced to 80% or less.
【請求項3】 水と接触処理することにより還元物中の
ルテニウムに対する助触媒成分の重量比を減少させるこ
とを特徴とする請求項1又は2の方法。
3. The method according to claim 1, wherein the weight ratio of the promoter component to the ruthenium in the reduced product is reduced by the contact treatment with water.
【請求項4】 接触処理に使用する水として金属塩の水
溶液を用いることを特徴とする請求項3の方法。
4. The method according to claim 3, wherein an aqueous solution of a metal salt is used as the water used for the contact treatment.
【請求項5】 金属塩の存在下で部分水素化することを
特徴とする請求項1ないし4のいずれかの方法。
5. The method according to claim 1, wherein the partial hydrogenation is carried out in the presence of a metal salt.
JP7156255A 1995-06-22 1995-06-22 Production of cycloolefin Pending JPH092981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7156255A JPH092981A (en) 1995-06-22 1995-06-22 Production of cycloolefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7156255A JPH092981A (en) 1995-06-22 1995-06-22 Production of cycloolefin

Publications (1)

Publication Number Publication Date
JPH092981A true JPH092981A (en) 1997-01-07

Family

ID=15623801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7156255A Pending JPH092981A (en) 1995-06-22 1995-06-22 Production of cycloolefin

Country Status (1)

Country Link
JP (1) JPH092981A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011012900A3 (en) * 2009-07-29 2011-05-12 Johnson Matthey Plc Deoxygenation process
US9487711B2 (en) 2008-02-01 2016-11-08 Johnson Matthey Plc Process for the conversion of fatty acids and derivatives thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9487711B2 (en) 2008-02-01 2016-11-08 Johnson Matthey Plc Process for the conversion of fatty acids and derivatives thereof
WO2011012900A3 (en) * 2009-07-29 2011-05-12 Johnson Matthey Plc Deoxygenation process
GB2484449A (en) * 2009-07-29 2012-04-11 Johnson Matthey Plc Deoxygenation process
US9339809B2 (en) 2009-07-29 2016-05-17 Johnson Matthey Plc Deoxygenation process
GB2484449B (en) * 2009-07-29 2017-11-29 Johnson Matthey Plc Process for hydrocarbon production from oxygenated aromatic compound

Similar Documents

Publication Publication Date Title
JP2000061306A (en) Supported catalyst usable in conversion reaction of organic compound
EP0166619B1 (en) Process for the catalytic hydrogenation of diolefins
JPH0625020A (en) Method of selectively hydrogenating hydrocarbon
EP0214530B1 (en) A method for producing cycloolefins
JP3413608B2 (en) Method for producing d, l-menthol
JPH092981A (en) Production of cycloolefin
JPH09118638A (en) Production of cycloolefin
JP3897830B2 (en) Process for producing cycloolefin
JP3125913B2 (en) Method for producing cycloolefin
US5639927A (en) Process of producing cycloolefin
US3974102A (en) Mixed metal catalyst for isomerization of alpha-pinene to beta-pinene
JPH08188542A (en) Production of cycloolefin
JPH08225470A (en) Production of cyclo-olefin
JPH10139692A (en) Production of cycloolefin
JPH11228457A (en) Production of cycloolefin
JPH11222447A (en) Production of cycloolefins by partial hydrogenation of aromatic compound
JPH10137588A (en) Ruthenium catalyst and production of cycloolefin by using it
JPH09104643A (en) Production of cycloolefin
JPH09110733A (en) Production of cycloolefin
JPH09208499A (en) Production of cycloolefin
JPH11228458A (en) Production of cycloolefin
JPS6140226A (en) Production of cycloolefin
JPH09208498A (en) Production of cycloolefin
JP2979991B2 (en) Method for producing cycloolefin
JPH0987209A (en) Production of cycloolefin