JPH0987209A - Production of cycloolefin - Google Patents

Production of cycloolefin

Info

Publication number
JPH0987209A
JPH0987209A JP7246057A JP24605795A JPH0987209A JP H0987209 A JPH0987209 A JP H0987209A JP 7246057 A JP7246057 A JP 7246057A JP 24605795 A JP24605795 A JP 24605795A JP H0987209 A JPH0987209 A JP H0987209A
Authority
JP
Japan
Prior art keywords
catalyst
reactor
water
reaction
cycloolefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7246057A
Other languages
Japanese (ja)
Inventor
Toshiyuki Suzuki
敏之 鈴木
Takeshi Matsuoka
毅 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP7246057A priority Critical patent/JPH0987209A/en
Publication of JPH0987209A publication Critical patent/JPH0987209A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably obtain a cycloolefin cover a long period of time with regenerated use of catalyst by continuous partial hydrogenation of a monocyclic aromatic hydrocarbon using a reactor made of a specific material through such catalytic process that part of a ruthenium catalyst in the reactor is extracted, put to acid cleaning and then circulated in the reactor. SOLUTION: This cycloolefin is obtained by continuous partial hydrogenation of (D) a monocyclic aromatic hydrocarbon using a reactor with its liquor contact portion made of a nickel-contg. material through such a catalytic process that, in the presence of (A) a ruthenium catalyst, (B) a metal salt and (C) water, at least part of the component A in the reactor is extracted, put to acrid cleaning, and if necessary, washed with water until the washings comes to pH6-7, and also, where appropriate, put to reduction treatment, and then circulated in the reactor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は単環芳香族炭化水素
を部分水素化してシクロオレフィン類を製造する方法に
関する。特にベンゼンを部分水素化してシクロヘキセン
を製造する方法に関する。シクロヘキセンは、ラクタム
類、ジカルボン酸類などのポリアミド原料、リジン原
料、医薬、農薬などの重要な中間原料として有用な化合
物である。
TECHNICAL FIELD The present invention relates to a method for partially hydrogenating a monocyclic aromatic hydrocarbon to produce cycloolefins. In particular, it relates to a method for partially hydrogenating benzene to produce cyclohexene. Cyclohexene is a compound useful as an important intermediate material such as a raw material of polyamide such as lactams and dicarboxylic acids, a raw material of lysine, a medicine and an agricultural chemical.

【0002】[0002]

【従来の技術】単環芳香族炭化水素の部分水素化による
シクロオレフィンの製造方法としては、触媒として主に
ルテニウム金属が使用され、水の存在下で水素化反応を
行う方法が一般的である。ルテニウム触媒としては、金
属ルテニウム微粒子をそのまま使用する方法(特開昭6
1−50930、特開昭62−45541、特開昭62
−45544等)、また、シリカ、アルミナ、硫酸バリ
ウム、ケイ酸ジルコニウムなどの担体にルテニウムを担
持させた触媒を用いた方法(特開昭57−13092
6、特開昭61−40226、特開平4−74141
等)など多数の提案がなされている。また、以上の反応
系においては、一般的に硫酸亜鉛、硫酸コバルトなどの
金属塩を存在させる方が対応するシクロオレフィンの選
択率、収率が高くなるので好ましいとされている。
2. Description of the Related Art As a method for producing cycloolefins by partial hydrogenation of monocyclic aromatic hydrocarbons, a ruthenium metal is mainly used as a catalyst, and a hydrogenation reaction is generally performed in the presence of water. . As the ruthenium catalyst, a method of using fine metal ruthenium fine particles as they are (Japanese Patent Laid-Open No. 6-58242)
1-50930, JP-A-62-45541, JP-A-62.
-45544), or a method using a catalyst in which ruthenium is supported on a carrier such as silica, alumina, barium sulfate, zirconium silicate (JP-A-57-13092).
6, JP-A-61-40226, JP-A-4-74141
Etc.) and many other proposals have been made. In addition, in the above reaction system, it is generally preferable to allow the presence of a metal salt such as zinc sulfate or cobalt sulfate to increase the selectivity and yield of the corresponding cycloolefin.

【0003】上記の公知の方法の大部分は、反応系に金
属塩あるいは酸、アルカリなどの添加剤を加えているも
のである。これら添加剤を必要とする理由としては、添
加剤を添加しない反応系では、通常、反応速度は向上す
るものの、目的とするシクロオレフィンの選択性が著し
く低下するため、工業的に適当ではないと判断されるた
めと考えられる。
Most of the above-mentioned known methods add a metal salt or an additive such as an acid or an alkali to the reaction system. The reason why these additives are required is that, in a reaction system in which no additives are added, the reaction rate is usually improved, but the selectivity of the target cycloolefin is significantly reduced, and therefore it is not industrially suitable. It is thought that this is for judgment.

【0004】しかしながら、金属塩等の添加剤は反応
系、特に高温水溶液中で強い腐食性を示し、反応装置や
触媒の損耗劣化等を加速してしまうという問題がある
(染料と薬品 第31巻11号p297〜308、19
86年)。そこで、従来、反応器の接液部にニッケルコ
−テイングを施す方法(特開昭62−67033)、チ
タンもしくはジルコニウムを用いる方法(特開昭62−
81331)、クロム及び/又はモリブデンを含むニッ
ケル基合金を用いる方法(特開平6−128177)
等、一般に高価とされている材質を反応器に適用するこ
とが提案されているが、長期的には反応器の腐食や水素
脆性などの問題を考慮しなければならない。
However, there is a problem that additives such as metal salts show strong corrosiveness in a reaction system, especially in a high temperature aqueous solution, and accelerate deterioration due to wear and loss of a reaction apparatus and a catalyst (Dye and Chemicals, Vol. 31). No. 11, p297-308, 19
1986). Therefore, conventionally, a method of applying nickel coating to the liquid contact portion of the reactor (JP-A-62-67033) or a method of using titanium or zirconium (JP-A-62-67033).
81331), and a method using a nickel-based alloy containing chromium and / or molybdenum (JP-A-6-128177).
Although it has been proposed to apply a generally expensive material to the reactor, problems such as corrosion of the reactor and hydrogen embrittlement must be taken into consideration in the long term.

【0005】一方、本反応において劣化した触媒の再生
方法としては、劣化要因に応じて以下の公知技術があ
る。アルカリ洗浄をする方法(特告平3−4121
6)、液相にて酸素と接触させる方法(特開平1−15
9059)、水素分圧を下げて触媒を保持する方法(特
平3−68453)。
On the other hand, as a method for regenerating the catalyst deteriorated in this reaction, there are the following known techniques depending on the deterioration factors. Method of alkaline cleaning (Japanese Patent Application No. 3-4121)
6), a method of contacting with oxygen in the liquid phase (JP-A-1-15
9059), a method of reducing the hydrogen partial pressure to retain the catalyst (Japanese Patent Publication No. 3-68453).

【0006】[0006]

【発明が解決しようとする課題】単環芳香族炭化水素を
ルテニウム触媒と水及び金属塩化合物の存在下、液相中
で高温、高圧下で水素により部分還元するシクロオレフ
ィンの製造方法において、活性及び/または、選択性の
低下した触媒を再生する場合、前記の公知の方法では、
触媒再生がなお十分とはいえない。特に、装置材質とし
て、水素脆性に対して有利であると考えられるオ−ステ
ナイト系ステンレス鋼や、ハステロイ鋼等のニッケル含
有材質を使用し、金属塩化合物存在下にて連続的にシク
ロオレフィンを製造する際に、ニッケル含有材質由来の
被毒成分により劣化した触媒の再生方法についての詳細
な検討例がなく、効果的な再生方法を確立することが必
須の課題であった。
In a process for producing a cycloolefin, a monocyclic aromatic hydrocarbon is partially reduced with hydrogen in the liquid phase at high temperature and high pressure in the presence of a ruthenium catalyst, water and a metal salt compound. And / or in the case of regenerating a catalyst with reduced selectivity, the known methods described above
Catalyst regeneration is still not sufficient. In particular, austenitic stainless steel, which is considered to be advantageous for hydrogen embrittlement, or nickel-containing material such as Hastelloy steel is used as a material for the apparatus, and cycloolefin is continuously produced in the presence of a metal salt compound. In doing so, there was no detailed study example on the method of regenerating the catalyst deteriorated by the poisoning component derived from the nickel-containing material, and it was an essential subject to establish an effective regeneration method.

【0007】[0007]

【課題を解決するための手段】本発明の目的は、これら
従来技術の欠点を改良し、工業的に有利なシクロオレフ
ィンの製造方法を提供することにある。特に、装置の接
液部にニッケル含有材質を使用し、反応系中に金属塩化
合物が存在した際の触媒寿命に関して詳細に検討した例
は見当らず、触媒性能の低下原因や、触媒再生技術に関
しては知られていなかった。本発明者等は、装置の材質
としてニッケル含有材質を使用し、且つ、反応系中に金
属塩化合物を存在させ長時間に渡り連続的にシクロオレ
フィンの製造を行った際には、触媒活性が経時的に低下
する現象を認た。更に活性が低下した触媒の有効な再生
方法について検討し、本発明に到達した。
SUMMARY OF THE INVENTION It is an object of the present invention to improve these drawbacks of the prior art and to provide an industrially advantageous process for producing cycloolefin. In particular, using a nickel-containing material for the liquid contact part of the device, we did not find an example in which the catalyst life when a metal salt compound was present in the reaction system was examined in detail. Was not known. The present inventors, when using a nickel-containing material as the material of the apparatus, and when a metal salt compound is present in the reaction system and continuously producing cycloolefin over a long period of time, the catalytic activity is A phenomenon was observed that decreased over time. The present invention has been reached by studying an effective regeneration method for a catalyst whose activity has decreased.

【0008】即ち、本発明の要旨は、単環芳香族炭化水
素をルテニウム触媒、金属塩及び水の在存下で連続的に
部分水素化するシクロオレフィンの製造方法において、
反応器の接液部にニッケル含有材質を使用し、かつ、反
応器内の触媒の少なくとも一部を抜き出し、酸洗浄して
反応器内に循環することを特徴とするシクロオレフィン
の製造方法に存する。
That is, the gist of the present invention is a method for producing a cycloolefin in which a monocyclic aromatic hydrocarbon is continuously partially hydrogenated in the presence of a ruthenium catalyst, a metal salt and water.
A method for producing a cycloolefin characterized in that a nickel-containing material is used for the liquid contact part of the reactor, and at least a part of the catalyst in the reactor is extracted, acid washed and circulated in the reactor. .

【0009】以下、本発明を更に詳細に説明する。本発
明で用いるルテニウム触媒はルテニウムを含む還元金属
粒子のまま使用してもよいが、担体に担持させた担持触
媒として使用してもよい。担体としては、シリカ、アル
ミナ、シリカーアルミナ、ゼオライト、活性炭、あるい
は一般的な金属酸化物、複合酸化物、水酸化物、難水溶
性金属塩などが例示される。さらに、以上の担体として
好ましい形態の一つとして、シリカ担体を遷移金属化合
物で修飾した担体、特に、ジルコニアをシリカに修飾し
た担体や、ケイ酸ジルコニウム等ジルコニウム成分含有
担体が例示される。
The present invention will be described in more detail below. The ruthenium catalyst used in the present invention may be used as it is as the reduced metal particles containing ruthenium, or may be used as a supported catalyst supported on a carrier. Examples of the carrier include silica, alumina, silica-alumina, zeolite, activated carbon, general metal oxides, complex oxides, hydroxides, sparingly water-soluble metal salts and the like. Furthermore, as one of the preferred forms of the above carrier, a carrier obtained by modifying a silica carrier with a transition metal compound, particularly a carrier obtained by modifying zirconia with silica, and a carrier containing a zirconium silicate such as zirconium silicate are exemplified.

【0010】ルテニウム触媒はルテニウム単独でも使用
できるし、助触媒金属成分を含有したものでもよい。助
触媒金属成分としては、亜鉛、マンガン、鉄、コバル
ト、ランタン、金、銀、銅等が例示される。助触媒金属
を使用する場合は、ルテニウム原子に対する助触媒金属
の原子比を通常0.01〜10、好ましくは0.1〜5
とする。また、各触媒成分を担体に担持する場合は、担
体に対して、通常0.001〜10重量%、好ましくは
0.02〜5重量%担持して触媒として使用する。かか
る触媒の調製は、一般的に用いられる通常の担持金属触
媒の調製法に従って行われる。触媒の各金属成分の原料
化合物としては、各金属のハロゲン化物、硝酸塩、酢酸
塩、硫酸塩、各金属を含む錯体化合物などが使用され
る。ルテニウムとの共担持成分は、ルテニウム原料と同
時に担体に担持してもよいし、予めルテニウムを担持後
担持してもよいし、先にこれらの金属を担持した後、ル
テニウムを後から担持してもよい。
The ruthenium catalyst may be ruthenium alone or may contain a promoter metal component. Examples of the promoter metal component include zinc, manganese, iron, cobalt, lanthanum, gold, silver and copper. When using a promoter metal, the atomic ratio of the promoter metal to the ruthenium atom is usually 0.01 to 10, preferably 0.1 to 5.
And When each catalyst component is loaded on the carrier, it is usually used as a catalyst by loading 0.001 to 10% by weight, preferably 0.02 to 5% by weight on the carrier. Preparation of such a catalyst is carried out according to a commonly used method for preparing a supported metal catalyst. As a raw material compound for each metal component of the catalyst, a halide, nitrate, acetate, sulfate of each metal, a complex compound containing each metal, or the like is used. The co-supporting component with ruthenium may be supported on the carrier at the same time as the ruthenium raw material, or may be supported after supporting ruthenium in advance, or after supporting these metals first and then supporting ruthenium afterwards. Good.

【0011】調製方法としては、触媒成分液に担体を浸
漬後、攪拌しながら溶媒を蒸発させ活性成分を固定化す
る蒸発乾固法、担体を乾燥状態に保ちながら触媒活性成
分液を噴霧するスプレー法、あるいは、触媒活性成分液
に担体を浸漬後、ろ過する方法等の公知の含浸担持法が
好適に用いられる。また、触媒調製時の活性成分を担持
する際使用する溶媒としては、水、またはアルコール、
アセトン、テトラヒドロフラン、ヘキサン、トルエン等
の有機溶媒が使用される。中でも、水、アルコ−ルが好
ましい。
As the preparation method, after dipping the carrier in the catalyst component liquid, the solvent is evaporated to evaporate the solvent to fix the active component, and the catalyst active component liquid is sprayed while keeping the carrier dry. Or a known impregnation-supporting method such as a method of immersing the carrier in the liquid of the catalytically active component and then filtering it. Further, as the solvent used when supporting the active ingredient at the time of catalyst preparation, water or alcohol,
Organic solvents such as acetone, tetrahydrofuran, hexane and toluene are used. Of these, water and alcohol are preferable.

【0012】調製した触媒は還元し活性化してから使用
する。還元法としては、水素ガスによる接触還元法、あ
るいはホルマリン、水素化ホウ素ナトリウム、ヒドラジ
ン等による化学還元法が用いられる。このうち、好まし
くは水素ガスによる接触還元であり、通常80〜500
℃、好ましくは100〜450℃の条件化で還元活性化
する。還元温度が80℃未満では、ルテニウムの還元率
が著しく低下し、また、500℃を越えるとルテニウム
の凝集が起こりやすくなり、シクロオレフィン生成の収
率、選択率が低下する原因となる。
The prepared catalyst is used after being reduced and activated. As the reduction method, a catalytic reduction method using hydrogen gas or a chemical reduction method using formalin, sodium borohydride, hydrazine or the like is used. Of these, catalytic reduction with hydrogen gas is preferable, and usually 80 to 500.
The reductive activation is carried out under the condition of ℃, preferably 100 to 450 ℃. If the reduction temperature is lower than 80 ° C, the reduction rate of ruthenium is significantly reduced, and if it is higher than 500 ° C, agglomeration of ruthenium is likely to occur, which causes a decrease in cycloolefin production yield and selectivity.

【0013】本発明は以上のルテニウム触媒を使用する
が、本発明を実施する場合、反応原料の単環芳香族炭化
水素としては、ベンゼン、トルエン、キシレン、およ
び、炭素数1〜4程度の低級アルキル基置換ベンゼン類
などが挙げられる。本発明の反応系には、水の存在が必
要である。水の量としては、反応形式によって異なる
が、一般的には単環芳香族炭化水素の0.01〜10重
量倍であり、好ましくは0.1〜5重量倍である。かか
る条件では、原料及び生成物を主成分とする有機液相
(油相)と水を含む液相(水相)との2相を形成するこ
とになる。油相と水相の割合が極端な場合は2相の形成
が困難となり、分液が困難となる。また、水の量が少な
すぎても、多すぎても共存の効果が減少し、更に、水が
多すぎる場合は反応器を大きくする必要があるので好ま
しくない。
The present invention uses the above ruthenium catalyst. When the present invention is carried out, the monocyclic aromatic hydrocarbons used as the reaction raw materials are benzene, toluene, xylene, and lower ones having about 1 to 4 carbon atoms. Examples thereof include alkyl group-substituted benzenes. The reaction system of the present invention requires the presence of water. Although the amount of water varies depending on the reaction mode, it is generally 0.01 to 10 times by weight, preferably 0.1 to 5 times by weight of the monocyclic aromatic hydrocarbon. Under these conditions, two phases are formed: an organic liquid phase (oil phase) containing the raw materials and products as main components, and a liquid phase (water phase) containing water. When the ratio between the oil phase and the aqueous phase is extreme, it is difficult to form two phases, and liquid separation is difficult. Further, if the amount of water is too small or too large, the effect of coexistence decreases, and if the amount of water is too large, it is necessary to enlarge the reactor, which is not preferable.

【0014】また、本発明の反応系において、従来知ら
れた方法の如く金属塩を併用する。金属塩の種類として
は、周期表の1族金属、2族金属、12族金属、あるい
はマンガン、コバルト等の金属の硝酸塩、塩化物、硫酸
塩、酢酸塩、燐酸塩などが例示され、特に硫酸亜鉛を併
用するのが好ましい。金属塩の使用量は、反応系の水に
対して1×通常10-5〜1重量倍、好ましくは10-4
0.1重量倍である。なお、反応液の水相のpHは特に
限定はないが、高い反応速度が期待できる点から、pH
が通常2〜7程度の酸性又は中性であることが望まし
い。
Further, in the reaction system of the present invention, a metal salt is used together as in a conventionally known method. Examples of the type of metal salt include nitrates, chlorides, sulfates, acetates, phosphates and the like of Group 1 metals, Group 2 metals, Group 12 metals of the Periodic Table, or metals such as manganese and cobalt. It is preferable to use zinc in combination. The amount of metal salt used is 1 × usually 10 −5 to 1 times by weight, preferably 10 −4 to water of the reaction system.
It is 0.1 times the weight. The pH of the aqueous phase of the reaction solution is not particularly limited, but since a high reaction rate can be expected, pH
Is usually about 2 to 7 and preferably acidic or neutral.

【0015】本発明の反応条件としては、反応温度は、
通常50〜250℃、好ましくは100〜220℃の範
囲から選択される。250℃以上ではシクロオレフィン
の選択率が低下し、50℃以下では反応速度が著しく低
下し好ましくない。また、反応時の水素の圧力は、通常
0.1〜20MPa、好ましくは0.5〜10MPaの
範囲から選ばれる。20MPaを超えると工業的に不利
であり、一方、0.1MPa未満では反応速度が著しく
低下し設備上不経済である。
As the reaction conditions of the present invention, the reaction temperature is
It is usually selected from the range of 50 to 250 ° C, preferably 100 to 220 ° C. When the temperature is 250 ° C or higher, the selectivity of cycloolefin is lowered, and when the temperature is 50 ° C or lower, the reaction rate is remarkably lowered, which is not preferable. The hydrogen pressure during the reaction is usually selected from the range of 0.1 to 20 MPa, preferably 0.5 to 10 MPa. When it exceeds 20 MPa, it is industrially disadvantageous, while when it is less than 0.1 MPa, the reaction rate remarkably decreases and it is uneconomical in terms of equipment.

【0016】本発明の反応は連続的に実施されることに
より効果が特に発揮される。連続反応は、触媒、金属塩
及び水の存在する反応系に、連続的に単環芳香族炭化水
素と水素を供給し、通常、液相を懸濁した状態にて実施
される。更に、反応系より連続的に反応生成物を含む懸
濁液を取り出し、触媒を含む水相と反応生成物を含む油
相とに分離して油相を取出し、後工程において該油相よ
りシクロオレフィンを精製することになる。反応器の形
式については特に制限はなく、1槽あるいは2槽以上の
連続した攪拌槽からなる反応器や、チュ−ブラ−型反応
器等、一般的な反応器を使用することができる。反応時
間、すなわち原料である単環芳香族炭化水素の反応系に
おける滞留時間は、反応器の形式や触媒量との関係で任
意であるが、通常5〜100分程度である。
The effect of the present invention is particularly exerted by continuously carrying out the reaction. The continuous reaction is usually carried out in a state where the liquid phase is suspended by continuously supplying a monocyclic aromatic hydrocarbon and hydrogen to a reaction system in which a catalyst, a metal salt and water are present. Further, a suspension containing the reaction product is continuously taken out from the reaction system, and is separated into an aqueous phase containing the catalyst and an oil phase containing the reaction product, and the oil phase is taken out. The olefin will be refined. The type of the reactor is not particularly limited, and a general reactor such as a reactor having one tank or two or more continuous stirring tanks and a tube reactor can be used. The reaction time, that is, the residence time of the starting monocyclic aromatic hydrocarbon in the reaction system is arbitrary depending on the type of the reactor and the amount of catalyst, but is usually about 5 to 100 minutes.

【0017】反応液を油相と水相に分離する方法として
は、反応器内に油水分離堰を設けて油相のみを取り出す
方法が例示される。また、反応液の一部を液循環ポンプ
などで取り出し、反応器外に設けた油水分離槽に供給し
て分離する方法も考えられ、分離された触媒を含む水相
は反応器に循環して再使用することができる。分離した
油相よりシクロオレフィンを蒸留などの公知の方法によ
り容易に精製回収することができる。また、水相中の触
媒をの少なくとも一部を適宜抜き出し、後述のように再
生操作を行い、この再生触媒を反応器内に循環させるこ
とができる。
An example of a method for separating the reaction liquid into an oil phase and an aqueous phase is a method in which an oil / water separation weir is provided in the reactor and only the oil phase is taken out. It is also conceivable to take out a part of the reaction liquid with a liquid circulation pump and supply it to an oil-water separation tank provided outside the reactor to separate it.The aqueous phase containing the separated catalyst is circulated to the reactor. Can be reused. Cycloolefin can be easily purified and recovered from the separated oil phase by a known method such as distillation. Further, at least a part of the catalyst in the aqueous phase may be appropriately extracted, a regeneration operation may be performed as described below, and the regenerated catalyst may be circulated in the reactor.

【0018】以上のような反応条件下において部分水素
化元反応を長時間実施するに際し、反応器の接液部の材
質を選択する場合の要件は、水素脆化を生じず、高温、
高圧下においても十分な強度を有し、腐食を生じにく
く、更には材質から溶出する金属成分による触媒の性能
の低下が少ない材質を選択することが重要であり、本発
明では、反応器の接液部にニッケル含有材質を使用す
る。
When the partial hydrogenation source reaction is carried out for a long time under the reaction conditions as described above, the requirements for selecting the material of the wetted portion of the reactor are that hydrogen embrittlement does not occur, high temperature,
It is important to select a material that has sufficient strength even under high pressure, is unlikely to cause corrosion, and has less deterioration in the performance of the catalyst due to the metal components eluted from the material. Use a nickel-containing material for the liquid part.

【0019】更に、本発明の重要な要件は、上記反応に
より活性の低下した触媒を酸洗浄することにより、触媒
上に蓄積したニッケル材質由来成分などの量を減じて再
度使用することにある。酸洗浄の方法は、触媒を通常p
H4以下の酸水溶液にて洗浄を実施することで実施でき
る。使用する酸としては、硫酸、塩酸、硝酸等の鉱酸が
好適に使用され、硫酸が特に好ましい。洗浄温度は、通
常、室温から300℃、好ましくは40〜100℃であ
る。また、かかる酸洗浄を実施する前に触媒の水洗浄を
行ってから酸洗浄してもよい。
Further, an important requirement of the present invention is that the catalyst whose activity has been lowered by the above reaction is washed with an acid to reduce the amount of nickel material-derived components accumulated on the catalyst and reuse it. The acid washing method is usually carried out with a catalyst
It can be carried out by washing with an aqueous acid solution of H4 or less. As the acid used, mineral acids such as sulfuric acid, hydrochloric acid and nitric acid are preferably used, and sulfuric acid is particularly preferable. The washing temperature is usually room temperature to 300 ° C, preferably 40 to 100 ° C. Alternatively, the catalyst may be washed with water before the acid washing and then the acid washing.

【0020】次に、酸水溶液洗浄後触媒を水洗した後
は、通常は洗浄液のpHが6〜7程度になるまで水洗を
行うことが望ましい。かかる水洗浄を実施することによ
り、使用した酸性物質が反応系に混入し、反応へ悪影響
を示すことを防ぐことができる。また、かかる酸洗浄
後、水洗した後、触媒を還元することも好適である。還
元は上記の方法にて実施されるが、温度条件に関して
は、ルテニウム原料から金属ルテニウムを形成させる条
件よりは低温の条件においても可能であり、通常、室温
から500℃の範囲から選択される。好ましくは、室温
から300℃である。
Next, after washing the catalyst with water after washing with the acid aqueous solution, it is usually desirable to wash with water until the pH of the washing liquid becomes about 6 to 7. By carrying out such water washing, it is possible to prevent the used acidic substance from being mixed into the reaction system and exerting a bad influence on the reaction. Further, it is also suitable to reduce the catalyst after such acid washing and water washing. The reduction is carried out by the above method, but the temperature condition can be lower than the condition for forming the metal ruthenium from the ruthenium raw material, and is usually selected from the room temperature to 500 ° C. The temperature is preferably room temperature to 300 ° C.

【0021】本発明の触媒再生方法は、触媒を含んだ金
属塩水溶液スラリ−の一部または全部を反応系外に抜き
出し、上記酸洗浄を行うことにより、実施することがで
きる。酸洗浄の頻度を上げることによって、反応器内の
触媒中のニッケル含有材質由来成分蓄積量を低く制御す
ることが可能である。しかしながら、過度に頻度を上げ
た場合には、触媒活性を高いレベルで維持することは可
能であるが、工業的には再生処理にかかわるコストが増
大する欠点もあり、使用する金属塩の種類、濃度、及び
使用する材質の種類と、触媒性能から決定される劣化速
度を考慮して適当な頻度で実施すればよい。
The catalyst regeneration method of the present invention can be carried out by extracting a part or all of the metal salt aqueous solution slurry containing the catalyst from the reaction system and performing the above-mentioned acid washing. By increasing the frequency of acid cleaning, it is possible to control the amount of components derived from the nickel-containing material in the catalyst in the reactor to be low. However, when the frequency is excessively increased, it is possible to maintain the catalyst activity at a high level, but there is also a drawback that the cost related to the regeneration treatment industrially increases, and the type of metal salt used, It may be carried out at an appropriate frequency in consideration of the concentration, the type of material used, and the deterioration rate determined from the catalyst performance.

【0022】[0022]

【実施例】以下に実施例を記すが、本発明はこれらの実
施例によって限定されるものではない。なお、実施例お
よび比較例中に示される転換率、選択率は次式によって
定義される。
EXAMPLES Examples will be described below, but the present invention is not limited to these examples. The conversion rate and selectivity shown in Examples and Comparative Examples are defined by the following equations.

【0023】[0023]

【数1】 [Equation 1]

【0024】実施例1 (触媒の製造)オキシ硝酸ジルコニウム2水和物0.8
7gを20mlの純水に溶解させた水溶液に、シリカ
(富士シリシア化学製、商品名:CARIACT−Q−
50)8.0gを加え、室温にて浸漬後水を留去し乾燥
させた。次に空気流通下、1000℃にて4時間焼成
し、シリカに対して5重量%のジルコニアで修飾したシ
リカ担体を調製した。
Example 1 (Production of catalyst) Zirconium oxynitrate dihydrate 0.8
Silica (Fuji Silysia Chemical, trade name: CARIACT-Q-
50) 8.0 g was added, and after dipping at room temperature, water was distilled off and the residue was dried. Next, it was calcined at 1000 ° C. for 4 hours under air flow to prepare a silica carrier modified with 5% by weight of zirconia with respect to silica.

【0025】上記のジルコニア修飾シリカ担体を所定量
の塩化ルテニウムと、塩化亜鉛を含有した水溶液に加
え、60℃にて1時間浸漬後、水を留去し、乾燥させ
た。更に、水素気流中、200℃にて3時間還元して活
性化し、ルテニウムと亜鉛を担体に対して各々約0.5
重量%を担持した触媒を得た。
The above-mentioned zirconia-modified silica carrier was added to an aqueous solution containing a predetermined amount of ruthenium chloride and zinc chloride, immersed at 60 ° C. for 1 hour, water was distilled off and dried. Furthermore, in a hydrogen stream, it is activated by reducing at 200 ° C. for 3 hours, and ruthenium and zinc are added to the carrier at about 0.5 each.
A catalyst supporting wt% was obtained.

【0026】(ベンゼンの部分水素化反応)接液部にニ
ッケル−クロム−モリブデン鋼を用い、油水分離槽を備
えた内容積1Lの連続流通反応装置に、水250ml、
硫酸亜鉛7水和物30g、上記触媒24gを仕込んだ。
更に、水素ガスを導入し、反応圧力5.0MPa、温度
150℃とし、ベンゼンを300ml/Hrにて供給
し、高速攪拌を行いながら、連続的に部分水素化反応を
行なった。ベンゼンの滞留時間は35分である。反応中
油水分離槽から連続的に反応液油相を抜き出し、ガスク
ロマトグラフにて分析した。反応開始3時間後、87.
5時間後のベンゼン転換率、シクロヘキセン選択率を表
−1に示す。
(Partial Hydrogenation Reaction of Benzene) Nickel-chromium-molybdenum steel was used in the liquid contact part, and 250 ml of water was placed in a continuous flow reactor having an oil-water separation tank and an internal volume of 1 L.
30 g of zinc sulfate heptahydrate and 24 g of the above catalyst were charged.
Further, hydrogen gas was introduced, the reaction pressure was 5.0 MPa, the temperature was 150 ° C., benzene was supplied at 300 ml / Hr, and the partial hydrogenation reaction was continuously performed while performing high-speed stirring. The residence time of benzene is 35 minutes. During the reaction, the reaction solution oil phase was continuously withdrawn from the oil / water separation tank and analyzed by gas chromatography. 3 hours after the start of the reaction, 87.
Table 1 shows the benzene conversion rate and cyclohexene selectivity after 5 hours.

【0027】[0027]

【表1】 [Table 1]

【0028】(触媒の洗浄)87.5時間後、反応器か
ら触媒スラリ−を全量抜き出した。触媒を濾別した後、
触媒は純水中に再懸濁させた。更に、触媒を濾別し、濾
液の亜鉛含有量をICP発光分光分析にて測定した。濾
液の亜鉛濃度が1ppm以下となるまで、繰り返して純
水中への懸濁、触媒の濾別を行なった。一方、反応器か
ら取り出し、触媒を除いた硫酸亜鉛水溶液中の材質由来
金属成分濃度を、ICP発光分析法にて測定したとこ
ろ、ニッケルが33.3ppm、鉄が1.4ppm検出
された。
(Catalyst washing) After 87.5 hours, the entire amount of catalyst slurry was extracted from the reactor. After filtering off the catalyst,
The catalyst was resuspended in pure water. Further, the catalyst was filtered off, and the zinc content of the filtrate was measured by ICP emission spectroscopy. Suspension in pure water and filtration of the catalyst were repeated until the zinc concentration of the filtrate was 1 ppm or less. On the other hand, when the concentration of the metal component derived from the material in the zinc sulfate aqueous solution excluding the catalyst was taken out from the reactor and measured by ICP emission spectrometry, 33.3 ppm of nickel and 1.4 ppm of iron were detected.

【0029】次に、水洗浄後の触媒を1規定硫酸水溶液
中に仕込み、室温にて1時間攪拌した。硫酸洗浄後、触
媒を十分に水洗した後、触媒を乾燥させた。かかる触媒
中のニッケル、鉄の含有量を蛍光X線法で測定したとこ
ろ、いずれもルテニウム1重量部に対して、0.002
重量部以下であった。
Next, the catalyst after washing with water was charged into a 1N sulfuric acid aqueous solution and stirred at room temperature for 1 hour. After washing with sulfuric acid, the catalyst was thoroughly washed with water, and then the catalyst was dried. When the contents of nickel and iron in the catalyst were measured by a fluorescent X-ray method, both were found to be 0.002 with respect to 1 part by weight of ruthenium.
It was less than or equal to parts by weight.

【0030】(回分式反応での再生触媒評価)上記、硫
酸洗浄、水洗後の触媒を、水素気流中、100℃にて還
元した。内容積0.5Lのチタン製オ−トクレ−ブに、
6%硫酸亜鉛水溶液150ml、上記再生触媒2.5
g、ベンゼン100mlを仕込み、反応温度150℃、
反応圧力5.0MPaの条件下、水素を57Nl/Hr
にて供給し、回転数1000rpmにて攪拌して、ベン
ゼンの部分水素化反応を実施した。反応開始75分後の
反応成績を表−2に示す。
(Evaluation of Regenerated Catalyst in Batch Reaction) The catalyst washed with sulfuric acid and washed with water was reduced at 100 ° C. in a hydrogen stream. In a titanium autoclave with an internal volume of 0.5 L,
150 ml of 6% zinc sulfate aqueous solution, 2.5 above regenerated catalyst
g, 100 ml of benzene were charged, the reaction temperature was 150 ° C,
57 Nl / Hr of hydrogen under a reaction pressure of 5.0 MPa
And stirred at a rotation speed of 1000 rpm to carry out a partial hydrogenation reaction of benzene. The reaction results 75 minutes after the start of the reaction are shown in Table 2.

【0031】比較例1 実施例1で得た反応後の触媒を、同様の方法にて水洗し
た。かかる触媒を使用した以外は実施例1記載の回分式
反応方法にて、かかる触媒の性能を評価した。反応開始
150分後の反応成績を表−2に示す。
Comparative Example 1 The reacted catalyst obtained in Example 1 was washed with water in the same manner. The performance of such a catalyst was evaluated by the batch reaction method described in Example 1 except that such a catalyst was used. The reaction results 150 minutes after the start of the reaction are shown in Table 2.

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【発明の効果】本発明により、劣化した触媒を適宜効果
的に再生でき、単環芳香族炭化水素よりシクロオレフィ
ンを長期に渡り安定に製造することができる。
According to the present invention, a deteriorated catalyst can be appropriately and effectively regenerated, and a cycloolefin can be stably produced from a monocyclic aromatic hydrocarbon over a long period of time.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 単環芳香族炭化水素をルテニウム触媒、
金属塩及び水の存在下で連続的に部分水素化するシクロ
オレフィンの製造方法において、反応器の接液部にニッ
ケル含有材質を使用し、かつ、反応器内の触媒の少なく
とも一部を抜き出し、酸洗浄して反応器内に循環するこ
とを特徴とするシクロオレフィンの製造方法。
1. A ruthenium catalyst containing a monocyclic aromatic hydrocarbon,
In the method for producing a cycloolefin in which partial hydrogenation is continuously carried out in the presence of a metal salt and water, a nickel-containing material is used in the liquid contact part of the reactor, and at least a part of the catalyst in the reactor is withdrawn, A method for producing a cycloolefin, which comprises washing with an acid and circulating it in a reactor.
【請求項2】 酸洗浄後、洗浄水のpHが6〜7となる
まで水洗した触媒を反応器内に循環することを特徴とす
る請求項1の方法。
2. The method according to claim 1, wherein after the acid washing, the catalyst washed with water until the washing water has a pH of 6 to 7 is circulated in the reactor.
【請求項3】 酸洗浄後、洗浄水のpHが6〜7となる
まで水洗し、次いで還元処理した触媒を反応器内に循環
することを特徴とする請求項1の方法。
3. The method according to claim 1, wherein after the acid washing, the washing water is washed with water until the pH of the washing water becomes 6 to 7, and then the reduced catalyst is circulated in the reactor.
JP7246057A 1995-09-25 1995-09-25 Production of cycloolefin Pending JPH0987209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7246057A JPH0987209A (en) 1995-09-25 1995-09-25 Production of cycloolefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7246057A JPH0987209A (en) 1995-09-25 1995-09-25 Production of cycloolefin

Publications (1)

Publication Number Publication Date
JPH0987209A true JPH0987209A (en) 1997-03-31

Family

ID=17142832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7246057A Pending JPH0987209A (en) 1995-09-25 1995-09-25 Production of cycloolefin

Country Status (1)

Country Link
JP (1) JPH0987209A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5147053B2 (en) * 2005-08-26 2013-02-20 旭化成ケミカルズ株式会社 Method for producing cycloolefin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5147053B2 (en) * 2005-08-26 2013-02-20 旭化成ケミカルズ株式会社 Method for producing cycloolefin

Similar Documents

Publication Publication Date Title
JPS6111145A (en) Hydrogenation catalyst of diolefins
JPH0987209A (en) Production of cycloolefin
US4317923A (en) Purification of dicarboxylic aromatic acids
JP3125913B2 (en) Method for producing cycloolefin
JPH0987208A (en) Production of cycloolefin
JP2780652B2 (en) Ruthenium-based regenerated catalyst
JPS6267033A (en) Method of preventing deterioration of catalyst
US5639927A (en) Process of producing cycloolefin
JPH092981A (en) Production of cycloolefin
JP2979991B2 (en) Method for producing cycloolefin
JP3019241B2 (en) Method for producing cyclododecene
JPH09118638A (en) Production of cycloolefin
JP3000874B2 (en) Method for producing cycloolefin
JPH08188542A (en) Production of cycloolefin
JPS63152333A (en) Partially hydrogenating method
JPH11228457A (en) Production of cycloolefin
JP2925129B2 (en) Method for producing cycloolefin
JPH10139692A (en) Production of cycloolefin
JPH10137588A (en) Ruthenium catalyst and production of cycloolefin by using it
JPH08225470A (en) Production of cyclo-olefin
JP2606113B2 (en) Method for producing cyclohexene
JPH11222447A (en) Production of cycloolefins by partial hydrogenation of aromatic compound
JPH09208499A (en) Production of cycloolefin
JP2646986B2 (en) Method for producing cycloolefin
JPH08193037A (en) Production of cycloolefin