JPH09296272A - Gas phase reaction device - Google Patents

Gas phase reaction device

Info

Publication number
JPH09296272A
JPH09296272A JP35480296A JP35480296A JPH09296272A JP H09296272 A JPH09296272 A JP H09296272A JP 35480296 A JP35480296 A JP 35480296A JP 35480296 A JP35480296 A JP 35480296A JP H09296272 A JPH09296272 A JP H09296272A
Authority
JP
Japan
Prior art keywords
reaction
substrate
film
reaction chamber
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35480296A
Other languages
Japanese (ja)
Other versions
JP3022369B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Mamoru Tashiro
衛 田代
Minoru Miyazaki
稔 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP8354802A priority Critical patent/JP3022369B2/en
Publication of JPH09296272A publication Critical patent/JPH09296272A/en
Application granted granted Critical
Publication of JP3022369B2 publication Critical patent/JP3022369B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent decrease in the quality of the film product caused by a counter flow of air or the like when a nonoxide coating film is formed in a multlchamber type PCVD device, by providing the evacuating system of the reaction chamber with an evacuating pump and a pressure control valve. SOLUTION: For example, when a non-single crystal silicon film is formed on the surface of a substrate l by plasma vapor phase reaction in a multlchamber system, the substrate 1 is moved from a preparation room 10 to a first reaction chamber 101 of the device, while atmospheric pressure holding gas 23 such as hydrogen, nitrogen, etc., and a source gas such as silane gas 24 and methyl silane 25 is supplied from a doping system 50 to the reaction chamber 101. Plasma discharge is caused between a negative pole 61 and a positive pole 61 by supplying power from a high-frequency power supply 14 to form a P-type noncrystal semiconductor on the substrate 1. In this case, the evacuation system 52 of the reaction chamber 101 is provided with a turbomolecular pump 87, a vacuum pump 36 and a pressure controlling valve 72 between these pumps to control the pressure in the reaction chamber 101. Thus, oxidation of the film on the substrate by the counter flow of air from the vacuating system 52 and decrease in the quality can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は気相反応被膜作製装
置および作製方法に関する。本発明は反応性気体を用い
て被膜作製を行うに際し、非酸化物の被膜を作製するに
関して、排気系においてタ−ボ分子ポンプを用いて気相
反応(以下CVD という)を行なわしめることにより、被
膜中の酸素の混入量を5×1018cm-3以下の濃度とさせる
気相反応装置およびその装置を用いて被膜を作製する方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and method for producing a vapor phase reaction coating. In the present invention, when a film is formed using a reactive gas, a non-oxide film is formed by performing a gas phase reaction (hereinafter referred to as CVD) using a turbo molecular pump in an exhaust system. The present invention relates to a gas phase reaction apparatus for controlling the concentration of oxygen in the coating film to 5 × 10 18 cm −3 or less, and a method for producing a coating film using the apparatus.

【0002】本発明は非酸素または非酸化物系被膜の作
製において、その排気系よりの大気の逆流を防ぐため、
油回転方式のロ−タリ−ポンプ、メカニカルブ−スタ−
ポンプ等の不連続回転方式の荒引用真空ポンプ(以下単
にロ−タリ−ポンプまたはRPという)のみを用いるので
はなく、連続排気方式の複合分子ポンプまたはタ−ボ分
子ポンプ(以下単にタ−ボ分子ポンプまたはTPという)
を反応容器と真空ポンプとの間に介在させて、排気系か
らの大気の逆流を防止したことを特徴とする。
In the present invention, in the production of a non-oxygen or non-oxide coating, in order to prevent backflow of the atmosphere from the exhaust system,
Oil rotary rotary pump, mechanical booster
Instead of using only a discontinuous rotary type rough vacuum pump such as a pump (hereinafter simply referred to as a rotary pump or RP), a continuous exhaust type composite molecular pump or turbo molecular pump (hereinafter simply referred to as a turbo molecular pump). Molecular pump or TP)
Is interposed between the reaction vessel and the vacuum pump to prevent backflow of the atmosphere from the exhaust system.

【0003】本発明の非酸化物被膜例えば非単結晶珪素
を、反応性気体であるシラン(SinH2n+2 n>1)を用
いて形成するに際し、その被膜中の酸素の量を5×1018
cm-3以下好ましくは1×1018cm-3以下とするため、排気
系からの大気の逆流を防ぐことを目的としている。
In forming a non-oxide film of the present invention, for example, non-single-crystal silicon, using silane (SinH 2n + 2 n> 1) which is a reactive gas, the amount of oxygen in the film is 5 × 10 5. 18
The purpose of the present invention is to prevent the backflow of the atmosphere from the exhaust system in order to make it equal to or less than cm −3, preferably 1 × 10 18 cm −3 or less.

【0004】本発明はかかる排気系をTPを反応室とVPと
の間に反応中の圧力調整用のバルブを経て介在させるこ
とにより、反応室内は0.05〜10torrの間の圧力範囲でプ
ラズマ気相反応(PCVDという)、光CVD (Photo CVD と
いう)またはこれらを併用した方法(以下単にCVD 法と
して総称する)を用いて被膜形成を行い、圧力調整パル
ブ(コントロ−ルバルブまたはバタフライバルブともい
う)により制御したものである。このためRPからの油成
分の逆流およびRPが回転時に油に混入した大気の逆流を
防ぐことにより高品質の非酸化物被膜形成を行うことを
目的としている。
According to the present invention, the exhaust system is provided between the reaction chamber and VP through a valve for adjusting the pressure during the reaction, so that the plasma gas phase in the reaction chamber is in the pressure range of 0.05 to 10 torr. A film is formed using a reaction (referred to as PCVD), a photo CVD (referred to as Photo CVD), or a combination of these methods (hereinafter, simply referred to as a CVD method), and a pressure adjusting valve (also referred to as a control valve or a butterfly valve) is used. It is controlled. Therefore, the purpose is to form a high-quality non-oxide film by preventing the reverse flow of the oil component from the RP and the reverse flow of the atmosphere mixed with the oil when the RP rotates.

【0005】さらに本発明は気相反応を行う前に反応容
器を真空引きをする際はTPと反応容器との間を大口径の
配管で連結でき、さらにTPを反応容器に連結させること
ができる。このため、反応容器内を3×10-8torrまたは
それ以下の圧力(3×10-8〜1×10-10torr )にするこ
とが同じTPを用いて行い得るのである。即ち、本発明装
置により反応容器内を10-8torr以下とする真空排気とCV
D 法での被膜形成に必要な0.01〜10torrの圧力とを同一
のTPを用いて制御が酸素の逆流を防ぐに加えて可能にな
った。
Further, according to the present invention, when evacuating the reaction vessel before carrying out the gas phase reaction, the TP and the reaction vessel can be connected by a pipe having a large diameter, and the TP can be further connected to the reaction vessel. . Therefore, the pressure inside the reaction vessel can be made 3 × 10 −8 torr or lower (3 × 10 −8 to 1 × 10 −10 torr) using the same TP. In other words, the device of the present invention evacuates the reaction vessel to 10 -8 torr or less and CV
The pressure of 0.01 to 10 torr required for film formation by the method D was made possible by using the same TP, in addition to controlling the backflow of oxygen.

【0006】さらに本発明はかかるプラズマCVD 装置を
反応室を複数ケ連結し、形成被膜を半導体とし、かつそ
れぞれの反応室にてP型非単結晶半導体、I型非単結晶
半導体およびN型非単結晶半導体を基板上に積層して、
PIN 接合を構成する半導体装置の作製装置および方法に
関する。
Further, according to the present invention, a plurality of reaction chambers are connected to each other in the plasma CVD apparatus, the formed film is used as a semiconductor, and a P-type non-single crystal semiconductor, an I-type non-single crystal semiconductor and an N-type non-single crystal semiconductor are used in each reaction chamber. By stacking single crystal semiconductors on the substrate,
The present invention relates to an apparatus and a method for manufacturing a semiconductor device forming a PIN junction.

【0007】[0007]

【従来の技術】従来、CVD 装置例えばPCVD装置において
は、反応系の圧力が0.01〜10torrと高い圧力のため、そ
の排気系等はRPのみが用いられ、それ以上の真空度を発
生させるTP等を設けることが全く不可能とされていた。
2. Description of the Related Art Conventionally, in a CVD apparatus such as a PCVD apparatus, since the pressure of the reaction system is as high as 0.01 to 10 torr, only RP is used for the exhaust system, etc., and TP etc. which generate a higher vacuum degree. It was completely impossible to provide.

【0008】[0008]

【発明が解決しようとする課題】しかし本発明人はかか
るPCVD装置において、排気系がRPのみではこのRPが不連
続の回転運動をするため、空気と接触している大気圧の
排気系からの大気(特に酸素)が逆流し、さらにこの大
気の一部が油中に混入し、ここから再気化することによ
り反応容器内に逆流してしまうことを見いだした。さら
にこのため、この逆流により酸素が形成する被膜内に混
入し、例えば珪素膜を作製する場合その被膜内に酸素が
3×1019〜2.5 ×1020cm-3の濃度に混入してしまった。
However, the present inventor has found that in such a PCVD apparatus, the exhaust system from the exhaust system at atmospheric pressure, which is in contact with air, has a discontinuous rotational motion when the exhaust system is only RP. It was found that the atmospheric air (especially oxygen) flows backward, and a part of the atmospheric air is mixed in the oil and re-vaporizes from here to flow back into the reaction vessel. Further, for this reason, oxygen is mixed into the film formed by the backflow. For example, when a silicon film is formed, oxygen is mixed into the film at a concentration of 3 × 10 19 to 2.5 × 10 20 cm -3 . .

【0009】このため、かかる被膜に水素または弗素が
添加されて、珪素半導体であるべきものが低級酸化珪素
といってもよいようなものになってしまった。
For this reason, hydrogen or fluorine is added to such a film, so that what should be a silicon semiconductor is a lower silicon oxide.

【0010】本発明はかかる欠点を防ぐことを目的とし
ている。
The present invention aims to prevent such drawbacks.

【0011】さらに本発明はかかる欠点を防ぐためにTP
を設けるに加えて圧力調整バルブをTPとRPとの間に設け
たものである。即ちもし圧力調整バルブを反応容器とTP
との間に設けるとこのバルブの内径は1〜2インチが一
般である。そのためこのバルブを全開としても、このバ
ルブ部でのコンダクタンスが低く、反応容器内をバック
グラウンドレベル(3×10-8torr以下)にせんとして
も、時間が長時間かかってしまう。またこのバルブを5
〜10インチと大口径とすると、圧力調整を十分な精度で
行うことができないという欠点を有する。
Furthermore, the present invention provides TP in order to prevent such drawbacks.
And a pressure regulating valve is provided between TP and RP. That is, if the pressure regulating valve is
And the inner diameter of this valve is generally 1 to 2 inches. Therefore, even if the valve is fully opened, the conductance at the valve portion is low, and it takes a long time even if the inside of the reaction vessel is set to the background level (3 × 10 −8 torr or less). In addition, this valve
When the diameter is as large as 10 inches, there is a disadvantage that the pressure cannot be adjusted with sufficient accuracy.

【0012】[0012]

【課題を解決する手段】本発明はこれらの欠点を除去す
るため、0.01〜10torrでも真空引きが可能な複合分子ポ
ンプをTPとして用い、加えて圧力調整バルブをTPとRPと
の間に設け、圧力制御をTP内と反応容器の双方に対して
行わんとしたものである。
In order to eliminate these drawbacks, the present invention uses a composite molecular pump capable of vacuuming even 0.01 to 10 torr as TP, and additionally, a pressure regulating valve is provided between TP and RP, The pressure was controlled both inside the TP and the reaction vessel.

【0013】[0013]

【実施例】以下に本発明の気相反応装置をプラズマCVD
装置によりPIN 接合を設ける場合を記して示す。
EXAMPLES A gas phase reactor according to the present invention will be described below by plasma CVD.
The case where a PIN junction is provided by the device is shown below.

【0014】〔実施例1〕本発明は、その装置の概要を
図1に示す。即ち、反応性気体を導入するド−ピング系
(50)、反応容器(51)、排気系(52)を有する。反応容器は
内側に絶縁物で内面が形成された反応空間を有する二重
反応容器型として半導体層を形成し、さらに加えてP型
半導体(図面では系I)、I型半導体(図面では系III
)およびN型半導体と積層して接合を基板上に形成す
るに際し、それぞれの反応容器を分離部(図面では系I
I)を介して連結せしめたマルチチャンバ方式のCVD 装
置特にPCVD装置を図1に示すごとくに提案するにある。
[Embodiment 1] FIG. 1 shows an outline of the apparatus of the present invention. That is, a doping system for introducing a reactive gas
It has (50), a reaction container (51), and an exhaust system (52). The reaction container has a semiconductor layer formed as a double reaction container type having a reaction space in which an inner surface is formed of an insulator, and further includes a P-type semiconductor (system I in the drawing) and an I-type semiconductor (system III in the drawing).
) And an N-type semiconductor to form a bond on a substrate, each reaction container is separated into separate parts (system I in the drawing).
A multi-chamber type CVD apparatus, especially a PCVD apparatus, connected via I) is proposed as shown in FIG.

【0015】本発明は水素またはハロゲン元素が添加さ
れた非単結晶半導体層の形成により、再結合中心密度の
小さなP,IおよびN型の導電型を有する半導体層を形成
し、その積層境界にてPIN 接合を形成するとともに、そ
れぞれの半導体層に他の隣接する半導体層からの不純物
が混入して接合特性を劣化させることを防ぎ、またそれ
ぞれの半導体層を形成する工程間に、大気特に酸素に触
れさせて、半導体の一部が酸化されることにより層間絶
縁物が形成されることのないようにした連続生産を行う
ためのプラズマ気相反応に関する。
According to the present invention, by forming a non-single-crystal semiconductor layer to which hydrogen or a halogen element is added, a semiconductor layer having P, I and N type conductivity types having a small recombination center density is formed, and a stacking boundary thereof is formed. To form a PIN junction, and to prevent impurities from other adjacent semiconductor layers from mixing into each semiconductor layer and deteriorating the junction characteristics. The present invention relates to a plasma gas phase reaction for performing continuous production in which an interlayer insulating material is not formed by oxidizing a part of a semiconductor by touching.

【0016】さらに本発明は、かかる反応容器をそれぞ
れの反応においては独立として多数連結したマルチチャ
ンバ方式のプラズマ反応方法において、一度に多数の基
板を同時にその被膜成長速度を大きくしたいわゆる多量
生産方式に関する。
Furthermore, the present invention relates to a so-called mass production method in which a large number of substrates are simultaneously increased in film growth rate in a multi-chamber plasma reaction method in which a large number of such reaction vessels are connected independently in each reaction. .

【0017】本発明は電極方向にその距離10〜50cm例え
ば20cmを有するとともに、巾15〜120 cm例えば30cmの基
板(15cm×30cmを1バッチ10枚配設)を用いた。
In the present invention, a substrate having a distance of 10 to 50 cm, for example, 20 cm in the electrode direction and a width of 15 to 120 cm, for example, 30 cm (15 cm × 30 cm arranged in 10 batches) was used.

【0018】図1において、反応性気体の導入手段(5
0)、排気手段(52)を有し、これらを供給ノズル、排気ノ
ズルを設け、この絶縁フ−ドよりも内側に相対させて一
対の電極(61),(61') または(62),(62') および反応性気
体の供給ノズル(17),(18) および排気ノズル(17'),(1
8') を配設した。即ち、電極の外側をフ−ドの絶縁物で
包む構造(38),(39')とした。さらにこのフ−ド間の反応
空間を閉じ込めるため、外側周辺を絶縁物(38),(38')取
り囲んだ。
In FIG. 1, a means for introducing a reactive gas (5
0), having an exhaust means (52), these are provided with a supply nozzle and an exhaust nozzle, and a pair of electrodes (61), (61 ') or (62), facing the inside of the insulating hood, (62 ') and reactive gas supply nozzles (17), (18) and exhaust nozzle (17'), (1
8 ') was installed. That is, the structures (38) and (39 ') were formed by wrapping the outside of the electrode with a hood insulator. In order to confine the reaction space between the hoods, the outer periphery was surrounded by insulators (38) and (38 ').

【0019】また、図示を省略したが、反応容器の前後
に開閉扉を設け、この扉の内面にハロゲンランプ等によ
る基板の加熱手段を設けた。
Although not shown, opening / closing doors were provided in front of and behind the reaction vessel, and a substrate heating means such as a halogen lamp was provided on the inner surface of the door.

【0020】この図面は、PIN 接合、PIP 接合、NIN 接
合またはPINPIN・・・PIN 接合等を基板上の半導体に、
異種導電型また異種材料でありながらも、形成される半
導体の主成分または化学量論比の異なる半導体層をそれ
ぞれの半導体層がその前工程において形成された半導体
層の影響(混入)を受けずに積層させるための多層に自
動かつ連続的に形成するための装置である。
In this drawing, PIN junction, PIP junction, NIN junction or PINPIN ...
Semiconductor layers of different conductivity types or different materials but different in the main component or stoichiometric ratio of the formed semiconductor are not affected (mixed) by the semiconductor layers formed in the preceding process. It is an apparatus for automatically and continuously forming multiple layers to be laminated on each other.

【0021】図面においてはPIN 接合を構成する複数の
反応系の一部を示している。即ち、P,IおよびN型の
半導体層を積層して形成する3つの反応系の2つ(I、
II)とさらに第1の予備室および移設用のバッファ室
(II)を有するマルチチャンバ方式のプラズマ気相反応
装置の装置例を示す。
In the drawing, a part of a plurality of reaction systems forming a PIN junction is shown. That is, two of the three reaction systems (I,
II), a first preparatory chamber, and a buffer chamber (II) for transfer, which are examples of a multi-chamber type plasma vapor phase reactor.

【0022】図面における系I、II、III は、2つの各
反応容器(101),(103)およびバッファ室(102)を有し、そ
れぞれの反応容器間に分離部(44),(45),(46),(47)を有
している。
The systems I, II, and III in the drawing have two reaction vessels (101) and (103) and a buffer chamber (102), and separation sections (44) and (45) are provided between the respective reaction vessels. , (46), (47).

【0023】この装置は入り口側には第1の予備室(10
0) が設けられ、まず扉(42)より基板ホルダ(2) の2つ
の面に2つの被形成面を有する2枚の基板(1) を挿着し
た。さらにこのホルダ(3) を外枠冶具(外周辺のみ(3
8),(38')として示す)により互いに所定の等距離を離間
して配設した。即ちこの被形成面を有する基板は被膜形
成を行わない裏面を基板ホルダ(2) に接し、基板2枚お
よび基板ホルダとを一つのホルダ(3) として6cm±0.5c
m の間隙を有して絶縁物の外枠冶具内に林立させた。そ
の結果、15cm×30cmの基板を10枚同時に被膜形成させる
ことができた。かくして高さ55cm、奥行40cm、巾40cmの
反応空間(6),(8) は上方、下方を絶縁物(39),(39')で囲
まれ、また側周辺は絶縁外枠冶具(38),(38')で電気的に
絶縁物で閉じ込め囲んだ。
This device has a first auxiliary chamber (10
0), and two substrates (1) each having two surfaces to be formed were inserted from the door (42) to two surfaces of the substrate holder (2). Then, insert this holder (3) into the outer frame jig (only
8), (38 ')). That is, the substrate having the surface on which the film is to be formed is in contact with the substrate holder (2) on the back side on which no film is formed, and the two substrates and the substrate holder are used as one holder (3) for 6 cm ± 0.5 cm.
It was planted in an insulating outer frame jig with a gap of m. As a result, 10 15 cm × 30 cm substrates could be simultaneously formed. Thus, the reaction space (6), (8) with a height of 55 cm, a depth of 40 cm, and a width of 40 cm is surrounded by insulators (39), (39 ') on the upper and lower sides, and the side periphery is an insulating outer frame jig (38). , (38 ') was electrically enclosed and surrounded by an insulator.

【0024】第1の予備室(100) をTP(86)を経、ストッ
プバルブ(71)を経てRP(35)により真空引きをした。この
TPは大阪真空製複合分子ポンプTG550 を用いた。この複
合分子ポンプは定速度は400rps(毎秒の回転数)であ
り、N2,SiH4は500リットル/s の排気速度を有する。さ
らに0.01〜10torrでの排気も可能でり、 10torrでも10リ
ットル/sec の排気が可能である。特に一般に気相反応
に用いる0.1 〜1torrにおいては、 450リットル/sec〜4
40リットル/secの排気が可能である。本発明はかかるT
Pの回転数を可変とした。そのため反応容器が大気圧で
あっても、TPの回転数を100 〜200rpsと定量値より下
げ、連続回転とさせた。そしてTPが破損しないようにし
た。そのため反応容器が大気圧においてRPをバルブ(71)
を開としてTPにより真空引きを駆動しながら真空引きが
できた。その結果、RPからの油成分の逆流をTPが防ぎ、
基板表面が油成分で汚染されることがないという特長を
有する。
The first preparatory chamber (100) was evacuated by RP (35) through TP (86), stop valve (71). this
As the TP, a compound molecular pump TG550 manufactured by Osaka Vacuum was used. This composite molecular pump has a constant speed of 400 rps (revolutions per second) and N 2 , SiH 4 has an evacuation speed of 500 liters / s. Furthermore, it is possible to exhaust at 0.01 to 10 torr, and even at 10 torr, it is possible to exhaust at 10 liters / sec. Especially at 0.1 to 1 torr, which is generally used for gas phase reaction, 450 liter / sec to 4
It is possible to exhaust 40 liters / sec. The present invention is such a T
The rotation speed of P is variable. Therefore, even when the reaction vessel was at atmospheric pressure, the rotation speed of the TP was lowered to a fixed value of 100 to 200 rps, and the rotation was continued. And TP was not damaged. Therefore, the reactor is valved RP at atmospheric pressure (71)
The vacuum was able to be drawn while opening the and driving the vacuum with TP. As a result, TP prevents the backflow of oil components from RP,
It has the feature that the substrate surface is not contaminated with oil components.

【0025】この後、圧力調整バルブ(72)およびゲ−ト
バルブ(85)はその内径がTPの内径(VG150即ちJISB2290真
空ランジを使用)と同じとせしめ、このゲ−トバルブ(8
5)を全開とし、TP(同様にTG550 使用)により3×10-8
torr以下にまで予め真空引きがされている反応容器(10
1) との分離用のゲ─ト弁(44)(開口35cm×30cm)を開
けて、外枠冶具(38)に保持された基板を移した。例え
ば、予備室(100) より第1の反応容器(101) に移し、さ
らにゲ─ト弁(44)を閉じることにより基板を第1の反応
容器(101) に移動させたものである。
After this, the pressure regulating valve (72) and the gate valve (85) are made to have the same inner diameter as the inner diameter of TP (VG150, that is, using a JIS B2290 vacuum lunge), and the gate valve (8
5) Fully opened, 3 × 10 -8 by TP (also using TG550)
A reaction vessel (10
A gate valve (44) (opening 35 cm × 30 cm) for separation from 1) was opened, and the substrate held by the outer frame jig (38) was transferred. For example, the substrate is moved from the preliminary chamber (100) to the first reaction vessel (101), and the substrate is moved to the first reaction vessel (101) by closing the gate valve (44).

【0026】この時、第1の反応容器(101) に保持され
ていた基板(1) 等は、予めまたは同時にバッファ室(10
2) に、またバッファ室(102) に保持されていた冶具お
よび基板(2) は第2の反応容器(103) に、また第2の反
応容器(103) に保持されていた基板は第2のバッファ室
(104) に、さらに図示が省略されているが、第3の反応
室の基板および冶具は出口側の第2の予備室にゲ─ト弁
(45),(46),(47)を開けて移動させる。この後ゲ─ト弁(4
4),(45),(46),(47)を閉めた。
At this time, the substrate (1) and the like held in the first reaction vessel (101) are preliminarily or simultaneously prepared in the buffer chamber (10).
2), the jig and the substrate (2) held in the buffer chamber (102) are stored in the second reaction vessel (103), and the substrate held in the second reaction vessel (103) is stored in the second reaction vessel (103). Buffer room
Although not shown in (104), the substrate and the jig in the third reaction chamber are provided with a gate valve in the second preliminary chamber on the outlet side.
(45), (46), and (47) are opened and moved. After this, the gate valve (4
4), (45), (46), (47) were closed.

【0027】系Iにおける第1の反応容器(101) でP型
半導体層をPCVD法により形成する場合を以下に示す。
反応系I(反応容器(101) を含む)は0.01〜10torr好ま
しくは0.01〜1torr 例えば0.1 torrとした。
The case where the P-type semiconductor layer is formed by the PCVD method in the first reaction vessel (101) of the system I is shown below.
The reaction system I (including the reaction vessel (101)) was 0.01 to 10 torr, preferably 0.01 to 1 torr, for example, 0.1 torr.

【0028】即ち、圧力調整バルブ(72)を閉として、反
応容器およびTP(87),(101)内の圧力は0.01〜10torrのう
ち特に0.05〜1torrであり、この真空度をTP(87)下の圧
力調整バルブ(72)の開閉を制御して、かつTPの回転数を
100rpsとして成就させている。このTPの回転数を下げた
のは、このTPの圧縮比を定数の107〜108から102〜103
下げることにより圧力調整バルブの圧力制御を容易に行
わしめた。本発明はこの連続排気方式のTPを動作させて
いるため、RP(36)のポリマ化した油の逆拡散、また油中
に含浸した排気用の大気特に酸素を逆流させることを初
めて防ぐことができた。
That is, with the pressure adjusting valve (72) closed, the pressure inside the reaction vessel and TP (87), (101) is particularly 0.05 to 1 torr out of 0.01 to 10 torr, and the vacuum degree is TP (87). It controls the opening and closing of the lower pressure adjustment valve (72), and
It is fulfilled as 100 rps. The reason why the rotation speed of the TP was reduced was that the pressure control of the pressure regulating valve was easily performed by reducing the compression ratio of the TP from a constant of 10 7 to 10 8 to 10 2 to 10 3 . Since the present invention operates this continuous exhaust TP, it is possible to prevent, for the first time, the reverse diffusion of the polymerized oil of the RP (36) and the reverse flow of the exhaust air impregnated in the oil, particularly oxygen. did it.

【0029】反応性気体は系Iのド−ピング系(50)より
供給した。即ち珪化物気体(24)としては精製されてさら
にステンレスボンベに充填されたシラン(SinH2n+2
≧1特にSiH4またはSi2H6 )フッ化珪素(SiF4またはSi
F2)を用いた。ここでは、取扱いが容易な超高純度シラ
ン(純度99.99 %、但し水、酸素化物は0.1PPM以下)を
用いた。
The reactive gas was supplied from the system I doping system (50). That is, silane (SinH 2n + 2 n) purified as silicide gas (24) and further filled in a stainless steel cylinder
≧ 1 Especially SiH 4 or Si 2 H 6 ) Silicon fluoride (SiF 4 or Si
F 2) was used. Here, an ultra-high-purity silane (purity 99.99%, water and oxygenates of 0.1 PPM or less), which is easy to handle, was used.

【0030】本実施例のSixC1-x (0<x<1)を形成
するため、炭化物気体(25)として予めSi─C 結合を有す
るメチルシラン(56)即ちMMS (H Si(CH3)3)またはDMS
(ジメチルシラン (SiH2(CH3)2純度 99.99%)を用い
た。
In order to form SixC 1-x (0 <x <1) of the present embodiment, methylsilane (56) having a Si--C bond in advance as a carbide gas (25), that is, MMS (H Si (CH 3 ) 3 ) Or DMS
(Dimethylsilane (SiH 2 (CH 3 ) 2 purity 99.99%) was used.

【0031】炭化珪素(SixC1-x 0<x<1)に対して
は、P型の不純物としてボロンを前記したモノシラン中
に0.5 %の濃度に混入させたボンベ(24)よりシランとと
もに供給した。
For silicon carbide (Si x C 1-x 0 <x <1), boron as a P-type impurity was added together with silane from a cylinder (24) in which monosilane was mixed at a concentration of 0.5%. Supplied.

【0032】必要に応じ、水素(純度7N以上)または窒
素 (純度7N以上)を反応室を大気圧とする時(23)より
供給した。これらの反応性気体はそれぞれの流量計(33)
およびバルブ(32)を経、反応性気体の供給ノズル(17)よ
り高周波電源(14)の負電極(61)を経て反応空間(6) に供
給された。
If necessary, hydrogen (purity 7N or more) or nitrogen (purity 7N or more) was supplied from the time (23) when the reaction chamber was brought to atmospheric pressure. Each of these reactive gases is flow meter (33)
And a valve (32), a reactive gas was supplied from a supply nozzle (17) to a reaction space (6) via a negative electrode (61) of a high frequency power supply (14).

【0033】反応性気体はホルダ(38)に囲まれた筒状空
間(6) 内に供給され、この空間を構成する基板(1) に被
膜形成を行った。さらに負電極(61)と正電極(61') 間に
電気エネルギ例えば13.56MHzの高周波エネルギ(14)を加
えてプラズマ反応せしめ、基板上に反応生成物を被膜形
成せしめた。
The reactive gas was supplied into the cylindrical space (6) surrounded by the holder (38), and a film was formed on the substrate (1) constituting this space. Further, electric energy, for example, high frequency energy (13.56 MHz) (14) was applied between the negative electrode (61) and the positive electrode (61 ') to cause plasma reaction, and a reaction product was formed on the substrate.

【0034】基板は100〜400℃例えば 200℃に図1に示
す反応容器(103) の容器の前後に配設された赤外線ヒ─
タと同じ手段により加熱した。
The substrate is an infrared heater placed at 100 to 400 ° C., for example 200 ° C., before and after the reaction vessel (103) shown in FIG.
It was heated by the same means as in the above.

【0035】この赤外線ヒ─タは、近赤外用ハロゲンラ
ンプ(定発光波長1〜3μ)ヒ─タまたは遠赤外用セラ
ミックヒ─タ(発光波長8〜25μ)を用い、この反応容
器内におけるホルダにより取り囲まれた筒状空間を210
±10℃好ましくは±5℃以内に設置した。
As the infrared heater, a near infrared halogen lamp (constant emission wavelength 1 to 3 μ) or a far infrared ceramic heater (emission wavelength 8 to 25 μ) is used, and a holder in the reaction vessel is used. 210 enclosed cylindrical space
It is set within ± 10 ° C, preferably within ± 5 ° C.

【0036】この後、前記したが、この容器に前記した
反応性気体を導入し、さらに5〜100W例えば20Wに高周
波エネルギ(14)を供給してプラズマ反応を起こさせた。
After that, as described above, the reactive gas described above was introduced into this container, and high frequency energy (14) was further supplied to 5 to 100 W, for example, 20 W to cause a plasma reaction.

【0037】かくしてP型半導体層はB2H6/SiH4=0.5
%, MS/(SiH4+ MS)=20%の条件にて、この反応系I
で平均膜厚30〜300Å例えば約200Åの厚さを有する薄膜
として形成させた。Eg=2.15eVσ=1×10-6〜3×10-5
(Ωcm)-1であった。
Thus, the P-type semiconductor layer has B 2 H 6 / SiH 4 = 0.5.
%, MS / (SiH 4 + MS) = 20%, this reaction system I
Was formed as a thin film having an average film thickness of 30 to 300Å, for example, about 200Å. Eg = 2.15 eVσ = 1 × 10 -6 to 3 × 10 -5
(Ωcm) -1 .

【0038】基板は導体基板(ステンレス、チタン、ア
ルミニュ─ム、その他の金属)、半導体(珪素、ゲルマ
ニュ─ム)、絶縁体(ガラス、有機薄膜)または複合基
板(ガラスまたは透光性有機樹脂上に透光性導電膜であ
る弗素が添加された酸化スズ、ITO 等の導電膜が単層ま
たはITO 上にSnO2が形成された2層膜が形成されたも
の)を用いた。本実施例は複合基板を用いた。
The substrate is a conductor substrate (stainless steel, titanium, aluminum, other metal), semiconductor (silicon, germanium), insulator (glass, organic thin film) or composite substrate (glass or translucent organic resin). A transparent conductive film, such as tin oxide to which fluorine is added, a conductive film of ITO or the like is formed as a single layer or a two-layer film in which SnO 2 is formed on ITO is used. In this example, a composite substrate was used.

【0039】かくして1〜5分間プラズマ気相反応をさ
せて、P型不純物としてホウ素が添加された炭化珪素膜
を約200 Åの厚さに作製した。さらにこの第1の半導体
層が形成された基板をゲ−ト(45)を開け前記した操作順
序に従ってバッファ室(102)に移動し、ゲ−ト(45)を閉
じた。このバッファ室(102) は予め10-8torr以下例えば
4×10-10torr にクライオポンプ(88)にて真空引きがさ
れている。
Thus, the plasma vapor phase reaction was carried out for 1 to 5 minutes to form a silicon carbide film to which boron was added as a P-type impurity in a thickness of about 200 Å. Further, the gate (45) was opened on the substrate on which the first semiconductor layer was formed, and the substrate was moved to the buffer chamber (102) according to the above-described operation sequence, and the gate (45) was closed. The buffer chamber (102) is previously evacuated to 10 -8 torr or less, for example, 4 × 10 -10 torr by a cryopump (88).

【0040】またこの基板は系III に同様にTP(89)によ
り、3×10-8torr以下に保持された反応容器にゲ−ト(4
6)の開閉を経て移設された。
Similarly to the system III, this substrate was subjected to TP (89) in a reaction container kept at 3 × 10 -8 torr or less to obtain a gate (4
6) It was relocated after opening and closing.

【0041】即ち図1における反応系III において、半
導体の反応性気体として超高純度モノシランまたはジシ
ランを(水または酸化珪素、酸化物気体の濃度は0.1PPM
以下)(28)より、また、1017cm-3以下のホウ素を添加す
るため、水素、シラン等によって0.5 〜30PPM に希釈し
たB2H6を(27)より、またキャリアガスを必要に応じて(2
6)より供給した。
That is, in the reaction system III in FIG. 1, ultrahigh-purity monosilane or disilane (water or silicon oxide, the concentration of the oxide gas is 0.1 PPM) is used as the reactive gas of the semiconductor.
From below) (28), also for adding 10 17 cm -3 or less of boron, hydrogen, a B 2 H 6 diluted to 0.5 ~30PPM by silane from (27), also according to the carrier gas necessary ((2
Supplied from 6).

【0042】反応性気体は反応容器で反応の後、ゲイト
バルブ(84)を経てTP(89)にさらにコントロ−ルバルブ(7
4)、RP(34)に至る。
After reacting the reactive gas in the reaction vessel, it passes through the gate valve (84) and then to the TP (89), and then the control valve (7).
4), to RP (34).

【0043】7000Åの厚さにSiH4 60cc/分、被膜形成
速度2.5 Å/秒、基板(20cm×60cmを20枚、延べ面積24
000 cm2 )で圧力0.1 torrとした。Si2H6 を用いた場
合、被膜形成速度28Å/秒を有していた。
SiH 4 60 cc / min at a thickness of 7,000 Å, film formation speed 2.5 Å / sec, substrate (20 cm x 60 cm 20 sheets, total area 24
000 cm 2 ) and the pressure was 0.1 torr. When Si 2 H 6 was used, the film formation rate was 28 ° / sec.

【0044】かくして第1の反応室にてプラズマ気相法
によりP型半導体層を形成した上にPCVD法によりI型半
導体層を形成させてPI接合を構成させた。
Thus, the P-type semiconductor layer was formed in the first reaction chamber by the plasma vapor phase method, and then the I-type semiconductor layer was formed by the PCVD method to form the PI junction.

【0045】また系III にて約7000Åの厚さに形成させ
た後、基板は前記した操作に従って、隣のバッファ室(1
02) に移され、さらにその隣の反応室に移設して同様の
PCVD工程によりN型半導体層を形成させた。
After being formed in System III to a thickness of about 7,000 Å, the substrate was subjected to the above-mentioned operation, and the next buffer chamber (1
02) and moved to the reaction chamber next to it
An N-type semiconductor layer was formed by the PCVD process.

【0046】このN型半導体層は、PCVD法によりフォス
ヒンをPH3 /SiH4=1.0 %としたシランとキャリアガス
の水素をSiH4/H2=20%として供給して、系Iと同様に
して約500 Åの厚さにN型の微結晶性または繊維構造を
有する多結晶の半導体層を形成させ、さらにその上面に
炭化珪素をMS/(SiH4+ MS)=0.2 としてSixC1-x(0
<x<1)で示されるN型半導体層を10〜200 Åの厚さ
例えば50Åの厚さに積層して形成させたものである。そ
の他反応装置については系Iと同様である。
For this N-type semiconductor layer, silane having PH 3 / SiH 4 = 1.0% as fossin and hydrogen as a carrier gas were supplied as SiH 4 / H 2 = 20% by the PCVD method, and the same as in the system I. to form a polycrystalline semiconductor layer having a microcrystalline or fibrous structure of the N-type to a thickness of about 500 Å Te, further Si x C 1 silicon carbide on the upper surface thereof as MS / (SiH 4 + MS) = 0.2 -x (0
It is formed by laminating N-type semiconductor layers represented by <x <1) to a thickness of 10 to 200 mm, for example, a thickness of 50 mm. Other reactors are the same as in system I.

【0047】かかる工程の後、第2の予備室より外にPI
N 接合を構成して出された基板上に100 〜1500Åの厚さ
のITO をさらにその上に反射性または昇華性金属電極例
えばアルミニュ─ム電極を真空蒸着法により約1μの厚
さに作り、ガラス基板上に(ITO+SnO2)表面電極─(PI
N 半導体)─(裏面電極)を構成させた。
After this step, PI is placed outside the second preliminary chamber.
An ITO having a thickness of 100 to 1500 mm is further formed on the substrate formed by forming the N junction and a reflective or sublimable metal electrode such as an aluminum electrode is formed thereon to a thickness of about 1 μm by a vacuum evaporation method. (ITO + SnO 2 ) surface electrode ─ (PI
N semiconductor) ─ (backside electrode).

【0048】その光電変換装置としての特性は8〜10%
平均8.5 %を10cm×10cmの基板でAM1 (100mW /cm2
の条件下にて真性効率特性として有し、集積化してハイ
ブリッド型にした40cm×60cmのガラス基板のNEDOパネル
においても、5.7 %を実効効率で得ることができた。
The characteristics of the photoelectric conversion device are 8 to 10%.
AM1 (100mW / cm 2 ) on a 10cm x 10cm substrate with an average of 8.5%
The NEDO panel with a 40 cm x 60 cm glass substrate, which has intrinsic efficiency characteristics under the conditions of and is integrated into a hybrid type, was able to obtain 5.7% with an effective efficiency.

【0049】その結果、1つの素子で開放電圧は0.85〜
0.9V(0.87±0.02V )であったが、短絡電流は18±2 mA
/cm2 と大きく、またFFも0.60〜0.70と大きく、かつそ
のばらつきもパネル内、バッチ内で小さく、工業的に本
発明方法はきわめて有効であることが判明した。
As a result, the open circuit voltage of one element is 0.85 to
0.9V (0.87 ± 0.02V), but short circuit current is 18 ± 2 mA
/ Cm 2, and the FF is as large as 0.60 to 0.70, and its variation is small within the panel and within the batch. Thus, it has been found that the method of the present invention is extremely effective industrially.

【0050】図2は本発明および従来方法により作られ
たPIN 型光電変換装置における半導体内の酸素および炭
素の不純物の濃度分布をSIMS(Cameca 3Fを使用)にて
測定した結果を示す。
FIG. 2 shows the results of measurement by SIMS (using Cameca 3F) of the concentration distribution of oxygen and carbon impurities in the semiconductor in the PIN photoelectric conversion device manufactured by the present invention and the conventional method.

【0051】図面はアルミニュ−ム─ITO ─裏面電極(9
4)、N型半導体(93)、I型半導体(92)、P型半導体(9
1)、基板上の酸化スズ透光性導電膜(90)をそれぞれ示
す。
The drawing shows the aluminum-ITO-back electrode (9
4), N-type semiconductor (93), I-type semiconductor (92), P-type semiconductor (9
1) shows a tin oxide translucent conductive film (90) on a substrate.

【0052】従来方法の排気系をRPポンプのみによる排
気方法においては、連続排気方式のTPを用いないため炭
素は曲線(95)、酸素は曲線(96)に示される高い濃度の不
純物を含有していた。
In the exhaust method of the conventional method using only the RP pump, since TP of the continuous exhaust system is not used, carbon contains a high concentration of impurities shown by the curve (95) and oxygen contains a high concentration of impurities shown by the curve (96). Was there.

【0053】特に酸素は、5×1019〜2×1020cm-3をI
型半導体(92)において有していた。図面は5×1019cm-3
の酸素を含んだ場合である。加えて油回転ポンプからの
油成分の逆流により炭素が5×1019〜4×1020cm-3を有
していた。図面は1×1020cm-3を有する場合である。
Particularly, oxygen is 5 × 10 19 to 2 × 10 20 cm -3
Type semiconductor (92) had. The drawing is 5 × 10 19 cm -3
Of oxygen. In addition, the carbon had 5 × 10 19 to 4 × 10 20 cm -3 due to the backflow of the oil component from the oil rotary pump. The drawing is for a case having 1 × 10 20 cm −3 .

【0054】他方、本発明に示すごとき排気系において
は炭素濃度は1×1017〜5×1018cm-3を有し、一般には
1×1018cm-3以下しか含まれない。加えて酸素も5×10
18cm-3以下一般には1×1018cm-3以下であり、図2では
2×1018cm-3の場合を示す。
On the other hand, the exhaust system as shown in the present invention has a carbon concentration of 1 × 10 17 to 5 × 10 18 cm -3 , and generally contains only 1 × 10 18 cm -3 or less. In addition, oxygen is 5 × 10
18 cm −3 or less Generally, it is 1 × 10 18 cm −3 or less, and FIG. 2 shows the case of 2 × 10 18 cm −3 .

【0055】図2において、裏面電極(94)のアルミニュ
−ムは3〜6×1020cm-3の酸素を有している。このた
め、この酸素がSIMS(二次イオン分析法)(カメカ社3F
型を使用)の測定において、バックグラウンドの酸素と
なり、N型半導体(93)中の酸素は1018〜1020cm-3となっ
てしまったものと考えられる。
In FIG. 2, the aluminum of the back surface electrode (94) has 3 to 6 × 10 20 cm -3 of oxygen. For this reason, this oxygen is used for SIMS (secondary ion analysis) (Kameka 3F
It is considered that in the measurement, the background oxygen was used, and the oxygen in the N-type semiconductor (93) was 10 18 to 10 20 cm −3 .

【0056】さらにP型半導体中の酸素、MS中には水の
成分等の酸化物不純物があり、この出発材料をシランと
同様に精製して0.1PPM以下の酸素または酸化物とするこ
とによりさらに酸素濃度を下げることの可能性が推定で
きる。
Oxygen in the P-type semiconductor and oxide impurities such as water are present in MS, and the starting material is purified in the same manner as silane to obtain oxygen or oxide of 0.1 PPM or less. The possibility of lowering the oxygen concentration can be estimated.

【0057】形成させる半導体の種類に関しては、Siの
みならず他はIV族のGe, SixC1-x(0<x<1)、SixGe
1-x (0<x<1)、SixSn1-x (0<x<1)単層ま
たは多層であっても、またこれら以外にGaAs,GaAlAs,B
P,CdS等の化合物半導体等の非酸素化物であってもよい
ことはいうまでもない。
Regarding the types of semiconductors to be formed, not only Si but also other group IV Ge, Si x C 1-x (0 <x <1), Si x Ge
1-x (0 <x <1), Si x Sn 1-x (0 <x <1) Single layer or multi-layer, GaAs, GaAlAs, B
It goes without saying that it may be a non-oxygenated compound semiconductor such as P or CdS.

【0058】本発明は3つの反応容器を用いてマルチチ
ャンバ方式でのPCVD法を示した。しかしこれを1つの反
応容器とし、そこでPCVD法により窒化珪素をシラン(Si
H4またはSi2H6 )とアンモニア(NH3)とのPCVD反応によ
り形成させることは有効である。
The present invention has shown a PCVD method in a multi-chamber system using three reaction vessels. However, this was used as one reaction vessel, where silicon nitride was converted to silane (Si
It is effective to form the film by a PCVD reaction between H 4 or Si 2 H 6 ) and ammonia (NH 3 ).

【0059】また本発明の1つの反応例えば系Iの反応
を光CVD 法によりMSとSi2H6 をB2H6を混入して行うこと
にも同時に本発明のTPと圧力調整バルブを排気系に用い
ることは有効である。
Further, one reaction of the present invention, for example, the reaction of the system I is carried out by the photo-CVD method by mixing MS and Si 2 H 6 with B 2 H 6, and at the same time, the TP and the pressure adjusting valve of the present invention are exhausted. It is effective to use in a system.

【0060】さらに本発明は、反応容器を1つとしTiCl
4 とSiH4とのPCVD反応、MoCl5,WF5またはこれらと珪化
物との反応によるTi,TiSi2,Mo,MoSi2,W,WSi2等の非酸素
化物被膜の作製に同様に有効である。
Further, in the present invention, one reaction vessel is used and TiCl 2 is used.
4 and PCVD reaction with SiH 4, MoCl 5, WF 5 or Ti by reaction thereof with silicide, TiSi 2, Mo, MoSi 2 , W, equally effective in the production of non-oxygenates coating such as WSi 2 is there.

【0061】本発明において、分離部は系IIを省略して
単にゲイト弁のみとしてもよい。
In the present invention, the separating portion may be formed by omitting the system II and merely using a gate valve.

【0062】この本発明のプラズマCVD 装置を他の構造
のシングルチャンバまたはマルチチャンバ方式に応用で
きることはいうまでもない。
It goes without saying that the plasma CVD apparatus of the present invention can be applied to a single chamber or multi-chamber system having another structure.

【0063】また本発明の実施例は図1に示すマルチチ
ャンバ方式であり、そのすべての反応容器にてPCVD法を
供給した。しかし必要に応じ、この一部または全部をプ
ラズマを用いない光CVD 法、LT CVD法(HOMO CVD法とも
いう)、減圧CVD 法を採用して複合被膜を形成してもよ
い。
The embodiment of the present invention is the multi-chamber system shown in FIG. 1, and the PCVD method is supplied to all the reaction vessels. However, if necessary, a part or all of the composite coating may be formed by using an optical CVD method that does not use plasma, an LT CVD method (also called a HOMO CVD method), or a low pressure CVD method.

【0064】[0064]

【発明の効果】本発明はかかる排気系をTPを反応室とVP
との間に反応中の圧力調整用のバルブを経て介在させる
ことにより、反応室内は0.05〜10torrの間の圧力範囲で
CVD 法を用いて被膜形成を行い、圧力調整パルブにより
制御したものである。このためRPからの油成分の逆流お
よびRPが回転時に油に混入した大気の逆流を防ぐことに
より高品質の非酸化物被膜形成を行うことができる。
According to the present invention, the exhaust system is provided with TP, reaction chamber and VP.
By interposing a valve for adjusting the pressure during the reaction between and, the inside of the reaction chamber has a pressure range of 0.05 to 10 torr.
The film is formed using the CVD method and controlled by the pressure adjusting valve. Therefore, a high-quality non-oxide film can be formed by preventing the backflow of the oil component from the RP and the backflow of the atmosphere mixed with the oil when the RP rotates.

【0065】さらに本発明は気相反応を行う前に反応容
器を真空引きをする際はTPと反応容器との間を大口径の
配管で連結でき、さらにTPを反応容器に連結させること
ができる。このため、反応容器内を3×10-8torrまたは
それ以下の圧力(3×10-8〜1×10-10torr )にするこ
とが同じTPを用いて行い得るのである。即ち、本発明装
置により反応容器内を10-8torr以下とする真空排気とCV
D 法での被膜形成に必要な0.01〜10torrの圧力とを同一
のTPを用いて制御が酸素の逆流を防ぐに加えて可能にな
った。
Further, according to the present invention, when the reaction vessel is evacuated before performing the gas phase reaction, the TP and the reaction vessel can be connected by a pipe having a large diameter, and the TP can be further connected to the reaction vessel. . Therefore, the pressure inside the reaction vessel can be made 3 × 10 −8 torr or lower (3 × 10 −8 to 1 × 10 −10 torr) using the same TP. In other words, the device of the present invention evacuates the reaction vessel to 10 -8 torr or less and CV
The pressure of 0.01 to 10 torr required for film formation by the method D was made possible by using the same TP, in addition to controlling the backflow of oxygen.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明を実施するためのプラズマ気相反応用
被膜製造装置の概略を示す図。
FIG. 1 is a diagram showing an outline of an apparatus for producing a film for plasma vapor phase reaction for carrying out the present invention.

【図2】 本発明および従来方法によって作られた半導
体装置中の不純物の分布を示す図。
FIG. 2 is a diagram showing distribution of impurities in a semiconductor device manufactured by the present invention and a conventional method.

【符号の説明】[Explanation of symbols]

1 基板 2 基板ホルダ 3 ホルダ 6、8 反応空間 14 高周波電源 17、18 反応気体の供給ノズル 17’、18’ 排気ノズル 23 水素または窒素 24 珪化物気体、炭化珪素 25 炭化物気体 26 キャリアガス 27 B26 28 モノシランまたはジシラン 32 バルブ 33 流量系 34、35、36、37 RP 38、38’ 絶縁物 39、39’ フードの絶縁物 42 扉 44、45、46、47 分離部 50 反応気体を導入するドーピン
グ系 51 反応容器系 52 排気系 61、61’ 一対の電極 62、62’ 一対の電極 71 ストップバルブ 72、74 圧力調整バルブ 84、85 ゲートバルブ 86、87、89 TP 88 クライオポンプ 100 第1の予備室 101 第1の反応容器 102 第1のバッファ室 103 第2の反応容器 104 第2のバッファ室
1 Substrate 2 Substrate Holder 3 Holder 6, 8 Reaction Space 14 High Frequency Power Supply 17, 18 Reactant Gas Supply Nozzle 17 ', 18' Exhaust Nozzle 23 Hydrogen or Nitrogen 24 Silicide Gas, Silicon Carbide 25 Carbide Gas 26 Carrier Gas 27 B 2 H 6 28 Monosilane or disilane 32 Valve 33 Flow system 34, 35, 36, 37 RP 38, 38 'Insulator 39, 39' Hood insulator 42 Door 44, 45, 46, 47 Separation part 50 Introduce reaction gas Doping system 51 Reaction vessel system 52 Exhaust system 61, 61 'Pair of electrodes 62, 62' Pair of electrodes 71 Stop valve 72, 74 Pressure adjusting valve 84, 85 Gate valve 86, 87, 89 TP 88 Cryo pump 100 First Preparatory chamber 101 First reaction vessel 102 First buffer chamber 103 Second reaction vessel 1 04 Second buffer room

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】反応容器に反応ガス導入手段と不要生成物
を排気する手段とを有するとともに、該排気する手段と
して反応容器に、複合分子ポンプ又はターボ分子ポンプ
を介して、荒引き用真空ポンプを設けてなる気相反応装
置において、該複合分子ポンプ又はターボ分子ポンプ
と、該荒引き用真空ポンプとの間には圧力調整バルブを
設けることを特徴とする気相反応装置。
1. A vacuum pump for roughing, comprising a reaction gas introducing means and a means for evacuating an unnecessary product in a reaction vessel, and a means for evacuating the reaction vessel via a complex molecular pump or a turbo molecular pump. A gas phase reaction apparatus comprising a pressure regulating valve between the composite molecular pump or turbo molecular pump and the roughing vacuum pump.
JP8354802A 1996-12-20 1996-12-20 Gas phase reaction apparatus and operation method thereof Expired - Lifetime JP3022369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8354802A JP3022369B2 (en) 1996-12-20 1996-12-20 Gas phase reaction apparatus and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8354802A JP3022369B2 (en) 1996-12-20 1996-12-20 Gas phase reaction apparatus and operation method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1233847A Division JPH0821550B2 (en) 1989-09-08 1989-09-08 Gas phase reactor

Publications (2)

Publication Number Publication Date
JPH09296272A true JPH09296272A (en) 1997-11-18
JP3022369B2 JP3022369B2 (en) 2000-03-21

Family

ID=18440008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8354802A Expired - Lifetime JP3022369B2 (en) 1996-12-20 1996-12-20 Gas phase reaction apparatus and operation method thereof

Country Status (1)

Country Link
JP (1) JP3022369B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258347A (en) * 2006-03-22 2007-10-04 Nitto Koki Kk Manufacturing method and manufacturing apparatus of compound semiconductor
US7867458B2 (en) 2003-12-23 2011-01-11 Hte Aktiengesellschaft The High Throughtput Experimentation Company Device and method for pressure and flow control in parallel reactors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7867458B2 (en) 2003-12-23 2011-01-11 Hte Aktiengesellschaft The High Throughtput Experimentation Company Device and method for pressure and flow control in parallel reactors
US8383050B2 (en) 2003-12-23 2013-02-26 Hte Ag Device and method for pressure and flow control in parallel reactors
JP2007258347A (en) * 2006-03-22 2007-10-04 Nitto Koki Kk Manufacturing method and manufacturing apparatus of compound semiconductor

Also Published As

Publication number Publication date
JP3022369B2 (en) 2000-03-21

Similar Documents

Publication Publication Date Title
US4636401A (en) Apparatus for chemical vapor deposition and method of film deposition using such deposition
CN104094418A (en) Passivation film stack for silicon-based solar cells
US7588957B2 (en) CVD process gas flow, pumping and/or boosting
JP3022369B2 (en) Gas phase reaction apparatus and operation method thereof
JP2717239B2 (en) Coating method
JP2004221427A (en) Methods and apparatuses for manufacturing iron silicide film, photoelectric conversion element and photoelectric conversion device
JPS60138909A (en) Manufacturing equipment of vapor phase reaction film and manufacture thereof
JP2717236B2 (en) Gas phase reaction film preparation method
JP2717240B2 (en) Film forming equipment
JP2923748B2 (en) Coating method
JP2717235B2 (en) Gas phase reaction processing method
JP3062470B2 (en) Coating method
JP3697199B2 (en) Solar cell manufacturing method and solar cell
JPH0821550B2 (en) Gas phase reactor
JP2639637B2 (en) Gas phase reaction film preparation method
JPH061765B2 (en) Vapor-phase reactive coating method
JPH08195348A (en) Semiconductor device manufacturing equipment
JPH0831424B2 (en) Vapor-phase reactive coating method
JP2639637C (en)
JPH0831423B2 (en) Vapor-phase reactive coating method
JP3068276B2 (en) Manufacturing method of non-single crystal tandem solar cell and manufacturing apparatus used therefor
CN112955413B (en) Method for producing coated glass substrates
JPS6057617A (en) Manufacture of semiconductor device
JPH0568109B2 (en)
JPH0612836B2 (en) Method for manufacturing photoelectric conversion element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term