JPH09296234A - Production of alumina dispersion strengthened copper - Google Patents

Production of alumina dispersion strengthened copper

Info

Publication number
JPH09296234A
JPH09296234A JP8109679A JP10967996A JPH09296234A JP H09296234 A JPH09296234 A JP H09296234A JP 8109679 A JP8109679 A JP 8109679A JP 10967996 A JP10967996 A JP 10967996A JP H09296234 A JPH09296234 A JP H09296234A
Authority
JP
Japan
Prior art keywords
powder
layered
alloy powder
alloy
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8109679A
Other languages
Japanese (ja)
Inventor
Masaki Kumagai
正樹 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP8109679A priority Critical patent/JPH09296234A/en
Publication of JPH09296234A publication Critical patent/JPH09296234A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily produce alumina dispersion strengthened copper where internal oxidation proceeds to the vicinity of the center of alloy powder and excellent strength, heat resistance, and electric conductivity are provided. SOLUTION: An alloy powder 1, having a composition consisting of Al and the balance Cu, and an oxidizing agent 3 are mixed, and the resultant mixture is mixed and compressed by means of rods 5 of a rod mill. By this procedure, the alloy powder 1 and the oxidizing agent 3 are put between the rods 5 and compressed, by which a lamellar powder 7 in which the oxidizing agent 3 is provided between mutually pressure-bonded alloy powders 1 is formed. By repeating this step, the thickness of the alloy powder 1 is reduced and the thickness Y(μm) is regulated so that it satisfies 32.X<-8> >=Y>=20 (where X means the weight percentage of Al in the powder). When heat treatment is applied to this lamellar powder 9, oxidation of the alloy powder 1 takes place from the surface of the lamellar powder 9 and the contact part with the oxidizing agent 3 and proceeds inward. Because respectice layers of the alloy powder 1 become extremely thin, internal oxidation can be allowed to processed easily to the vicinity of the center of the alloy power 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、銅マトリックスに
アルミナを分散させて機械的強度を向上させたアルミナ
分散強化銅の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing alumina-dispersion-strengthened copper in which alumina is dispersed in a copper matrix to improve mechanical strength.

【0002】[0002]

【従来の技術】従来より、銅(Cu)マトリックスにア
ルミナ(Al23)を分散させることによりアルミナ分
散強化銅を製造することが考えられている。このアルミ
ナ分散強化銅は、耐熱性,熱伝導性,導電性に優れてお
り、種々の用途に使用されている。例えば、抵抗溶接用
電極、ガスアーク溶接用コンタクトチップおよびノズ
ル、鋳型、ろう付け用リード線、等に使用されている。
2. Description of the Related Art Conventionally, it has been considered to produce alumina dispersion strengthened copper by dispersing alumina (Al 2 O 3 ) in a copper (Cu) matrix. This alumina dispersion strengthened copper has excellent heat resistance, thermal conductivity, and conductivity, and is used for various purposes. For example, it is used for resistance welding electrodes, gas arc welding contact tips and nozzles, molds, brazing lead wires, and the like.

【0003】また、この種のアルミナ分散強化銅は、次
のようにして製造されている。先ず、所定量のAlを含
み残部がCuからなる合金をアトマイズ法等により粉末
化し、その合金粉末を大気中で加熱しながら攪拌して酸
化させる。すると、合金粉末表面のAlが酸化してAl
23が形成される。また、合金粉末表面のCuも酸化し
て酸化銅(Cu2O )を形成するが、このCu2O はC
uよりもイオン化傾向の強いAlを酸化して合金粉末内
部にAl23を形成する。これを内部酸化という。この
ようにして合金粉末内部にもAl23が分散したアルミ
ナ分散強化銅が形成される。
Further, this kind of alumina dispersion strengthened copper is manufactured as follows. First, an alloy containing a predetermined amount of Al and the rest being Cu is pulverized by an atomizing method or the like, and the alloy powder is stirred and oxidized while being heated in the atmosphere. Then, Al on the surface of the alloy powder is oxidized and Al
2 O 3 is formed. Although also Cu alloy powder surface is oxidized to form a copper oxide (Cu 2 O), the Cu 2 O is C
Al having a stronger ionization tendency than u is oxidized to form Al 2 O 3 inside the alloy powder. This is called internal oxidation. In this way, alumina dispersion strengthened copper having Al 2 O 3 dispersed therein is also formed inside the alloy powder.

【0004】[0004]

【発明が解決しようとする課題】ところが、この内部酸
化は、合金粉末表面からある程度の深度範囲までしか起
こらない。従って、合金粉末の粒径が大きいと、その中
心近傍にCu−Al合金が残留する。この部分では、A
lがCuに固溶しているので導電率が低く、AlがAl
23に変換されていないため強度および耐熱性に劣る。
Alの量を増加させると強度が向上することは知られて
いるが、Alの量を増加させるに従って合金粉末の表面
で多量の酸素が消費されることになり、内部酸化が深部
まで進行しない。このため、Alの量を増加させるだけ
では充分な効果が得られなかった。また、合金粉末の粒
径を小さくすれば、合金粉末の中心近傍にまで内部酸化
が進行するが、粒径の微細化には技術的,コスト的に限
界がある。
However, this internal oxidation occurs only up to a certain depth range from the surface of the alloy powder. Therefore, if the grain size of the alloy powder is large, the Cu-Al alloy remains near the center thereof. In this part, A
Since l is a solid solution in Cu, the conductivity is low, and Al is Al
Since it is not converted to 2 O 3 , it is inferior in strength and heat resistance.
It is known that the strength is improved by increasing the amount of Al, but as the amount of Al is increased, a large amount of oxygen is consumed on the surface of the alloy powder, and the internal oxidation does not proceed to the deep portion. Therefore, the sufficient effect cannot be obtained only by increasing the amount of Al. Further, if the grain size of the alloy powder is reduced, internal oxidation progresses to the vicinity of the center of the alloy powder, but there is a technical and cost limit in reducing the grain size.

【0005】そこで、本発明は、合金粉末の中心近傍に
まで内部酸化が進行して優れた強度,耐熱性,導電性を
有するアルミナ分散強化銅を、容易に製造することを目
的としてなされた。
Therefore, the present invention has been made for the purpose of easily producing alumina-dispersion-strengthened copper having excellent strength, heat resistance, and conductivity due to the progress of internal oxidation near the center of the alloy powder.

【0006】[0006]

【課題を解決するための手段および発明の効果】上記目
的を達するためになされた、請求項1記載の発明は、
0.05〜1.8重量%のAlを含み残部がCuからな
る合金粉末と、酸化剤とを混合して混合粉末とし、該混
合粉末を粉砕機で機械的に混合・圧縮することにより、
その97%以上の粉末を下記の(1),(2)の条件を
満たす層状粉末とし、続いて、上記層状粉末に加熱処理
を施して上記層状粉末中のAlを酸化させることを特徴
とするアルミナ分散強化銅の製造方法を要旨としてい
る。
Means for Solving the Problems and Effects of the Invention The invention as set forth in claim 1 made in order to achieve the above object,
By mixing an alloy powder containing 0.05 to 1.8% by weight of Al with the balance being Cu and an oxidizing agent to form a mixed powder, and mechanically mixing and compressing the mixed powder with a pulverizer,
It is characterized in that 97% or more of the powder is made into a layered powder satisfying the following conditions (1) and (2), and then the layered powder is subjected to a heat treatment to oxidize Al in the layered powder. The gist is the method for producing alumina dispersion strengthened copper.

【0007】(1)偏平になった合金粉末が層状に重な
り、各層の間に酸化剤が配設された構造を有する。 (2)層状粉末の各層の厚さY(μm)が次式を満た
す。 32・X-0.8≧Y≧20 但し、X:粉末中のAl
の重量% このように構成された本発明では、合金粉末と酸化剤と
を混合し、その混合粉末を粉砕機で機械的に混合・圧縮
している。そして、この工程により、混合粉末は、偏平
になった合金粉末が層状に重なり、各層の間に酸化剤が
配設された構造(層状粉末)となる。このような構造で
は、合金粉末が薄い層状になっており、加熱処理時には
各層の間に配設された酸化剤との接触部分からAlの酸
化が起こる。このため、原料としての合金粉末の粒径を
小さくすることなく、中心まで内部酸化を進行させるこ
とができる。従って、優れた強度,耐熱性,導電性を有
するアルミナ分散強化銅を、容易に製造することができ
る。
(1) It has a structure in which flattened alloy powders are layered and an oxidizer is arranged between the layers. (2) The thickness Y (μm) of each layer of the layered powder satisfies the following equation. 32 · X −0.8 ≧ Y ≧ 20 However, X: Al in the powder
In the present invention thus constituted, the alloy powder and the oxidizer are mixed, and the mixed powder is mechanically mixed and compressed by a pulverizer. By this step, the mixed powder becomes a structure (layered powder) in which the flattened alloy powders are layered and the oxidizing agent is disposed between the layers. In such a structure, the alloy powder is in the form of a thin layer, and during the heat treatment, Al is oxidized from the contact portion with the oxidant arranged between the layers. Therefore, internal oxidation can be advanced to the center without reducing the grain size of the alloy powder as a raw material. Therefore, alumina dispersion strengthened copper having excellent strength, heat resistance, and conductivity can be easily manufactured.

【0008】なお、上記数値限定の根拠は以下の通りで
ある。また、本発明に限定されたAlの重量%(X)と
層状粉末の各層の厚さ(Y)との範囲を図2に例示し
た。Al量:0.05重量%未満であると完全に内部酸
化されたとしてもAl23量が少なく、充分な強度およ
び耐熱性が得られない。1.8重量%を越えると合金粒
子表面のAlによって酸素が消費されてしまい、内部酸
化が起こり難くなる。このため、Yが(2)式の下限値
である20(μm)よりも小さくなるまで粉砕機による
混合・圧縮を行わなければならない(図2参照)。この
場合、混合・圧縮に要する時間が長くなり生産性が低下
すると共に、混合・圧縮中に酸化が過剰に進行してCu
2O が多量に形成されアルミナ分散強化銅が脆弱化す
る。
The grounds for limiting the above numerical values are as follows. Further, the range of the weight% Al (X) and the thickness (Y) of each layer of the layered powder, which is limited to the present invention, is illustrated in FIG. If the amount of Al is less than 0.05% by weight, the amount of Al 2 O 3 is small even if it is completely internally oxidized, and sufficient strength and heat resistance cannot be obtained. If it exceeds 1.8% by weight, oxygen is consumed by Al on the surface of the alloy particles, and internal oxidation hardly occurs. Therefore, the mixing and compression by the pulverizer must be performed until Y becomes smaller than the lower limit value of 20 (μm) of the expression (2) (see FIG. 2). In this case, the time required for mixing / compressing becomes long and the productivity decreases, and the oxidation proceeds excessively during mixing / compressing, so that Cu
A large amount of 2 O is formed and the alumina dispersion strengthened copper becomes brittle.

【0009】層状粉末の厚さY:Y>32・X-0.8(μ
m)であると、内部酸化が各層の中心まで進行しない。
従って、充分な強度および耐熱性が得られない。上記A
l量の範囲では、Y=20(μm)となるまで混合・圧
縮を行えば、層状粉末の各層の中心まで充分に内部酸化
が進行する。また、それ以上混合・圧縮を行っても、い
たずらに生産性を低下させると共に、内部のCu2O を
過剰にして最終生成物であるアルミナ分散強化銅の脆弱
化を招くだけである。
Thickness of layered powder Y: Y> 32 · X −0.8
m), internal oxidation does not proceed to the center of each layer.
Therefore, sufficient strength and heat resistance cannot be obtained. A above
In the range of 1 amount, if the mixture is mixed and compressed until Y = 20 (μm), the internal oxidation proceeds sufficiently to the center of each layer of the layered powder. Further, even if the mixing and compression are further performed, the productivity is unnecessarily reduced, and Cu 2 O in the inside is excessively caused, so that the final product, alumina dispersion strengthened copper, is weakened.

【0010】(1),(2)の条件を満たす層状粉末の
割合:粉砕機による混合・圧縮を行った場合、生成され
る層状粉末の大きさにはばらつきがあり、3%程度は大
きいままである。そこで、97%の層状粉末が上記条件
を満たせばよいことにした。また、この程度の層状粉末
が上記条件を満たせば、最終生成物であるアルミナ分散
強化銅の強度および耐熱性を充分に確保することができ
る。
Proportion of layered powder satisfying the conditions (1) and (2): When mixed and compressed by a pulverizer, the size of the layered powder produced varies, and about 3% remains large. Is. Therefore, it was decided that 97% of the layered powder should satisfy the above conditions. Moreover, if the layered powder of this degree satisfies the above conditions, the strength and heat resistance of the final product, alumina-dispersion-strengthened copper, can be sufficiently ensured.

【0011】請求項2記載の発明は、請求項1記載の構
成に加え、上記酸化剤が、0.05〜1.8重量%のA
lを含み残部がCuからなる合金粉末を、大気中で30
0〜400℃に加熱しながら攪拌して、その表面を酸化
させたものであることを特徴としている。
According to a second aspect of the present invention, in addition to the constitution of the first aspect, the oxidizing agent is 0.05 to 1.8% by weight of A.
alloy powder containing 1 and the balance being Cu
It is characterized in that the surface is oxidized by stirring while heating at 0 to 400 ° C.

【0012】すなわち、本発明では、酸化剤として、原
料としての合金粉末と同様の構成の材料を使用してい
る。このため、本発明では、酸化剤として使用された合
金粉末もアルミナ分散強化銅の構成材料となる。従っ
て、請求項1記載の発明の効果に加えて、素材の無駄を
なくすと共に、最終生成物としてのアルミナ分散強化銅
に不純物が含まれるのを抑制することができるといった
効果が得られる。
That is, in the present invention, a material having the same structure as the alloy powder as a raw material is used as the oxidizing agent. Therefore, in the present invention, the alloy powder used as the oxidizing agent also serves as the constituent material of the alumina dispersion strengthened copper. Therefore, in addition to the effect of the invention described in claim 1, it is possible to obtain the effect that the waste of the raw material can be eliminated and the inclusion of impurities in the alumina dispersion strengthened copper as the final product can be suppressed.

【0013】請求項3記載の発明は、0.05〜1.8
重量%のAlを含み残部がCuからなる合金粉末を、大
気中で300〜400℃に加熱しながら攪拌してその表
面を酸化させ、該粉末を粉砕機で機械的に混合・圧縮す
ることにより、その97%以上の粉末を下記の(1),
(2)の条件を満たす層状粉末とし、続いて、上記層状
粉末に加熱処理を施して上記層状粉末中のAlを酸化さ
せることを特徴とするアルミナ分散強化銅の製造方法を
要旨としている。
The invention according to claim 3 is 0.05 to 1.8.
By alloying an alloy powder containing Al by weight and a balance of Cu while heating at 300 to 400 ° C. in the air to oxidize the surface of the alloy powder and mechanically mix and compress the powder with a pulverizer. , 97% or more of the following powder (1),
The gist is a method for producing alumina-dispersion-strengthened copper, characterized in that a layered powder satisfying the condition (2) is obtained, and then the layered powder is subjected to a heat treatment to oxidize Al in the layered powder.

【0014】(1)偏平になった合金粉末が層状に重な
った構造を有する。 (2)層状粉末の各層の厚さY(μm)が次式を満た
す。 32・X-0.8≧Y≧20 但し、X:粉末中のAl
の重量% すなわち、本発明では、原料として使用される合金粉末
の表面を酸化させることにより、その表面の酸化部分を
(請求項1,2に記載した)酸化剤の代わりに使用して
いる。このため、請求項1および2に記載の発明と同様
の効果が得られると共に、合金粉末と酸化剤とを個々に
取り扱う必要がないので、一層簡単にアルミナ分散強化
銅を製造することができるといった効果が得られる。従
って、きわめて生産性を向上させることができる。
(1) It has a structure in which flattened alloy powders are layered. (2) The thickness Y (μm) of each layer of the layered powder satisfies the following equation. 32 · X −0.8 ≧ Y ≧ 20 However, X: Al in the powder
That is, in the present invention, by oxidizing the surface of the alloy powder used as a raw material, the oxidized portion of the surface is used instead of the oxidizing agent (described in claims 1 and 2). Therefore, the same effects as those of the inventions according to claims 1 and 2 can be obtained, and since it is not necessary to individually handle the alloy powder and the oxidizing agent, it is possible to more easily manufacture the alumina dispersion strengthened copper. The effect is obtained. Therefore, the productivity can be greatly improved.

【0015】[0015]

【発明の実施の形態】次に、本発明の実施の形態を図面
と共に説明する。図1は、本発明が適用された製造方法
により、アルミナ分散強化銅が製造される過程、特に、
層状粉末9が形成されるまでの過程を模式的に表す説明
図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a process of producing alumina dispersion strengthened copper by a production method to which the present invention is applied, in particular,
It is explanatory drawing which represents typically the process until the layered powder 9 is formed.

【0016】図1に例示するように、本製造方法では、
0.05〜1.8%のAlを含み残部がCuからなる合
金粉末1と、酸化剤3とを混合し、それを粉砕機(ここ
ではロッドミルとする)により混合・圧縮する。する
と、合金粉末1および酸化剤3がロッド5に挟まれて圧
縮され、例えば、図に例示するように、互いに圧接され
た合金粉末1同士の間に、酸化剤3が配設された層状粉
末7が形成される。この粉砕工程を何回も繰り返すと、
合金粉末1の層が薄くなり、その厚さY(μm)が次式
を満たすような層状粉末9となる。
As illustrated in FIG. 1, in the present manufacturing method,
An alloy powder 1 containing 0.05 to 1.8% Al and the rest being Cu is mixed with an oxidizer 3, which is mixed and compressed by a pulverizer (here, a rod mill). Then, the alloy powder 1 and the oxidizer 3 are sandwiched between the rods 5 and compressed, and for example, as illustrated in the drawing, the layered powder in which the oxidizer 3 is disposed between the alloy powders 1 pressed against each other. 7 is formed. If you repeat this crushing process many times,
The layer of the alloy powder 1 becomes thin, and the layered powder 9 has a thickness Y (μm) satisfying the following expression.

【0017】32・X-0.8≧Y≧20 但し、X:
粉末中のAlの重量% なお、この粉砕工程は、このような層状粉末9が、全体
の97%以上に及ぶ合金粉末1に対して形成されるまで
実行する。また、粉砕機としては、機械的に混合・圧縮
を行うものであれば種々の粉砕機を使用することができ
る。例えば、ボールミルを使用した場合は、図1におけ
るロッド5がボールに代わるだけで他の動作は同様とな
る。
32 · X −0.8 ≧ Y ≧ 20 where X:
% By weight of Al in the powder This pulverizing step is executed until such layered powder 9 is formed in the alloy powder 1 covering 97% or more of the whole. As the crusher, various crushers can be used as long as they mechanically mix and compress. For example, when a ball mill is used, the rod 5 in FIG. 1 is replaced with a ball, and other operations are similar.

【0018】層状粉末9では、合金粉末1の層は一般に
多数積層され、各合金粉末1の層の間には酸化剤3が配
設される。この層状粉末9に熱処理を施すと、合金粉末
1内のAlが酸化される。この酸化反応は、層状粉末9
の表面および酸化剤3との接触部分から起こり、合金粉
末1の内部へ進行する。合金粉末1の各層は、前述のよ
うにきわめて薄くなっている。このため、原料としての
合金粉末1の粒径を小さくすることなく、中心近傍まで
内部酸化を進行させることができる。
In the layered powder 9, a large number of layers of the alloy powder 1 are generally laminated, and the oxidizer 3 is arranged between the layers of the alloy powder 1. When heat treatment is applied to the layered powder 9, Al in the alloy powder 1 is oxidized. This oxidation reaction is a layered powder 9
Of the alloy powder 1 and the contact portion with the oxidizer 3, and progresses to the inside of the alloy powder 1. Each layer of the alloy powder 1 is extremely thin as described above. Therefore, internal oxidation can be advanced to the vicinity of the center without reducing the grain size of the alloy powder 1 as a raw material.

【0019】また、本製造方法では、前述の数値限定に
より次の効果を得ることができる。 .Y≦32・X-0.8(μm)としており、かつ、合金
粉末1がAlを0.05重量%以上含んでいるので、上
記内部酸化が合金粉末1の中心まで充分に進行し、か
つ、合金粉末1内に充分な量のAl23が形成される。
従って、充分な強度,耐熱性,導電性を有するアルミナ
分散強化銅を製造することができる。 .Y≧20としているので、上記粉砕工程の作業時間
を充分に短縮することができ、生産性を向上させると共
に、Cu2O が多量に形成されてアルミナ分散強化銅が
脆弱化するのを回避することができる。また、Alの重
量%を1.8以下としたので、Y≧20であっても合金
粉末1の中心付近まで内部酸化することができる。 .このような層状粉末9が、全体の97%以上に及ぶ
合金粉末1に対して形成されているので、アルミナ分散
強化銅の強度および耐熱性を充分に確保することができ
る。また、粉砕工程をこの時点で中断しているので、い
たずらに生産性を低下させたり、アルミナ分散強化銅の
脆弱化を招いたりするのを防止することができる。
Further, according to the present manufacturing method, the following effects can be obtained by the above numerical limitation. . Since Y ≦ 32 · X −0.8 (μm) and the alloy powder 1 contains 0.05 wt% or more of Al, the internal oxidation is sufficiently advanced to the center of the alloy powder 1 and the alloy is A sufficient amount of Al 2 O 3 is formed in the powder 1.
Therefore, the alumina dispersion strengthened copper having sufficient strength, heat resistance and conductivity can be manufactured. . Since Y ≧ 20, the working time of the pulverization step can be sufficiently shortened, productivity is improved, and Cu 2 O is formed in a large amount to prevent the alumina dispersion strengthened copper from becoming brittle. be able to. Further, since the weight% of Al is set to 1.8 or less, even if Y ≧ 20, internal oxidation can be performed up to the vicinity of the center of the alloy powder 1. . Since such layered powder 9 is formed for the alloy powder 1 covering 97% or more of the whole, the strength and heat resistance of the alumina dispersion strengthened copper can be sufficiently ensured. Further, since the crushing process is interrupted at this point, it is possible to prevent the productivity from being unnecessarily reduced and the alumina dispersion strengthened copper from being weakened.

【0020】従って、本製造方法によれば、優れた強
度,耐熱性,導電性を有するアルミナ分散強化銅を、容
易に製造することができる。
Therefore, according to the present manufacturing method, the alumina dispersion strengthened copper having excellent strength, heat resistance and conductivity can be easily manufactured.

【0021】[0021]

【実施例】 次に、本発明が適用されたアルミナ分散強
化銅の製造方法を具体的に実施し、従来と同様の製造方
法である比較例と比較した。先ず、各実施例および比較
例の製造方法を示す。 実施例1:粒径297μm以下のCu−0.10重量%
Al合金粉末に、同じ合金粉末を350℃×1時間大気
中で攪拌しながら酸化させたもの(酸素量2重量%)を
質量で5%混合し、これをロッドミルにて20g/sの
流速で連続的に粉砕(混合・圧縮)した。この処理によ
り、合金粉末の97%が、層の厚さYが20〜200μ
mの層状粉末となった。この層状粉末をゴム型に封入
し、196MPaの水圧でCIP(冷間静水圧プレス)
した。このCIP材を無酸素銅製の缶(φ254mm×φ
234mm×500mmL:外径254mm,内径234mm,
長さ500mmの意、以下同様)に封入し、850℃×3
時間加熱保持して内部酸化させた後、ビレットとしてφ
28mmに熱間押出し、抽伸によりφ16mmの棒とした。
このアルミナ分散強化銅部のAl23量は0.2重量%
であった。
[Examples] Next, a method for producing alumina dispersion strengthened copper to which the present invention was applied was specifically carried out and compared with a comparative example, which is a production method similar to the conventional one. First, the manufacturing method of each example and comparative example will be described. Example 1: Cu-0.10 wt% with a particle size of 297 μm or less
5% by mass of a mixture of Al alloy powder and the same alloy powder oxidized at 350 ° C. for 1 hour in the air while stirring (oxygen content 2% by weight) was mixed with a rod mill at a flow rate of 20 g / s. It was continuously crushed (mixed and compressed). By this treatment, 97% of the alloy powder has a layer thickness Y of 20 to 200 μm.
It became a layered powder of m. This layered powder was sealed in a rubber mold and CIP (cold isostatic press) with a water pressure of 196 MPa.
did. This CIP material can be made of oxygen-free copper (φ254mm × φ
234mm × 500mmL: outer diameter 254mm, inner diameter 234mm,
Enclosed in a length of 500 mm, the same below), 850 ° C x 3
After being heated and held for a period of time for internal oxidation, φ as a billet
It was hot extruded to 28 mm and drawn into a 16 mm diameter rod.
The amount of Al 2 O 3 in this alumina dispersion strengthened copper part is 0.2% by weight.
Met.

【0022】実施例2:粒径297μm以下のCu−
0.10重量%Al合金粉末に、Cu 2O 粉末(粒径約
1μm)を質量で0.6%混合し、これをロッドミルに
て20g/sの流速で連続的に粉砕(混合・圧縮)し
た。この処理により、合金粉末の97%が、層の厚さY
が20〜200μmの層状粉末となった。この層状粉末
を無酸素銅製の缶(φ254mm×φ234mm×500mm
L)に封入し、850℃×3時間加熱保持して内部酸化
させた後、ビレットとしてφ28mmに熱間押出し、抽伸
によりφ16mmの棒とした。このアルミナ分散強化銅部
のAl23量は0.2重量%であった。
Example 2: Cu-having a particle size of 297 μm or less
Cu in 0.10 wt% Al alloy powder TwoO powder (particle size approx.
1 μm) is mixed by 0.6% by mass, and this is mixed in a rod mill.
And continuously pulverize (mix and compress) at a flow rate of 20 g / s
Was. By this treatment, 97% of the alloy powder has a layer thickness Y
Became a layered powder of 20 to 200 μm. This layered powder
Is an oxygen-free copper can (φ254 mm × φ234 mm × 500 mm
L), sealed by heating at 850 ° C for 3 hours and internally oxidized
After that, as a billet, hot extrude to φ28 mm and draw
Therefore, a rod with a diameter of 16 mm was prepared. This alumina dispersion strengthened copper part
AlTwoOThreeThe amount was 0.2% by weight.

【0023】実施例3:粒径149μm以下のCu−
0.3重量%Al合金粉末にCu2O粉末(粒径約1μ
m)を3%混合し、これをロッドミルにて20g/sの
流速で連続的に粉砕(混合・圧縮)した。この処理によ
り、合金粉末の97%が、層の厚さYが20〜80μm
の層状粉末となった。これを銅皿に乗せArガス雰囲気
中で850℃×3時間加熱保持して内部酸化させ、更に
水素ガス雰囲気中で700℃×1時間加熱保持して層状
粉末表面のCu2O を還元した。加熱処理により層状粉
末が焼結したので、処理後の層状粉末を銅皿から取り出
しロッドミルで解砕した。この粉末を燐脱酸銅製の缶
(φ254mm×φ234mm×500mmL)に封入し、こ
れをビレットとしてφ28mmに熱間押出した後、抽伸に
よりφ16mmの棒とした。このアルミナ分散強化銅部の
Al23量は0.7重量%であった。
Example 3: Cu-having a particle size of 149 μm or less
0.3% by weight of Al alloy powder and Cu 2 O powder (particle size of about 1μ
m) was mixed with 3%, and this was continuously pulverized (mixed and compressed) by a rod mill at a flow rate of 20 g / s. By this treatment, 97% of the alloy powder has a layer thickness Y of 20 to 80 μm.
Became a layered powder of. This was placed on a copper dish and heated and kept in an Ar gas atmosphere at 850 ° C. for 3 hours to be internally oxidized, and further heated and kept at 700 ° C. for 1 hour in a hydrogen gas atmosphere to reduce Cu 2 O on the surface of the layered powder. Since the layered powder was sintered by the heat treatment, the layered powder after the treatment was taken out from the copper dish and crushed with a rod mill. This powder was enclosed in a phosphor deoxidized copper can (φ254 mm × φ234 mm × 500 mmL), which was hot extruded to φ28 mm as a billet, and then drawn into a φ16 mm rod. The amount of Al 2 O 3 in this alumina dispersion strengthened copper part was 0.7% by weight.

【0024】実施例4:粒径149μm以下のCu−
0.3重量%Al合金粉末を350℃×1時間大気中で
攪拌しながら酸化させ、これをロッドミルにて20g/
sの流速で連続的に粉砕(混合・圧縮)した。この処理
によって、合金粉末の97%が、層の厚さYが20〜8
0μmの層状粉末となった。これを銅皿に乗せArガス
雰囲気中で850℃×3時間加熱保持して内部酸化さ
せ、更に水素ガス雰囲気中で700℃×1時間加熱保持
して層状粉末表面のCu2O を還元した。加熱処理によ
り層状粉末が焼結したので、処理後の層状粉末を銅皿か
ら取り出しロッドミルで解砕した。この粉末を無酸素銅
製の缶(φ254mm×φ234mm×500mmL)に封入
し、これをビレットとしてφ28mmに熱間押出した後、
抽伸によりφ16mmの棒とした。このアルミナ分散強化
銅部のAl23量は0.7重量%であった。
Example 4: Cu-having a particle size of 149 μm or less
0.3 wt% Al alloy powder was oxidized at 350 ° C. for 1 hour while stirring in the air, and 20 g /
It was continuously pulverized (mixed and compressed) at a flow rate of s. By this treatment, 97% of the alloy powder has a layer thickness Y of 20 to 8
It became a layered powder of 0 μm. This was placed on a copper dish and heated and kept in an Ar gas atmosphere at 850 ° C. for 3 hours to be internally oxidized, and further heated and kept at 700 ° C. for 1 hour in a hydrogen gas atmosphere to reduce Cu 2 O on the surface of the layered powder. Since the layered powder was sintered by the heat treatment, the layered powder after the treatment was taken out from the copper dish and crushed with a rod mill. This powder was enclosed in an oxygen-free copper can (φ254 mm × φ234 mm × 500 mmL), which was used as a billet to hot extrude to φ28 mm.
A 16 mm diameter rod was drawn by drawing. The amount of Al 2 O 3 in this alumina dispersion strengthened copper part was 0.7% by weight.

【0025】実施例5:粒径149μm以下のCu−
1.4重量%Al合金粉末を、400℃×1時間大気中
でボールミルにて混合・粉砕しながら酸化させた。この
処理により、合金粉末の97%が、層の厚さYが20〜
24μmの層状粉末となった。これを銅皿に乗せArガ
ス雰囲気中で880℃×2時間加熱保持して内部酸化さ
せ、更に水素ガス雰囲気中で700℃×30分加熱保持
して層状粉末表面のCu 2O を還元した。加熱処理によ
り層状粉末が焼結したので、処理後の層状粉末を銅皿か
ら取り出しロッドミルで解砕した。この粉末を無酸素銅
製の缶(φ254mm×φ234mm×500mmL)に封入
し、これをビレットとしてφ28mmに熱間押出した後、
抽伸によりφ16mmの棒とした。このアルミナ分散強化
銅部のAl 23量は2.3重量%であった。
Example 5: Cu-having a particle size of 149 μm or less
1.4% by weight Al alloy powder in air at 400 ° C for 1 hour
It was oxidized while being mixed and crushed with a ball mill. this
By the treatment, 97% of the alloy powder has a layer thickness Y of 20 to
It became a layered powder of 24 μm. Place this on a copper plate, Ar gas
Internal oxidation by heating at 880 ℃ for 2 hours
And hold at 700 ° C for 30 minutes in a hydrogen gas atmosphere.
And Cu on the surface of layered powder TwoO 2 was reduced. By heat treatment
Since the layered powder was sintered, place the treated layered powder in a copper dish.
It was crushed with a rod mill. This powder is oxygen free copper
Enclosed in a can (φ254mm × φ234mm × 500mmL)
After hot extruding this into a billet of φ28 mm,
A 16 mm diameter rod was drawn by drawing. This alumina dispersion strengthening
Al of copper part TwoOThreeThe amount was 2.3% by weight.

【0026】比較例1:粒径297μm以下のCu−
0.10重量%Al合金粉末に、同じ合金粉末を350
℃×1時間大気中で攪拌しながら酸化させたもの(酸素
量2重量%)を質量で5%混合し、この粉末をゴム型に
封入して196MPaの水圧でCIPした。このCIP
材を無酸素銅製の缶(φ254mm×φ234mm×500
mmL)に封入し、850℃×3時間加熱保持して内部酸
化させた後、ビレットとしてφ28mmに熱間押出し、抽
伸によりφ16mmの棒とした。
Comparative Example 1: Cu-having a particle size of 297 μm or less
The same alloy powder is added to 0.10 wt% Al alloy powder.
A mixture obtained by mixing 5% by mass of a substance (oxygen amount: 2% by weight), which was oxidized while stirring in the air at 1 ° C. for 1 hour, sealed this powder in a rubber mold and CIP was performed at a water pressure of 196 MPa. This CIP
Oxygen-free copper can (φ254mm × φ234mm × 500)
mmL), heated and held at 850 ° C. for 3 hours for internal oxidation, and then hot extruded to a diameter of 28 mm as a billet and drawn into a diameter of 16 mm.

【0027】比較例2:粒径297μm以下のCu−
0.10重量%Al合金粉末に、Cu 2O 粉末(粒径約
1μm)を質量で0.6%混合した。この粉末を無酸素
銅製の缶(φ254mm×φ234mm×500mmL)に封
入し、850℃×3時間加熱保持して内部酸化させた
後、ビレットとしてφ28mmに熱間押出し、抽伸により
φ16mmの棒とした。
Comparative Example 2: Cu-having a particle size of 297 μm or less
Cu in 0.10 wt% Al alloy powder TwoO powder (particle size approx.
1 μm) was mixed in an amount of 0.6% by mass. This powder is oxygen free
Sealed in a copper can (φ254 mm × φ234 mm × 500 mmL)
Then, it was heated and held at 850 ° C. for 3 hours for internal oxidation.
After that, as a billet, hot extruding to φ28 mm and drawing
A φ16 mm rod was used.

【0028】比較例3:粒径149μm以下のCu−
0.3重量%Al合金粉末にCu2O粉末(粒径約1μ
m)を3%混合した。これを銅皿に乗せArガス雰囲気
中で850℃×3時間加熱保持して内部酸化させ、更に
水素ガス雰囲気中で700℃×1時間加熱保持して粉末
表面のCu2O を還元した。加熱処理により粉末が焼結
したので、処理後の粉末を銅皿から取り出しロッドミル
で解砕した。この粉末を燐脱酸銅製の缶(φ254mm×
φ234mm×500mmL)に封入し、これをビレットと
してφ28mmに熱間押出した後、抽伸によりφ16mmの
棒とした。
Comparative Example 3: Cu-having a particle size of 149 μm or less
0.3% by weight of Al alloy powder and Cu 2 O powder (particle size of about 1μ
m) was mixed in 3%. This was placed on a copper dish and heated and held in an Ar gas atmosphere at 850 ° C. for 3 hours for internal oxidation, and further heated and held at 700 ° C. for 1 hour in a hydrogen gas atmosphere to reduce Cu 2 O on the powder surface. Since the powder was sintered by the heat treatment, the powder after treatment was taken out from the copper dish and crushed with a rod mill. Add this powder to a phosphor deoxidized copper can (φ254 mm x
(φ234 mm × 500 mm L), and this was used as a billet to hot extrude to φ28 mm, and then drawn into a φ16 mm bar.

【0029】比較例4:粒径149μm以下のCu−
0.3重量%Al合金粉末を350℃×1時間大気中で
攪拌しながら酸化させた。これを銅皿に乗せArガス雰
囲気中で850℃×3時間加熱保持して内部酸化させ、
更に水素ガス雰囲気中で700℃×1時間加熱保持して
粉末表面のCu2O を還元した。加熱処理により粉末が
焼結したので、処理後の粉末を銅皿から取り出しロッド
ミルで解砕した。この粉末を無酸素銅製の缶(φ254
mm×φ234mm×500mmL)に封入し、これをビレッ
トとしてφ28mmに熱間押出した後、抽伸によりφ16
mmの棒とした。
Comparative Example 4: Cu-having a particle size of 149 μm or less
The 0.3 wt% Al alloy powder was oxidized while being stirred in the air at 350 ° C. for 1 hour. This is placed on a copper dish and heated and held in an Ar gas atmosphere at 850 ° C. for 3 hours for internal oxidation,
Further, it was heated and held at 700 ° C. for 1 hour in a hydrogen gas atmosphere to reduce Cu 2 O on the powder surface. Since the powder was sintered by the heat treatment, the powder after treatment was taken out from the copper dish and crushed with a rod mill. Oxygen-free copper cans (φ254
mm × φ234 mm × 500 mmL), and using this as a billet, hot extruding to φ28 mm, then drawing to φ16
It was a mm stick.

【0030】比較例5:粒径149μm以下のCu−
1.4重量%Al合金粉末を、400℃×1時間大気中
で酸化させた。これを銅皿に乗せArガス雰囲気中で8
80℃×2時間加熱保持して内部酸化させ、更に水素ガ
ス雰囲気中で700℃×30分加熱保持して粉末表面の
Cu2O を還元した。加熱処理により粉末が焼結したの
で、処理後の粉末を銅皿から取り出しロッドミルで解砕
した。この粉末を無酸素銅製の缶(φ254mm×φ23
4mm×500mmL)に封入し、これをビレットとしてφ
28mmに熱間押出した後、抽伸によりφ16mmの棒とし
た。
Comparative Example 5: Cu-having a particle size of 149 μm or less
The 1.4 wt% Al alloy powder was oxidized in the atmosphere at 400 ° C. for 1 hour. Place this on a copper plate and place it in an Ar gas atmosphere for 8
The mixture was heated and maintained at 80 ° C. for 2 hours to be internally oxidized, and further heated and kept at 700 ° C. for 30 minutes in a hydrogen gas atmosphere to reduce Cu 2 O on the powder surface. Since the powder was sintered by the heat treatment, the powder after treatment was taken out from the copper dish and crushed with a rod mill. Oxygen-free copper cans (φ254mm × φ23)
4mm x 500mmL) and use this as a billet
After hot extrusion to 28 mm, it was drawn into a bar having a diameter of 16 mm.

【0031】すなわち、実施例1〜5と比較例1〜5と
では数字が対応するもの同士で製造方法が類似してお
り、粉砕工程を施して層状粉末としたか否かにおいて異
なる。 比較例6:実施例5において原料粉のAl量が1.9重
量%のものを作成したところ、アルミナ分散強化銅のA
23量は2.4重量%であった。前述したようにAl
23変換率は47%と低く、強度は低く、固溶Alが残
留するため導電率も低下していた。次に、各実施例およ
び比較例によって製造された棒材の特性(導電率、引張
特性、硬さ)を表1に示す。
That is, in Examples 1 to 5 and Comparative Examples 1 to 5, those having corresponding numbers have similar manufacturing methods, and are different in whether or not a pulverizing step is performed to form a layered powder. Comparative Example 6: A material powder having an Al content of 1.9 wt% in Example 5 was prepared.
The amount of l 2 O 3 was 2.4% by weight. As mentioned above, Al
The 2 O 3 conversion rate was as low as 47%, the strength was low, and the solid solution Al remained, so the conductivity was also lowered. Next, Table 1 shows the characteristics (conductivity, tensile characteristics, hardness) of the bar materials manufactured in the respective examples and comparative examples.

【0032】[0032]

【表1】 [Table 1]

【0033】但し、表1におけるAl23変換率は次の
ようにして測定した。加熱処理が終了して棒材を成形す
る前の粉末を酸で溶解すると、Alのみが溶解しAl2
3は溶解しない。そこで、その溶液に対して原子吸光
分析を行い、Al23となっていないAl量を測定して
次式より計算した。
However, the Al 2 O 3 conversion rate in Table 1 was measured as follows. When the powder that has been subjected to the heat treatment and before forming the rod is dissolved with an acid, only Al is dissolved and Al 2
O 3 does not dissolve. Therefore, atomic absorption analysis was performed on the solution, and the amount of Al that was not Al 2 O 3 was measured and calculated from the following equation.

【0034】[0034]

【数1】 [Equation 1]

【0035】表1に示すように、各実施例は対応する比
較例に比べて機械的強度が向上していることが判る。ま
た、表1には示さないが、焼きなまし後の引張試験,硬
さ試験等によって、各実施例は対応する比較例に比べて
耐熱性が向上していることが判った。このように、上記
各実施例の製造方法によれば、優れた強度,耐熱性,導
電性を有するアルミナ分散強化銅を、容易に製造するこ
とができる。
As shown in Table 1, it can be seen that each example has improved mechanical strength as compared with the corresponding comparative example. Further, although not shown in Table 1, it was found by a tensile test after hardness annealing, a hardness test, etc. that each example had improved heat resistance as compared with the corresponding comparative example. As described above, according to the manufacturing method of each of the above-described examples, it is possible to easily manufacture the alumina dispersion strengthened copper having excellent strength, heat resistance, and conductivity.

【0036】更に、実施例1では原料としての合金粉末
と同じ粉末を酸化させたものを酸化剤として使用してい
る。このため、素材の無駄をなくすと共に、最終生成物
としてのアルミナ分散強化銅に不純物が含まれるのを抑
制し、そのアルミナ分散強化銅の組成を容易に設定する
ことができる。また、実施例4,5では、原料としての
合金粉末表面の酸化部分を酸化剤の代わりに使用してい
る。このため、合金粉末と酸化剤とを個々に取り扱う必
要がなく、一層簡単にアルミナ分散強化銅を製造するこ
とができる。更に、実施例1と同様、素材の無駄をなく
すと共に、不純物の混入を抑制し、組成を容易に設定す
ることができる。
Furthermore, in Example 1, the same powder as the alloy powder as the raw material was oxidized and used as the oxidizer. For this reason, it is possible to eliminate waste of raw materials, suppress inclusion of impurities in the alumina dispersion-strengthened copper as the final product, and easily set the composition of the alumina dispersion-strengthened copper. Further, in Examples 4 and 5, the oxidized portion on the surface of the alloy powder as the raw material is used instead of the oxidizing agent. Therefore, it is not necessary to individually handle the alloy powder and the oxidizing agent, and the alumina dispersion strengthened copper can be manufactured more easily. Further, as in the first embodiment, it is possible to eliminate the waste of materials, suppress the mixing of impurities, and easily set the composition.

【0037】なお、本発明は上記実施例になんら限定さ
れるものではなく、本発明の要旨を逸脱しない範囲で種
々の態様で実施することができる。例えば、酸化剤とし
ては上記以外に種々のものを使用することができ、Al
量等の数値も本発明の範囲内で種々の値に設定すること
ができる。
The present invention is not limited to the above embodiments, and can be carried out in various modes without departing from the gist of the present invention. For example, various oxidants other than the above can be used.
Numerical values such as quantity can be set to various values within the scope of the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明が適用された製造方法により層状粉末
が形成されるまでの過程を模式的に表す説明図である。
FIG. 1 is an explanatory view schematically showing a process until a layered powder is formed by a manufacturing method to which the present invention is applied.

【図2】 Alの重量%と層状粉末の各層の厚さとの本
発明の範囲を表す説明図である。
FIG. 2 is an explanatory view showing the range of the present invention of the weight% of Al and the thickness of each layer of the layered powder.

【符号の説明】[Explanation of symbols]

1…合金粉末 3…酸化剤 5…ロッド
7,9…層状粉末
1 ... Alloy powder 3 ... Oxidizing agent 5 ... Rod
7, 9 ... Layered powder

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 0.05〜1.8重量%のAlを含み残
部がCuからなる合金粉末と、酸化剤とを混合して混合
粉末とし、 該混合粉末を粉砕機で機械的に混合・圧縮することによ
り、その97%以上の粉末を下記の(1),(2)の条
件を満たす層状粉末とし、 続いて、上記層状粉末に加熱処理を施して上記層状粉末
中のAlを酸化させることを特徴とするアルミナ分散強
化銅の製造方法。 (1)偏平になった合金粉末が層状に重なり、各層の間
に酸化剤が配設された構造を有する。 (2)層状粉末の各層の厚さY(μm)が次式を満た
す。 32・X-0.8≧Y≧20 但し、X:粉末中のAl
の重量%
1. An alloy powder containing 0.05 to 1.8% by weight of Al and the balance being Cu, and an oxidizing agent are mixed into a mixed powder, and the mixed powder is mechanically mixed by a pulverizer. By compressing, 97% or more of the powder is made into a layered powder satisfying the following conditions (1) and (2), and then the layered powder is subjected to a heat treatment to oxidize Al in the layered powder. A method for producing an alumina dispersion strengthened copper characterized by the above. (1) It has a structure in which flattened alloy powders are layered and an oxidizer is disposed between the layers. (2) The thickness Y (μm) of each layer of the layered powder satisfies the following equation. 32 · X −0.8 ≧ Y ≧ 20 However, X: Al in the powder
Wt% of
【請求項2】 上記酸化剤が、0.05〜1.8重量%
のAlを含み残部がCuからなる合金粉末を、大気中で
300〜400℃に加熱しながら攪拌して、その表面を
酸化させたものであることを特徴とする請求項1記載の
アルミナ分散強化銅の製造方法。
2. The oxidant is 0.05 to 1.8% by weight.
2. The alumina dispersion strengthening according to claim 1, wherein the alloy powder containing Al and the balance being Cu is stirred in the air while being heated to 300 to 400 ° C. to oxidize the surface thereof. Copper manufacturing method.
【請求項3】 0.05〜1.8重量%のAlを含み残
部がCuからなる合金粉末を、大気中で300〜400
℃に加熱しながら攪拌してその表面を酸化させ、 該粉末を粉砕機で機械的に混合・圧縮することにより、
その97%以上の粉末を下記の(1),(2)の条件を
満たす層状粉末とし、 続いて、上記層状粉末に加熱処理を施して上記層状粉末
中のAlを酸化させることを特徴とするアルミナ分散強
化銅の製造方法。 (1)偏平になった合金粉末が層状に重なった構造を有
する。 (2)層状粉末の各層の厚さY(μm)が次式を満た
す。 32・X-0.8≧Y≧20 但し、X:粉末中のAl
の重量%
3. An alloy powder containing 0.05 to 1.8% by weight of Al and the balance of Cu is 300 to 400 in air.
By stirring while heating to ℃ to oxidize the surface, by mechanically mixing and compressing the powder with a pulverizer,
97% or more of the powder is used as a layered powder that satisfies the following conditions (1) and (2), and then the layered powder is subjected to heat treatment to oxidize Al in the layered powder. Manufacturing method of alumina dispersion strengthened copper. (1) It has a structure in which flattened alloy powders are layered. (2) The thickness Y (μm) of each layer of the layered powder satisfies the following equation. 32 · X −0.8 ≧ Y ≧ 20 However, X: Al in the powder
Wt% of
JP8109679A 1996-04-30 1996-04-30 Production of alumina dispersion strengthened copper Pending JPH09296234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8109679A JPH09296234A (en) 1996-04-30 1996-04-30 Production of alumina dispersion strengthened copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8109679A JPH09296234A (en) 1996-04-30 1996-04-30 Production of alumina dispersion strengthened copper

Publications (1)

Publication Number Publication Date
JPH09296234A true JPH09296234A (en) 1997-11-18

Family

ID=14516440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8109679A Pending JPH09296234A (en) 1996-04-30 1996-04-30 Production of alumina dispersion strengthened copper

Country Status (1)

Country Link
JP (1) JPH09296234A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051254A1 (en) * 2007-10-18 2009-04-23 Sintobrator, Ltd. Copper alloy powder and method for producing the same
CN111321315A (en) * 2020-03-07 2020-06-23 福达合金材料股份有限公司 Isolating material for internal oxidation of electric contact material and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051254A1 (en) * 2007-10-18 2009-04-23 Sintobrator, Ltd. Copper alloy powder and method for producing the same
CN111321315A (en) * 2020-03-07 2020-06-23 福达合金材料股份有限公司 Isolating material for internal oxidation of electric contact material and preparation method thereof
CN111321315B (en) * 2020-03-07 2021-05-04 福达合金材料股份有限公司 Isolating material for internal oxidation of electric contact material and preparation method thereof

Similar Documents

Publication Publication Date Title
US7767138B2 (en) Process for the production of a molybdenum alloy
JP5855565B2 (en) Titanium alloy mixed powder containing ceramics, densified titanium alloy material using the same, and method for producing the same
KR100829648B1 (en) Process for producing alloy containing dispersed oxide
JPS6131173B2 (en)
EP3193380A1 (en) Thermoelectric conversion material, process for producing thermoelectric conversion material, and thermoelectric conversion module
CN104245976B (en) Slider material
CN105200262B (en) A kind of preparation method of high oxidation Theil indices silver-based sheet electrical contact material
JPH08109422A (en) Production of alumina dispersion strengthened copper
RU2398656C1 (en) Method of producing composite material for copper-based electric contacts
JPH09296234A (en) Production of alumina dispersion strengthened copper
JP3125851B2 (en) Manufacturing method of alumina dispersion strengthened copper
JPWO2014208419A1 (en) Manufacturing method of electrical contact material
CN112430763B (en) Al (aluminum)2O3Preparation method of dispersion-strengthened copper-based composite material
JP3067318B2 (en) Manufacturing method of electrode material
JP2006206963A (en) Alumina dispersion-strengthened silver rod, its production method, electric contact material and relay for electric vehicle
RU2769344C1 (en) Material for arc-quenching and breaking electrical contacts based on copper and method of its production
Księżarek et al. Progress in fabrication technology of silver-based contact materials with particular account of the Ag-Re and Ag-SnO 2 Bi 2 O 3 composites
RU2074898C1 (en) Copper based composition material and method of its production
JPH10195556A (en) Production of electric contact material
JPH11286732A (en) Manufacture of alumina-dispersed strengthened copper
JPH0892672A (en) Production of dispersion strengthened alloy
JPS6026621A (en) Manufacture of heat resistant molybdenum material
JPH06305833A (en) Sintered diamond having high hardness and its production
JPS6333533A (en) Manufacture of formed body made of internally oxidized copper alloy
JPS61207554A (en) Manufacture of heat resistant and high conductivity dispersion strengthened copper alloy material