JPH09296221A - Production of cold rolled steel sheet and galvanealed steel sheet excellent in uniformity of workability - Google Patents

Production of cold rolled steel sheet and galvanealed steel sheet excellent in uniformity of workability

Info

Publication number
JPH09296221A
JPH09296221A JP11164696A JP11164696A JPH09296221A JP H09296221 A JPH09296221 A JP H09296221A JP 11164696 A JP11164696 A JP 11164696A JP 11164696 A JP11164696 A JP 11164696A JP H09296221 A JPH09296221 A JP H09296221A
Authority
JP
Japan
Prior art keywords
steel sheet
rolling
temperature
workability
uniformity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11164696A
Other languages
Japanese (ja)
Other versions
JP3834100B2 (en
Inventor
Natsuko Hashimoto
夏子 橋本
Naoki Yoshinaga
直樹 吉永
Masayoshi Suehiro
正芳 末広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11164696A priority Critical patent/JP3834100B2/en
Publication of JPH09296221A publication Critical patent/JPH09296221A/en
Application granted granted Critical
Publication of JP3834100B2 publication Critical patent/JP3834100B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve uniformity in the workability of a steel sheet by prescribing the contents of elements in a steel and executing coiling and recoiling after rough rolling. SOLUTION: In the case of >=0.004% S and Ti*=Ti-3.42N, it is effective for the uniformity of the workability of the steel to satisfy Ti*/S>=1 and <=0.15% Mn. Furthermore, after rough rolling, temporary coiling and recoiling are very effective for increasing the uniformity of its workability, but, for sufficiently showing the above effect, it is important that (the higher value between the solid solution C content L ((C-Ti*/8) before the coiling obtd. from Ti*/C>9 or from calculation and (C-0.8S×12/32)) satisfies L<0.0005. Moreover, it is important that the ratio of the amt. of S precipitated as MnS among the whole S content after the coiling following the hot rolling (S% as MnS/the whole 5%) satisfies <=0.2. By these conditions, the solid solution C can be reduced before the coiling after the finish rolling to prevent deterioration in the material of the product.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、コイル内における
加工性のばらつきが極めて少ない冷延鋼板、溶融亜鉛め
っき鋼板および合金化溶融亜鉛めっき鋼板の製造方法に
関するものである。本発明により製造された鋼板の用途
は、自動車、家電、建材等であり、また本発明により製
造された高強度鋼板を自動車用として適用した場合に
は、板厚を軽減することができるため、燃費の向上をも
たらし、近年大きな問題となっている地球環境問題にも
寄与することができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold-rolled steel sheet, a hot-dip galvanized steel sheet, and a method for producing an alloyed hot-dip galvanized steel sheet, in which the workability in the coil is extremely small. Applications of the steel sheet produced by the present invention are automobiles, home appliances, building materials and the like, and when the high-strength steel sheet produced by the present invention is applied for automobiles, the sheet thickness can be reduced, It can improve fuel efficiency and contribute to global environmental problems, which have become a big problem in recent years.

【0002】[0002]

【従来の技術】特開昭58−185752号公報に開示
されているように、極低炭素鋼板は優れた加工性を有す
るため、自動車などの用途に広く用いられている。ま
た、極低炭素鋼の成分や製造方法を規定することによっ
て、加工性をさらに改善するための工夫がなされてき
た。例えば、特開平3−130323号公報、特開平4
−143228号公報および特開平4−116124号
公報には、Tiを添加した極低炭素鋼中のC、Mn、P
等の量を極力低減させることによって、優れた加工性が
得られることが開示されている。しかしながら、これら
の発明においては、コイルの幅および長手方向における
端部での歩留りを向上させる観点からの記述はない。
2. Description of the Related Art As disclosed in Japanese Patent Application Laid-Open No. 58-185752, ultra-low carbon steel sheets have excellent workability and are therefore widely used for applications such as automobiles. In addition, devices for further improving the workability have been devised by defining the components and the production method of the ultra-low carbon steel. For example, JP-A-3-130323 and JP-A-4
In JP-A-143228 and JP-A-4-116124, C, Mn and P in an ultra low carbon steel containing Ti are described.
It has been disclosed that excellent workability can be obtained by reducing the amount of the like. However, in these inventions, there is no description from the viewpoint of improving the width of the coil and the yield at the end in the longitudinal direction.

【0003】材質のばらつきを低減するという観点で
は、特開平3−170618号公報および特開平4−5
2229号公報に記載のものがある。しかしながら、こ
れらの発明は、仕上熱延での圧下率を大きくしたり、熱
延後の巻取温度を高める必要があり、熱延工程に大きな
負荷をかけることとなる。そこで、本発明者らは、特開
平8−3686号公報で示したように、γ域でのTi4
2 2 の析出を積極的に活用することで、巻取り以前
に固溶Cの多くを固定し、加工性の均一性を著しく向上
させる技術を確立した。しかし、この方法でもTi4
2 2 の析出は完全ではなく、高温巻取りを行った場合
には、コイル中央部でわずかに残った固溶Cが微細炭化
物を形成するため、材質を端部よりもむしろ低下させて
しまう場合があった。
From the viewpoint of reducing variations in materials, Japanese Patent Laid-Open Nos. 3-170618 and 4-5.
There is one described in Japanese Patent No. 2229. However, in these inventions, it is necessary to increase the rolling reduction in the finish hot rolling or to increase the winding temperature after the hot rolling, so that a large load is applied to the hot rolling process. Therefore, the inventors of the present invention, as shown in Japanese Unexamined Patent Publication No. 8-3686, have Ti 4 in the γ region.
By positively utilizing the precipitation of C 2 S 2 , most of the solid solution C was fixed before winding, and the technique of significantly improving the uniformity of workability was established. However, even with this method, Ti 4 C
Precipitation of 2 S 2 is not perfect, and when high-temperature winding is performed, a small amount of solute C that remains in the center of the coil forms fine carbides, which causes the material to deteriorate rather than the end. There were cases.

【0004】端部材質劣化の問題は、PやSiで強化し
た良加工性高強度冷延鋼板においても同様である。これ
らの鋼板に関する技術としては、特開昭59−3182
7号公報、特開昭59−38337号公報、特公昭57
−57945号公報、特開昭61−276931号公報
などに代表されるものがあるが、いずれもコイルの幅お
よび長手方向における端部での歩留りを向上させるため
の工夫はなされておらず、また本発明のようなTi硫化
物を積極的に活用する技術でもない。
The problem of deterioration of the quality of the end member is the same in the case of a good workability and high strength cold rolled steel sheet reinforced with P or Si. Japanese Patent Laid-Open No. 59-3182 discloses a technique relating to these steel plates.
7, JP-A-59-38337, JP-B-57
No. 575794 and Japanese Patent Application Laid-Open No. 61-276931, but none of them has been devised to improve the width of the coil and the yield at the end in the longitudinal direction. It is not a technique for positively utilizing Ti sulfide as in the present invention.

【0005】[0005]

【発明が解決しようとする課題】Ti添加極低炭素鋼に
おいては、熱延後の高温巻取りによってCをTiCとし
て析出せしめ、固溶Cを低減させることにより、冷延焼
鈍後の材質を確保することが通常の方法となっていた。
これは、PやSiで強化した場合においても同様であ
る。しかしながら、熱延コイルの幅端部および長手方向
の端部においては、巻取り時および巻取り後の冷却が著
しく速く進行するため、TiCの析出が充分でなく、こ
れらの部分では材質が劣化してしまうという問題があっ
た。また、これを解決するために、γ域での炭硫化物の
析出を促進させる技術も開発されたが、巻取り前に完全
に固溶Cを取りきることは難しく、このため高温巻取り
を行うと、コイル中央部ではわずかに残存する固溶Cが
微細な炭化物を形成して材質が低下する場合があり、ど
のような巻取り条件でもコイル全長にわたって極めて高
い加工性を確保することは困難であった。
In the Ti-added ultra-low carbon steel, C is precipitated as TiC by hot rolling after hot rolling to reduce the solid solution C, thereby ensuring the material after cold rolling and annealing. It was the usual way to do it.
This is the same when strengthening with P or Si. However, at the width end and the lengthwise end of the hot rolled coil, cooling during winding and after winding progresses remarkably rapidly, so that TiC precipitation is not sufficient and the material deteriorates in these portions. There was a problem that it would end up. In order to solve this problem, a technology has been developed to accelerate the precipitation of carbosulfide in the γ region, but it is difficult to completely remove the solid solution C before winding, and therefore high temperature winding is required. If this is done, the solid solution C slightly remaining in the center of the coil may form fine carbides and the material quality may deteriorate, and it is difficult to ensure extremely high workability over the entire length of the coil under any winding conditions. Met.

【0006】本発明は、巻取温度に依存することなく、
コイルの幅および長手方向全長において端部材質劣化が
極めて少ない冷延鋼板、溶融亜鉛めっき鋼板および合金
化溶融亜鉛めっき鋼板の製造方法を提供することを目的
とするものである。
The present invention does not depend on the winding temperature,
An object of the present invention is to provide a method for producing a cold-rolled steel sheet, a hot-dip galvanized steel sheet, and an alloyed hot-dip galvanized steel sheet, in which deterioration of end material is extremely small in the width and the entire length in the longitudinal direction of the coil.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明者らは、極低炭素鋼中において、Sを積極
的に活用するとともに、Ti量とS量の比を最適化する
こと、Mn量を規定すること、また粗圧延後に巻取り巻
戻しを行うことにより特定の析出物を析出せしめ、加工
性の均一性に優れた高r値冷延鋼板を得ることを鋭意検
討した。
In order to solve the above problems, the inventors of the present invention positively utilize S in ultra-low carbon steel and optimize the ratio of Ti content to S content. To determine the amount of Mn, and to perform rolling and unwinding after rough rolling to precipitate specific precipitates and obtain a high r-value cold-rolled steel sheet with excellent workability uniformity. did.

【0008】その結果、S≧0.004%とし、Ti*
=Ti−3.42Nとしたとき、Ti*/S≧1、かつ
Mn≦0.15%とすることが有効であることを見出し
た。また、粗圧延後、コイルを一旦巻取り、巻戻すこと
が加工性の均一性を高める上で非常に有効であること、
巻取り、巻戻しの効果を十分に発揮させるためには、T
i*/C>9または計算から求まる巻取り前の固溶C量
L((C−Ti*/8)と(C−0.8S×12/3
2)の大きい方の値)がL<0.0005を満足するこ
とが非常に重要であることを見出した。
As a result, S ≧ 0.004% and Ti *
= Ti-3.42N, it has been found that Ti * / S ≧ 1 and Mn ≦ 0.15% are effective. In addition, after rough rolling, it is very effective to wind the coil once and rewind it in order to improve the uniformity of workability.
To maximize the effect of winding and rewinding, T
i * / C> 9 or the amount of dissolved C before winding obtained by calculation L ((C-Ti * / 8) and (C-0.8S × 12/3)
It has been found that it is very important that the larger value of 2) satisfies L <0.0005.

【0009】さらに、熱延後の巻取りの後に、全S量の
うちMnSとして析出するS量の割合K(=(S% a
s MnS)/(全S%))がK≦0.2を満たすこと
が材質の均一性を得る上で極めて重要であることが判明
した。これは、以下のような機構に基づくものと考えら
れる。すなわち、全S量のうちMnSとして析出する量
を極力低減せしめ、かつ粗圧延後、低温γ域で一旦コイ
ルに巻取り、巻戻しを行い歪みを導入することでTi4
2 2 の析出を促進させることによって、仕上熱延の
巻取り以前に固溶Cを十分低減させるものである。これ
によって、熱延後の巻取り時にコイルの端部が急速に冷
却されても、巻取り以前に固溶Cが十分に固定されてい
るために、コイル端部で固溶Cが多量に残存したり、微
細炭化物が析出することによる材質の劣化が軽減される
と考えられる。また、本発明鋼の場合、巻取り前の熱延
工程でほとんどのCはTi4 2 2 として固定される
ので、巻取温度に依存することなくコイル全長にわたっ
て高い加工性を有する冷延鋼板を得ることができる。
Further, after winding after hot rolling, the ratio of the amount of S precipitated as MnS in the total amount of S, K (= (S% a
It has been found that it is extremely important that (s MnS) / (total S%)) satisfies K ≦ 0.2 in order to obtain the uniformity of the material. This is considered to be based on the following mechanism. That is, the amount of MnS precipitated out of the total amount of S is reduced as much as possible, and after rough rolling, it is once wound into a coil in the low temperature γ region and then unwound to introduce strain to Ti 4
By accelerating the precipitation of C 2 S 2 , the solid solution C is sufficiently reduced before the winding of the finish hot rolling. As a result, even if the end of the coil is rapidly cooled during winding after hot rolling, a large amount of solid solution C remains at the coil end because the solid solution C is sufficiently fixed before winding. It is considered that the deterioration of the material caused by the precipitation of fine carbides is reduced. Further, in the case of the steel of the present invention, most of C is fixed as Ti 4 C 2 S 2 in the hot rolling process before winding, so cold rolling having high workability over the entire length of the coil does not depend on the winding temperature. A steel plate can be obtained.

【0010】本発明は、上記知見に基づいて構成された
ものであり、その要旨とするところは下記のとおりであ
る。 (1)重量%で、C:0.0005〜0.007%、S
i:0.005〜0.8%、Mn:0.01〜0.15
%、P:0.2%以下、S:0.004〜0.02%、
Al:0.005〜0.1%、N:0.007%以下を
含み、さらにTiを、Ti*=Ti−3.42Nとする
とき、Ti*/S≧1で、かつTi*/C>9、または
巻取り前の固溶Cの計算量L((C−Ti*/8)と
(C−0.8S×12/32)の大きい方の値)がL<
0.0005の条件を満たし、かつTi:0.01〜
0.1%の範囲で含有し、残部は鉄および不可避的不純
物よりなる鋼を、1250℃以下で加熱し、粗圧延した
後、粗バーをコイル状に巻取り、巻戻した後に、仕上温
度≧(Ar3 −100)℃の仕上圧延を施し、室温から
800℃の温度範囲で巻取り、全S量のうち、MnSと
して析出するS量の割合K(=(S% as MnS)
/(全S%))をK≦0.2とし、酸洗後、圧下率≧6
0%で冷間圧延し、さらに再結晶温度以上で焼鈍するこ
とを特徴とする加工性の均一性に優れた冷延鋼板の製造
方法。
The present invention is constructed on the basis of the above findings, and the gist thereof is as follows. (1)% by weight, C: 0.0005 to 0.007%, S
i: 0.005 to 0.8%, Mn: 0.01 to 0.15
%, P: 0.2% or less, S: 0.004 to 0.02%,
Al: 0.005 to 0.1%, N: 0.007% or less, and when Ti is Ti * = Ti-3.42N, Ti * / S ≧ 1 and Ti * / C > 9, or the calculated amount L of solid solution C before winding (the larger value of (C-Ti * / 8) and (C-0.8S × 12/32)) is L <
The condition of 0.0005 is satisfied, and Ti: 0.01 to
Steel containing 0.1% in the range, the balance being iron and unavoidable impurities is heated at 1250 ° C. or lower and rough-rolled, then the rough bar is wound into a coil and unwound, and then the finishing temperature is reached. Finishing rolling of ≧ (Ar 3 −100) ° C. is performed, and winding is performed in a temperature range of room temperature to 800 ° C., and the ratio of the amount of S precipitated as MnS in the total amount of K (= (S% as MnS))
/ (Total S%)) is set to K ≦ 0.2, and after pickling, the rolling reduction is ≧ 6.
A method for producing a cold-rolled steel sheet having excellent workability uniformity, which comprises cold rolling at 0% and annealing at a recrystallization temperature or higher.

【0011】(2)鋼成分として、さらに、重量%で、
B:0.0001〜0.0030%を含有することを特
徴とする前項(1)記載の加工性の均一性に優れた冷延
鋼板の製造方法。 (3)仕上圧延前に、先行材の後端部と後行材の先端部
を接合して仕上圧延に供することを特徴とする前項
(1)または(2)記載の加工性の均一性に優れた冷延
鋼板の製造方法。
(2) As a steel component, further, in% by weight,
B: 0.0001 to 0.0030% is contained, The manufacturing method of the cold-rolled steel sheet excellent in the uniformity of workability of the preceding clause (1) characterized by the above-mentioned. (3) Prior to finish rolling, the trailing end of the preceding material and the leading end of the following material are joined to be subjected to finishing rolling, and the workability is uniform as described in (1) or (2) above. Excellent cold rolled steel sheet manufacturing method.

【0012】(4)前項(1)〜(3)のいずれか1項
に記載の冷間圧延後の焼鈍に代えて、ライン内焼鈍炉を
有する連続溶融亜鉛めっきラインで再結晶温度以上で焼
鈍を施し、冷却過程中に亜鉛めっきを施すことを特徴と
する加工性の均一性に優れた溶融亜鉛めっき鋼板の製造
方法。 (5)前項(4)に記載の亜鉛めっき後に、さらに40
0〜600℃の温度範囲で合金化処理を施すことを特徴
とする加工性の均一性に優れた合金化溶融亜鉛めっき鋼
板の製造方法。
(4) Instead of the annealing after cold rolling described in any one of (1) to (3) above, annealing is performed at a recrystallization temperature or higher in a continuous hot dip galvanizing line having an in-line annealing furnace. A method for producing a hot-dip galvanized steel sheet having excellent workability uniformity, which comprises subjecting the steel sheet to galvanizing and performing galvanizing during the cooling process. (5) After the zinc plating described in (4) above, further 40
A method for producing an alloyed hot-dip galvanized steel sheet excellent in uniformity of workability, which comprises performing an alloying treatment in a temperature range of 0 to 600 ° C.

【0013】本発明における冷延鋼板の製造方法は、T
iを添加した極低炭素鋼、あるいはそれをPやSiで強
化したものをベースとして、S量、Mn量、Ti量と、
特定の硫化物の量を限定し、さらに粗圧延後、巻取り巻
戻しを施すことで熱延後の巻取り以前にCを十分に析出
させ、コイルの長手方向および幅方向の加工性の均一性
に優れた冷延鋼板を提供するものである。以下にその限
定理由を述べる。
The method of manufacturing a cold rolled steel sheet according to the present invention is
Based on the ultra-low carbon steel with i added, or the one strengthened with P or Si, the S content, Mn content, Ti content, and
By limiting the amount of specific sulfides, and further performing rough rolling and winding and unwinding, C is sufficiently precipitated before winding after hot rolling, and the workability in the longitudinal and width directions of the coil is uniform. A cold rolled steel sheet having excellent properties is provided. The reasons for the limitation will be described below.

【0014】まず、化学成分の限定理由について説明す
る。Cは、その量が増加するに従って、それを固定する
ための炭化物形成元素であるTi量を増大させねばなら
ず、このためコスト高となり、また熱延コイルの端部に
おいて固溶Cが残存したり、微細炭化物が粒内に数多く
析出するため粒成長性を妨げて加工性を劣化させるの
で、0.007%を上限とする。この観点からは、0.
003%以下が好ましい。また、C量の下限は、真空脱
ガス処理コストの観点から、0.0005%とする。
First, the reasons for limiting the chemical components will be described. As the amount of C increases, the amount of Ti, which is a carbide-forming element for fixing it, must be increased, which increases the cost, and solid solution C remains at the end of the hot-rolled coil. Or, since a large amount of fine carbides are precipitated in the grains, the grain growth property is hindered and the workability is deteriorated, so 0.007% is made the upper limit. From this point of view, 0.
003% or less is preferable. Further, the lower limit of the amount of C is set to 0.0005% from the viewpoint of vacuum degassing treatment cost.

【0015】Siは安価な高強度化元素として有効であ
るので、目的とする強度レベルに応じて活用する。ただ
し、その量が0.8%を超えるとYPが急激に上昇し、
伸びが低下してめっき性を著しく損なうので、0.8%
を上限とする。溶融亜鉛めっき用としては、めっき性の
観点から0.3%以下とすることが好ましい。高強度
(TSで350MPa以上)を必要としない場合には
0.1%以下がさらに好ましい。Si量の下限は、製鋼
コストの理由から、0.005%とする。
Since Si is effective as an inexpensive strengthening element, it is used depending on the intended strength level. However, if the amount exceeds 0.8%, YP sharply increases,
0.8% as the elongation decreases and the plating properties are significantly impaired.
Is the upper limit. For hot-dip galvanizing, the content is preferably 0.3% or less from the viewpoint of plating properties. If high strength (350 MPa or more in TS) is not required, 0.1% or less is more preferable. The lower limit of the amount of Si is 0.005% for the reason of steelmaking cost.

【0016】Mnは本発明において最も重要な元素の1
つである。すなわち、Mnが0.15%を超えるとMn
Sの析出量が増加し、結果としてTi4 2 2 の析出
量が低下するため、たとえ高温巻取りを行ったとして
も、熱延コイルの端部では冷却速度が速く、固溶Cが多
量に残存したり、微細炭化物が多数析出して著しく材質
を劣化させる。従って、Mn量の上限を0.15%と
し、さらには0.10%未満とすることが好ましい。一
方、Mn量を0.01%未満とすると、熱間割れを誘発
し、また製鋼コストの上昇を招くので、下限を0.01
%とする。
Mn is one of the most important elements in the present invention.
One. That is, when Mn exceeds 0.15%, Mn
Since the amount of precipitation of S increases and the amount of precipitation of Ti 4 C 2 S 2 decreases as a result, even if high-temperature winding is performed, the cooling rate is high at the end of the hot-rolled coil and solid solution C is generated. A large amount remains, or a large number of fine carbides are deposited to significantly deteriorate the material. Therefore, the upper limit of the amount of Mn is preferably 0.15%, more preferably less than 0.10%. On the other hand, if the Mn content is less than 0.01%, hot cracking is induced and the steelmaking cost is increased, so the lower limit is 0.01.
%.

【0017】PもSiと同様に安価な高強度化元素とし
て目的とする強度レベルに応じて積極的に活用する。し
かし、P量が0.2%超では熱間あるいは冷間加工時の
割れの原因となり、2次加工性も著しく劣化させる。ま
た、溶融亜鉛めっきの合金化速度が著しく遅滞化するた
め、P量の上限を0.2%とする。以上の観点から、よ
り好ましくは0.08%以下がよい。高い強度を必要と
しない場合には0.03%以下がさらに好ましい。
Similar to Si, P is also positively utilized as an inexpensive strengthening element depending on the target strength level. However, if the amount of P exceeds 0.2%, it causes cracking during hot or cold working, and the secondary workability is significantly deteriorated. Further, since the alloying rate of hot dip galvanization is significantly delayed, the upper limit of the P content is set to 0.2%. From the above viewpoints, the content is more preferably 0.08% or less. When high strength is not required, 0.03% or less is more preferable.

【0018】Sは本発明において極めて重要な元素であ
り、その添加量を0.004〜0.02%とする。S量
が0.004%未満になるとTi4 2 2 の析出量が
十分ではなく、低温で巻取った際にはもちろんのこと、
たとえ高温で巻取ったとしてもコイルの端部では固溶C
が多量に残存したり、TiCやNbCの微細な析出によ
り焼鈍時の粒成長性が阻害され、加工性が著しく劣化す
る。一方、S量が0.02%超では熱間割れが生じやす
く、またTi4 2 2 の析出よりもMnSやTiSが
多く析出するために同様の問題が生じ、加工性の均一性
が確保されない。なお、この観点からは、S量は0.0
04〜0.012%がより好ましい範囲である。
S is an extremely important element in the present invention, and its addition amount is 0.004 to 0.02%. When the amount of S is less than 0.004%, the amount of precipitation of Ti 4 C 2 S 2 is not sufficient, and of course when winding at low temperature,
Even if wound at high temperature, solid solution C is generated at the end of the coil.
Remains in a large amount, or fine precipitation of TiC or NbC impedes grain growth during annealing, resulting in significant deterioration of workability. On the other hand, if the amount of S exceeds 0.02%, hot cracking tends to occur, and more MnS and TiS are precipitated than the precipitation of Ti 4 C 2 S 2. Therefore, the same problem occurs and the workability is not uniform. Not secured. From this viewpoint, the S amount is 0.0
04-0.012% is a more preferable range.

【0019】ところで、SはTi量との関係が重要であ
り、Ti*=Ti−3.42Nとするとき、Ti*/S
≧1とする。Ti*/Sが1未満ではTi4 2 2
析出が十分でなく、TiSやMnSが多く析出するので
熱延後の巻取りの前にCを析出させることが困難とな
る。従って、熱延コイルの端部では、巻取温度を高めて
も多量の固溶Cが残存したり、微細炭化物が析出したり
して極端な材質劣化を招く。Ti*/Sは1.2超とす
ることが好ましく、より一層の効果が望まれる場合に
は、1.5以上とすることが好ましい。
By the way, S has an important relationship with the amount of Ti, and when Ti * = Ti-3.42N, Ti * / S
≧ 1. When Ti * / S is less than 1, precipitation of Ti 4 C 2 S 2 is not sufficient and a large amount of TiS or MnS is precipitated, so that it becomes difficult to precipitate C before winding after hot rolling. Therefore, at the end of the hot-rolled coil, a large amount of solid solution C remains or fine carbide precipitates even if the coiling temperature is increased, resulting in extreme deterioration of the material. Ti * / S is preferably more than 1.2, and is 1.5 or more when a further effect is desired.

【0020】Alは脱酸剤として少なくとも0.005
%添加する必要がある。しかし、0.1%を超えるとコ
ストアップとなるばかりか、介在物の増加を招き、加工
性を劣化させる。NはCと同様に、その増加とともにT
i、Al等の窒化物形成元素を増量せねばならず、コス
ト高となるうえ、析出物の増加により延性の劣化を招く
ので、少ないほど望ましい。従って、N量の上限を0.
007%とする。より好ましくは、0.003%以下が
よい。
Al is at least 0.005 as a deoxidizer.
% Must be added. However, if it exceeds 0.1%, not only the cost is increased, but also inclusions are increased and the workability is deteriorated. N is the same as C
Since it is necessary to increase the amount of nitride forming elements such as i and Al, the cost becomes high, and the ductility is deteriorated due to the increase of precipitates. Therefore, the upper limit of the N amount is set to 0.
007%. More preferably, it is 0.003% or less.

【0021】Tiは0.01〜0.1%を添加する。T
i量が0.01%未満ではTi4 2 2 を巻取りの前
に析出させることができず、また0.1%を超える量を
添加しても、Cを固定する効果が飽和するばかりか、プ
レス成形時のめっき層の耐剥離性を確保することが困難
になる。Ti4 2 2 を十分に析出させるという観点
からは、Tiは0.025%超添加することが好まし
い。
0.01 to 0.1% of Ti is added. T
If the amount of i is less than 0.01%, TiFourC TwoSTwoBefore winding
Cannot be deposited on the
Even if added, not only the effect of fixing C is saturated,
It is difficult to secure the peeling resistance of the plating layer during molding
become. TiFourCTwoSTwoOf sufficient precipitation
Therefore, it is preferable to add more than 0.025% of Ti.
Yes.

【0022】熱延中、特に粗圧延後の巻取り、巻戻し中
に固溶Cを全て炭硫化物として析出させるためには、T
i*/C>9なる関係を満足させることが重要である。
ただし、この関係を満たさなくても、仕上圧延後の巻取
り時の固溶C量が5ppm未満であれば、すなわち計算
から求まる巻取り前の固溶C量L((C−Ti*/8)
と(C−0.8S×12/32)の大きい方の値)がL
<0.0005なる関係が満たされていれば、十分な効
果が得られる。なお、C−0.8S×12/32の式に
おいて、0.8はMnSにならなかったS量を表す係
数、また12/32はCと1:1で結びつくのに必要な
S量を表す係数である。
In order to precipitate all the solid solution C as carbosulfide during hot rolling, especially during winding and unwinding after rough rolling, T
It is important to satisfy the relationship i * / C> 9.
However, even if this relationship is not satisfied, if the amount of solute C at the time of winding after finish rolling is less than 5 ppm, that is, the amount of solute C before winding L ((C-Ti * / 8 )
And (C−0.8S × 12/32, whichever is larger) is L
If the relationship <0.0005 is satisfied, a sufficient effect can be obtained. In the formula of C−0.8S × 12/32, 0.8 is a coefficient that represents the amount of S that did not become MnS, and 12/32 is the amount of S that is necessary to combine C with 1: 1. It is a coefficient.

【0023】また、コイル端部での材質を確保するため
には、熱延後の巻取りの後に全S量のうちMnSとして
析出するS量の割合K(=(S% as MnS)/
(全S%))がK≦0.2でなければならない。さら
に、この観点からは、K<0.15とすることが望まし
い。この(S% as MnS)は次のようにして求め
られる。すなわち、硫化物が溶解しないような溶媒(例
えば、非水溶媒)によって析出物を電解抽出する。得ら
れた抽出残査を化学分析に供し、Mn量を測定(=X
(g)とする)する。このとき、サンプル全体の電解量
をY(g)とすると、(S% as MnS)=X/Y
×32/55×100(%)となる。
In order to secure the material at the coil end, the ratio K of the amount of S precipitated as MnS in the total amount of S after winding after hot rolling is K (= (S% as MnS) /
(Total S%) must be K ≦ 0.2. Further, from this viewpoint, it is desirable that K <0.15. This (S% as MnS) is obtained as follows. That is, the precipitate is electrolytically extracted with a solvent (for example, a nonaqueous solvent) that does not dissolve the sulfide. The obtained extraction residue is subjected to chemical analysis to measure the Mn amount (= X
(G)). At this time, assuming that the amount of electrolysis of the entire sample is Y (g), (S% as MnS) = X / Y
It becomes x32 / 55x100 (%).

【0024】Bは粒界を強化して2次加工性を良好にす
るので、必要に応じて0.0001〜0.0030%の
範囲で添加する。Bの添加量が0.0001%未満で
は、その効果は乏しく、また0.003%超添加して
も、その効果は飽和し、延性が劣化する。上記成分を得
るための原料は特に限定しないが、鉄鉱石を原料とし
て、高炉、転炉により成分を調製する方法以外に、スク
ラップを原料としてもよいし、これを電炉で溶製しても
よい。スクラップを原料の全部または一部として使用す
る際には、Cu、Cr、Ni、Sn、Sb、Zn、P
b、Mo等の元素を含有してもよい。
B strengthens the grain boundaries and improves the secondary workability, so it is added in a range of 0.0001 to 0.0030% as required. If the addition amount of B is less than 0.0001%, its effect is poor, and even if it exceeds 0.003%, its effect is saturated and ductility deteriorates. Raw materials for obtaining the above components are not particularly limited, but scraps may be used as raw materials other than the method of preparing the components by iron ore as a raw material, blast furnace and converter, and this may be melted in an electric furnace. . When scrap is used as all or part of the raw material, Cu, Cr, Ni, Sn, Sb, Zn, P
Elements such as b and Mo may be contained.

【0025】次に、製造プロセスに関する限定理由を述
べる。熱間圧延に供するスラブは、とくに限定するもの
ではない。すなわち、連続鋳造スラブや薄スラブキャス
ターで製造したものなどであればよい。また、鋳造後に
直ちに熱間圧延を行う、連続鋳造−直接圧延(CC−D
R)のようなプロセスにも適合する。
Next, the reasons for limitation regarding the manufacturing process will be described. The slab to be subjected to hot rolling is not particularly limited. That is, it may be a continuous cast slab or a thin slab caster. In addition, continuous casting-direct rolling (CC-D
Also applicable to processes like R).

【0026】熱間圧延における加熱温度は、Ti4 2
2 の析出量をなるべく増やすために1250℃以下と
することが必須である。この観点からは、好ましくは1
200℃以下がよい。また、さらに好ましくは1150
℃以下がよい。粗圧延終了後には粗バーを一旦コイル状
に巻取る。このとき、1100℃以下での加熱保持を行
ってもよいし、コイルボックスのようなものの中で恒温
保持してもよい。また、大気中での保持でもよい。表面
性状の観点からは、不活性ガス雰囲気での保持を行って
もよい。巻取り巻戻しによる歪の導入と低温γ域での保
持によって、Ti4 2 2 の析出が著しく促進され、
熱延コイルの幅端部および長手方向の端部の材質劣化が
著しく低減されるとともに、熱延板の板厚精度も向上す
る。
The heating temperature in hot rolling is Ti 4 C 2
In order to increase the amount of S 2 deposited as much as possible, it is essential to set the temperature to 1250 ° C. or lower. From this viewpoint, preferably 1
200 ° C or lower is preferable. Also, more preferably 1150
C or lower is good. After the rough rolling is finished, the rough bar is once wound into a coil. At this time, heating and holding may be performed at 1100 ° C. or lower, or isothermal holding may be performed in a coil box or the like. It may also be kept in the atmosphere. From the viewpoint of surface properties, it may be held in an inert gas atmosphere. The introduction of strain by winding and unwinding and the retention in the low temperature γ region significantly promote the precipitation of Ti 4 C 2 S 2 ,
Material deterioration of the width end and the lengthwise end of the hot-rolled coil is significantly reduced, and the thickness accuracy of the hot-rolled sheet is improved.

【0027】巻戻したコイルは、そのまま(Ar3 −1
00)℃以上の仕上温度で仕上圧延を行ってもよいし、
粗バーを接合して連続的に仕上熱延を行ってもよい。粗
バーを接合して連続的に仕上圧延を行うことによって、
材質劣化が生じる巻取り時のコイル端部に相当する部分
が減少することから、歩留りが向上するとともに熱延板
の板厚精度も向上する。
The rewound coil is left as it is (Ar 3 -1
Finish rolling may be performed at a finishing temperature of 00) ° C. or higher,
A rough bar may be joined and continuous hot rolling may be performed. By joining the rough bars and performing finish rolling continuously,
Since the portion corresponding to the coil end portion at the time of winding, which causes deterioration of the material, is reduced, the yield is improved and the plate thickness accuracy of the hot rolled plate is also improved.

【0028】仕上圧延における仕上温度は、プレス成形
性を確保するために(Ar3 −100)℃以上とする必
要がある。本発明は、熱延後の巻取温度が低くても加工
性を確保できるという特徴を有する。すなわち、本発明
によれば、Cのほとんどは熱延の加熱時〜熱延後の冷却
までの過程でTi4 2 2 として析出しており、高温
巻取りしても大きく材質が向上することはない。従っ
て、巻取りは操業上適当な温度で行えばよく、室温から
800℃の範囲で行う。室温未満で巻取ることは過剰な
設備が必要となるばかりで特段の効果もない。また、8
00℃超で巻取ると熱延板の結晶粒が粗大化したり、表
面の酸化スケールが厚くなったり、酸洗コストの上昇を
招くので、800℃を上限とする。この観点と、Pの化
合物の析出による材質の低下をさけるためには、巻取り
は650℃以下の温度で行うことが好ましい。有害な化
合物の析出を完全に避けるためには、500℃以下の温
度で巻取ることがさらに好ましい。さらに、巻取り後に
室温付近まで温度が下がる時間を短縮するためには、1
00℃以下で巻取ることが好ましい。このような低温巻
取り化によって、製造コストの削減が計れることは言う
までもない。
The finishing temperature in finish rolling needs to be (Ar 3 -100) ° C. or higher in order to secure press formability. The present invention has a feature that workability can be secured even if the winding temperature after hot rolling is low. That is, according to the present invention, most of C is precipitated as Ti 4 C 2 S 2 in the process from the heating of hot rolling to the cooling after hot rolling, and the material is greatly improved even at high temperature winding. There is no such thing. Therefore, the winding may be carried out at a temperature suitable for the operation, and is carried out in the range of room temperature to 800 ° C. Winding below room temperature only requires excessive equipment and has no particular effect. Also, 8
If the coiling temperature exceeds 00 ° C, the crystal grains of the hot-rolled sheet become coarse, the oxide scale on the surface becomes thick, and the pickling cost rises. Therefore, the upper limit is 800 ° C. From this point of view, and in order to prevent the deterioration of the material due to the precipitation of the P compound, the winding is preferably performed at a temperature of 650 ° C. or less. In order to completely avoid the precipitation of harmful compounds, it is more preferable to wind at a temperature of 500 ° C or lower. Furthermore, in order to reduce the time it takes for the temperature to drop to near room temperature after winding,
It is preferable to wind it at 00 ° C. or less. It goes without saying that such low-temperature winding can reduce the manufacturing cost.

【0029】冷間圧延の圧下率は、深絞り性を確保する
観点から60%以上とする。連続焼鈍における焼鈍温度
は、加工性を確保するために、再結晶温度以上とする。
連続溶融亜鉛めっきラインにおける再結晶焼鈍温度も同
様の理由で再結晶温度以上とする。溶融亜鉛めっきは、
めっき性、めっき密着性の観点から、420〜500℃
の温度で施すのがよい。その後の合金化処理温度は、低
過ぎると合金化反応が遅すぎて生産性を損なうばかりか
耐食性、溶接性が劣悪になり、また高過ぎると耐めっき
剥離性が劣化するので、400〜600℃の範囲で行う
のが好ましい。より密着性の優れためっき層を得るため
には、480〜550℃の範囲で合金化を行うのがよ
い。
The rolling reduction of cold rolling is 60% or more from the viewpoint of ensuring deep drawability. The annealing temperature in continuous annealing is higher than the recrystallization temperature in order to secure workability.
For the same reason, the recrystallization annealing temperature in the continuous hot dip galvanizing line is also set to the recrystallization temperature or higher. Hot dip galvanizing
From the viewpoint of plating properties and plating adhesion, 420-500 ° C
It is better to apply at the temperature of. If the temperature of the subsequent alloying treatment is too low, not only the alloying reaction will be too slow to impair the productivity but also the corrosion resistance and the weldability will be poor, and if it is too high, the plating peeling resistance will be deteriorated. It is preferable to carry out in the range of. In order to obtain a plating layer having more excellent adhesion, alloying is preferably performed in the range of 480 to 550 ° C.

【0030】連続焼鈍や連続溶融亜鉛めっきラインにお
ける加熱速度は特に限定するものではなく、通常の速度
でもよいし、1000℃/s以上の超急速加熱を行って
もよい。なお、溶融亜鉛めっき以外にも、電気めっき等
種々の表面処理を施してもよい。
The heating rate in the continuous annealing or continuous hot dip galvanizing line is not particularly limited, and may be a normal rate or ultra-rapid heating at 1000 ° C./s or more. In addition to hot dip galvanizing, various surface treatments such as electroplating may be applied.

【0031】[0031]

【発明の実施の形態】以下、本発明の実施の形態を、実
施例により具体的に説明する。 〔実施例1〕表1、表2(表1のつづき)に示す化学成
分を有するTi添加極低炭素鋼を転炉にて出鋼し、連続
鋳造機にてスラブとした後、1210℃で加熱し、粗圧
延終了後コイル状に巻取り、直ちに巻戻した後に、仕上
温度926℃、板厚3mmとなるような熱間圧延を行
い、ランアウトテーブルでの冷却速度25℃/sで冷却
し、表3、表4(表3のつづき)中に示した種々の巻取
温度でコイルに巻取った。このコイルの長手方向中心部
から試料を切り出し、以下のような処理を行った。すな
わち、実験室にて酸洗後、0.8mmまで冷間圧延を行
い、連続焼鈍相当の熱処理を施した。焼鈍条件は、焼鈍
温度:790℃、均熱:50s、冷却速度:室温まで約
60℃/sとした。その後、0.8%の圧下率で調質圧
延を行い、引張試験に供した。ここで、引張試験および
平均ランクフォード値(以下r値)の測定は、JIS
Z 2201記載の5号試験片を用いて行った。なお、
r値は伸び15%で評価し、圧延方向(L方向)、圧延
方向に垂直な方向(C方向)、および圧延方向に対して
45゜方向(D方向)の値を測定し、下式により算出し
た。試験結果を表3、表4にまとめて示す。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be specifically described below with reference to Examples. [Example 1] Ti-added ultra-low carbon steel having the chemical composition shown in Tables 1 and 2 (continued from Table 1) was tapped in a converter and made into a slab by a continuous casting machine. After heating and coiling after the rough rolling and immediately rewinding, hot rolling is performed so that the finishing temperature is 926 ° C. and the plate thickness is 3 mm, and cooling is performed at a run-out table at a cooling rate of 25 ° C./s. The coil was wound at various winding temperatures shown in Tables 3 and 4 (continued from Table 3). A sample was cut out from the center of the coil in the longitudinal direction, and the following processing was performed. That is, after pickling in the laboratory, cold rolling was performed to 0.8 mm and heat treatment equivalent to continuous annealing was performed. The annealing conditions were as follows: annealing temperature: 790 ° C., soaking: 50 s, cooling rate: about 60 ° C./s up to room temperature. Then, temper rolling was performed at a rolling reduction of 0.8%, and the steel was subjected to a tensile test. Here, the tensile test and the measurement of the average Rank Ford value (hereinafter, r value) are based on JIS.
It carried out using the No. 5 test piece of Z2201 description. In addition,
The r value was evaluated at an elongation of 15%, and the values in the rolling direction (L direction), the direction perpendicular to the rolling direction (C direction), and the 45 ° direction (D direction) with respect to the rolling direction were measured. It was calculated. The test results are summarized in Tables 3 and 4.

【0032】r=(rL+2rD+rC)/4R = (rL + 2rD + rC) / 4

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【表3】 [Table 3]

【0036】[0036]

【表4】 [Table 4]

【0037】表3、表4から明らかなように、本発明の
成分を有する鋼では、800℃以下の温度であればいず
れの巻取温度でも極めて優れた材質が得られることが分
かる。これに対して、比較鋼Jでは高温巻取りした場
合、その他の比較鋼では巻取温度が低い場合に、材質が
劣悪となることが明かとなった。 〔実施例2〕実施例1で用いた鋼A、B、E、H、J、
Nの冷延コイルについて、長手方向における材質特性を
調査した。試験結果を表5にまとめて示す。
As is clear from Tables 3 and 4, it is understood that the steels having the components of the present invention can obtain extremely excellent materials at any coiling temperature as long as the temperature is 800 ° C. or lower. On the other hand, it was revealed that the material was inferior when the comparative steel J was wound at a high temperature and the other comparative steels were taken at a low winding temperature. [Example 2] Steels A, B, E, H, J used in Example 1
The material characteristics in the longitudinal direction of N cold rolled coils were investigated. The test results are summarized in Table 5.

【0038】[0038]

【表5】 [Table 5]

【0039】表5から明らかなように、本発明の範囲に
よって製造された鋼は、コイルの中央部はもちろんのこ
と、その端部10mにおいても優れた特性を示してい
る。これに対して、比較鋼Jではコイル中央部の材質が
端部に比べて低下し、その他の比較鋼ではコイル端部に
なるにつれて材質が著しく劣化し、低温巻取りの場合に
は、コイル全長で材質が劣悪になった。この傾向が端部
になるほど顕著になるのは明白である。
As is apparent from Table 5, the steel manufactured according to the scope of the present invention exhibits excellent characteristics not only in the central portion of the coil but also in the end portion 10m thereof. On the other hand, in the comparative steel J, the material at the center of the coil is lower than that at the end, and in the other comparative steels, the material is significantly deteriorated toward the end of the coil. The material became inferior. It is clear that this tendency becomes more pronounced at the ends.

【0040】〔実施例3〕表1、表2中の鋼B、D、
E、G、H、Nのスラブを、1250℃で加熱し、粗圧
延終了後、コイル状に巻取り、直ちに巻戻した後に、仕
上温度915℃、板厚3mmとなるような仕上圧延を行
い、ランアウトテーブルでの冷却速度20℃/sで冷却
した後、400℃で巻取ったコイルと、1250℃で加
熱し、仕上温度915℃、板厚3mmとなるような熱間
圧延を行った後、ランアウトテーブルでの冷却速度20
℃/sで冷却した後、400℃で巻取ったコイルの長手
方向中心部から試料を切り出した。実験室にて酸洗後、
0.8mmまで冷間圧延を行い、連続焼鈍相当の熱処理
を施した。焼鈍条件は、焼鈍温度:810℃、均熱:6
0s、冷却速度:焼鈍温度から640℃まで約5℃/
s、640℃〜室温までは約70℃/sである。その
後、0.7%の圧下率で調質圧延を行い、試料の長手方
向先端部から10m、中央部、末端部から10mの各位
置から試験片を採取し、実施例1と同じ試験を行った。
その結果を表6にまとめて示す。
[Example 3] Steels B and D in Tables 1 and 2
The slabs of E, G, H and N are heated at 1250 ° C., after the rough rolling is finished, they are wound into a coil and immediately rewound, and then finish rolling is performed so that the finishing temperature is 915 ° C. and the plate thickness is 3 mm. After cooling at a cooling rate of 20 ° C./s on a run-out table, coiling at 400 ° C., heating at 1250 ° C., and hot rolling at a finishing temperature of 915 ° C. and a plate thickness of 3 mm , Cooling rate at run-out table 20
After cooling at 0 ° C / s, the sample was cut out from the central portion in the longitudinal direction of the coil wound at 400 ° C. After pickling in the laboratory,
Cold rolling was performed to 0.8 mm, and heat treatment equivalent to continuous annealing was performed. Annealing conditions are: annealing temperature: 810 ° C., soaking: 6
0s, cooling rate: from annealing temperature to 640 ° C, about 5 ° C /
s, about 70 ° C / s from 640 ° C to room temperature. Then, temper rolling was performed at a reduction rate of 0.7%, and test pieces were sampled from each position of 10 m from the front end, 10 m from the center and 10 m from the end of the sample, and the same test as in Example 1 was performed. It was
The results are summarized in Table 6.

【0041】[0041]

【表6】 [Table 6]

【0042】これより、成分が本発明の範囲から外れて
いるH、Nでは、粗圧延後のコイル巻取り巻戻しの有無
に関わらずr値の絶対値は低く、端部の材質はさらに劣
化してしまうが、鋼B、D、E、Gの本発明例では、端
部材質はむしろ向上し、かつr値の絶対値も巻取り巻戻
しを行わない場合に比べて高いことがわかる。 〔実施例4〕表1中の鋼B、E、F、H、K、Mを用い
て実施例1と同様の条件で熱間圧延を施し(巻取温度:
590℃)、引き続き実機にて酸洗し、圧下率80%の
冷間圧延を行い、ライン内焼鈍方式の連続溶融亜鉛めっ
きラインに通板した。このとき、最高加熱温度820℃
間で加熱後、冷却し、470℃で慣用の溶融亜鉛めっき
を行い(浴中Al濃度は0.12%)、さらに加熱して
550℃で約15秒間の合金化処理を行った。さらに、
0.7%の調質圧延を施して、機械的性質、めっき密着
性を評価した。得られた結果を表7にまとめて示す。
From this, in the case of H and N whose components are out of the range of the present invention, the absolute value of the r value is low regardless of the presence or absence of coil winding and rewinding after rough rolling, and the end material is further deteriorated. However, in the examples of the present invention for steels B, D, E, and G, the quality of the end member is rather improved, and the absolute value of the r value is higher than that in the case where winding and unwinding are not performed. [Example 4] Steels B, E, F, H, K and M in Table 1 were hot-rolled under the same conditions as in Example 1 (winding temperature:
(590 ° C.), followed by pickling with an actual machine, cold rolling with a reduction rate of 80%, and passing through a continuous hot dip galvanizing line with an in-line annealing method. At this time, the maximum heating temperature is 820 ° C
After heating in between, cooling was performed, conventional hot dip galvanizing was performed at 470 ° C. (Al concentration in the bath was 0.12%), and further heating was performed and alloying treatment was performed at 550 ° C. for about 15 seconds. further,
After 0.7% temper rolling, the mechanical properties and plating adhesion were evaluated. The results obtained are summarized in Table 7.

【0043】ここで、めっき密着性は、180密着曲げ
を行い、亜鉛皮膜の剥離状況を曲げ加工部に粘着テープ
を接着した後、これを剥がしてテープに付着した剥離め
っき量から判定した。評価は、下記の5段階とした。 1:剥離大、2:剥離中、3:剥離小、4:剥離微量、
5:剥離なし
Here, the plating adhesion was determined by 180 adhesion bending, the peeling condition of the zinc coating was adhered to the bent portion after the adhesive tape was adhered, and then peeled off to determine the amount of the peeled plating adhered to the tape. The evaluation was based on the following five levels. 1: Large peeling, 2: During peeling, 3: Small peeling, 4: Small amount of peeling,
5: No peeling

【0044】[0044]

【表7】 [Table 7]

【0045】表7から明らかなように、本発明の範囲に
よって製造された合金化溶融亜鉛めっき鋼板は、コイル
の部位に関わらず優れた特性を示している。これに対し
て、比較鋼では、コイルの部位によるばらつきが大きか
った。
As is clear from Table 7, the alloyed hot-dip galvanized steel sheet produced according to the scope of the present invention exhibits excellent characteristics regardless of the coil portion. On the other hand, in the comparative steel, the variation depending on the coil portion was large.

【0046】[0046]

【発明の効果】以上のように、本発明によれば熱延後の
巻取温度を低温化することができ、しかもコイルの長手
方向および幅方向に均一性に優れた材質が得られ、従来
切捨てられていたコイル端部を製品とすることができ
る。また、本発明の高強度鋼板を自動車用として適用し
た場合には、板厚を軽減することができるため、燃費の
向上をもたらし、近年大きな問題となっている地球環境
問題にも貢献し得るので、その価値は大きい。
As described above, according to the present invention, the coiling temperature after hot rolling can be lowered and a material having excellent uniformity in the longitudinal and width directions of the coil can be obtained. The truncated coil end can be the product. Further, when the high-strength steel sheet of the present invention is applied to an automobile, the sheet thickness can be reduced, which leads to an improvement in fuel consumption and can contribute to a global environmental problem that has become a serious problem in recent years. , Its value is great.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C22C 38/00 301 C22C 38/00 301T 38/14 38/14 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical indication // C22C 38/00 301 C22C 38/00 301T 38/14 38/14

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C:0.0005〜0.007%、 Si:0.005〜0.8%、 Mn:0.01〜0.15%、 P:0.2%以下、 S:0.004〜0.02%、 Al:0.005〜0.1%、 N:0.007%以下 を含み、さらにTiを、Ti*=Ti−3.42Nとす
るとき、Ti*/S≧1で、かつTi*/C>9、また
は巻取り前の固溶Cの計算量L((C−Ti*/8)と
(C−0.8S×12/32)の大きい方の値)がL<
0.0005の条件を満たし、かつTi:0.01〜
0.1%の範囲で含有し、残部は鉄および不可避的不純
物よりなる鋼を、1250℃以下で加熱し、粗圧延した
後、粗バーをコイル状に巻取り、巻戻した後に、仕上温
度≧(Ar3 −100)℃の仕上圧延を施し、室温から
800℃の温度範囲で巻取り、全S量のうち、MnSと
して析出するS量の割合K(=(S% as MnS)
/(全S%))をK≦0.2とし、酸洗後、圧下率≧6
0%で冷間圧延し、さらに再結晶温度以上で焼鈍するこ
とを特徴とする加工性の均一性に優れた冷延鋼板の製造
方法。
1. By weight%, C: 0.0005 to 0.007%, Si: 0.005 to 0.8%, Mn: 0.01 to 0.15%, P: 0.2% or less, S: 0.004 to 0.02%, Al: 0.005 to 0.1%, N: 0.007% or less, and when Ti is Ti * = Ti-3.42N, Ti * / S ≧ 1 and Ti * / C> 9, or the larger of calculated amount L of solid solution C before winding ((C-Ti * / 8) and (C-0.8S × 12/32)) Value) is L <
The condition of 0.0005 is satisfied, and Ti: 0.01 to
Steel containing 0.1% in the range, the balance being iron and unavoidable impurities is heated at 1250 ° C. or lower and rough-rolled, then the rough bar is wound into a coil and unwound, and then the finishing temperature is reached. Finishing rolling of ≧ (Ar 3 −100) ° C. is performed, and winding is performed in a temperature range of room temperature to 800 ° C., and the ratio of the amount of S precipitated as MnS in the total amount of K (= (S% as MnS))
/ (Total S%)) is set to K ≦ 0.2, and after pickling, the rolling reduction is ≧ 6.
A method for producing a cold-rolled steel sheet having excellent workability uniformity, which comprises cold rolling at 0% and annealing at a recrystallization temperature or higher.
【請求項2】 鋼成分として、さらに、重量%で、 B:0.0001〜0.0030% を含有することを特徴とする請求項1記載の加工性の均
一性に優れた冷延鋼板の製造方法。
2. A cold rolled steel sheet excellent in workability uniformity according to claim 1, further comprising B: 0.0001 to 0.0030% by weight as a steel component. Production method.
【請求項3】 仕上圧延前に、先行材の後端部と後行材
の先端部を接合して仕上圧延に供することを特徴とする
請求項1または2記載の加工性の均一性に優れた冷延鋼
板の製造方法。
3. The excellent workability uniformity according to claim 1 or 2, wherein the trailing end portion of the preceding material and the leading end portion of the following material are joined to each other for finishing rolling before the finishing rolling. Cold rolled steel sheet manufacturing method.
【請求項4】 請求項1〜3のいずれか1項に記載の冷
間圧延後の焼鈍に代えて、ライン内焼鈍炉を有する連続
溶融亜鉛めっきラインで再結晶温度以上で焼鈍を施し、
冷却過程中に亜鉛めっきを施すことを特徴とする加工性
の均一性に優れた溶融亜鉛めっき鋼板の製造方法。
4. Instead of annealing after cold rolling according to any one of claims 1 to 3, annealing is performed at a recrystallization temperature or higher in a continuous hot dip galvanizing line having an in-line annealing furnace,
A method for producing a hot-dip galvanized steel sheet having excellent workability uniformity, which comprises performing galvanization during a cooling process.
【請求項5】 請求項4に記載の亜鉛めっき後に、さら
に400〜600℃の温度範囲で合金化処理を施すこと
を特徴とする加工性の均一性に優れた合金化溶融亜鉛め
っき鋼板の製造方法。
5. Production of a galvannealed steel sheet excellent in workability uniformity, which is characterized by further performing an alloying treatment in a temperature range of 400 to 600 ° C. after the galvanizing according to claim 4. Method.
JP11164696A 1996-05-02 1996-05-02 Method for producing cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent workability uniformity Expired - Fee Related JP3834100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11164696A JP3834100B2 (en) 1996-05-02 1996-05-02 Method for producing cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent workability uniformity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11164696A JP3834100B2 (en) 1996-05-02 1996-05-02 Method for producing cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent workability uniformity

Publications (2)

Publication Number Publication Date
JPH09296221A true JPH09296221A (en) 1997-11-18
JP3834100B2 JP3834100B2 (en) 2006-10-18

Family

ID=14566603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11164696A Expired - Fee Related JP3834100B2 (en) 1996-05-02 1996-05-02 Method for producing cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent workability uniformity

Country Status (1)

Country Link
JP (1) JP3834100B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6761853B2 (en) * 2001-03-05 2004-07-13 Kiyohito Ishida Free-cutting tool steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6761853B2 (en) * 2001-03-05 2004-07-13 Kiyohito Ishida Free-cutting tool steel

Also Published As

Publication number Publication date
JP3834100B2 (en) 2006-10-18

Similar Documents

Publication Publication Date Title
JP3958921B2 (en) Cold-rolled steel sheet excellent in paint bake-hardening performance and room temperature aging resistance and method for producing the same
US5954896A (en) Cold rolled steel sheet and galvanized steel sheet having improved homogeneity in workability and process for producing same
JP5531757B2 (en) High strength steel plate
WO2008093815A1 (en) High tensile cold-rolled steel sheet and process for production thereor
JP6402830B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
KR101720891B1 (en) Alloyed hot-dip zinc-coated steel sheet and method for producing same
KR101989371B1 (en) High-strength steel sheet and method for producing the same
KR101099774B1 (en) Cold-rolled steel sheet excellent in coating curability in baking and cold slow-aging property and process for producing the same
JP5835624B2 (en) Steel sheet for hot pressing, surface-treated steel sheet, and production method thereof
JP4752522B2 (en) Manufacturing method of high strength cold-rolled steel sheet for deep drawing
JP4613618B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and its manufacturing method
JP5903884B2 (en) Manufacturing method of high-strength thin steel sheet with excellent resistance to folding back
JP3745496B2 (en) Manufacturing method of cold-rolled steel sheet and alloyed hot-dip galvanized steel sheet with excellent paint bake hardening performance
CN113166837B (en) High-strength steel sheet and method for producing same
JP4561200B2 (en) High-strength cold-rolled steel sheet with excellent secondary work brittleness resistance and manufacturing method thereof
JPH0657337A (en) Production of high strength galvannealed steel sheet excellent in formability
JP3834100B2 (en) Method for producing cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent workability uniformity
JP2002249849A (en) High tensile strength cold rolled steel sheet and production method therefor
JP3293015B2 (en) Cold rolled steel sheet with excellent workability uniformity
JP3291639B2 (en) Cold rolled steel sheet excellent in workability uniformity and method for producing the same
JP2755014B2 (en) Method for producing high-strength cold-rolled steel sheet for deep drawing with excellent secondary work brittleness resistance
JPH0873993A (en) Hot rolled steel plate excellent in hot dip galvanizing suitability and its production
JP2013133496A (en) High strength thin steel sheet excellent in formability and method for producing the same
JPH08283909A (en) Cold rolled steel sheet excellent in uniformity of workability and its production
JP2620444B2 (en) High strength hot rolled steel sheet excellent in workability and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060721

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees