JPH09296002A - Microorganism-derived polysaccharide - Google Patents

Microorganism-derived polysaccharide

Info

Publication number
JPH09296002A
JPH09296002A JP11236096A JP11236096A JPH09296002A JP H09296002 A JPH09296002 A JP H09296002A JP 11236096 A JP11236096 A JP 11236096A JP 11236096 A JP11236096 A JP 11236096A JP H09296002 A JPH09296002 A JP H09296002A
Authority
JP
Japan
Prior art keywords
polysaccharide
fucose
mannose
water
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11236096A
Other languages
Japanese (ja)
Other versions
JP3826168B2 (en
Inventor
Ryuichiro Kurane
隆一郎 倉根
Yasuhiro Nobata
靖浩 野畑
Zenji Yamaguchi
善治 山口
Hideji Anazawa
秀治 穴澤
Ichiro Matsuura
一郎 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hakuto Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
KH Neochem Co Ltd
Original Assignee
Agency of Industrial Science and Technology
Hakuto Co Ltd
Kyowa Hakko Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Hakuto Co Ltd, Kyowa Hakko Kogyo Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP11236096A priority Critical patent/JP3826168B2/en
Publication of JPH09296002A publication Critical patent/JPH09296002A/en
Application granted granted Critical
Publication of JP3826168B2 publication Critical patent/JP3826168B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a polysaccharide which is composed of fucose and mannose, and can be used as a thickener having advantages in that it is easily soluble in water and has excellent stability, by culturing Alcaligenes latus B-16 strain and subjecting the resultant culture to separation and purification. SOLUTION: Alcaligenes latus B-16 strain (FERM-BP-2015) belonging to Alcaligenes latus is cultured in a medium so that a polysaccharide being composed of fucose and mannose is produced and accumulated. Subsequently, the resultant culture is mixed with water and then is rendered to be alkaline by adding an alkaline agent. The obtained mixture is passed through a column packed with an ion exchange resin, so that proteins, nucleic acids, low molecular weight components of polysaccharides and the like are adsorbed on the ion exchange resin. Polysaccharides adsorbed on the ion exchange resin are eluted and the eluted solution is condensed to precipitate a polysaccharide, followed by drying. The obtained polysaccharide has a molar ratio of fucose to mannose of 1:(0.8-1.2), and can be advantageously used as a stabilizing agent for an abrasive, an emulsion stabilizer for a latex, and a thickener for a paint, a dressing and the like.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、微生物由来の新規
な多糖類と、これを有効成分とする増粘剤に関するもの
である。
TECHNICAL FIELD The present invention relates to a novel polysaccharide derived from a microorganism and a thickener containing the same as an active ingredient.

【0002】[0002]

【従来の技術】多糖類は複数の単糖類がグリコシド結合
によって結合した炭水化物で、天然に存在するもの、天
然に存在するものをさらに化学的に変性させたものなど
数多く知られている。単糖類は一般に水に溶解するが、
多糖類は種類も多く性質もまちまちであるが、一般に水
には溶解し難く、溶解する場合もコロイド状態に溶けて
いることが多い。しかし水に溶解させたもの、あるいは
コロイド状に溶解したものでも粘性の高い溶液となり、
非常に特徴のある挙動をし、産業上の利用価値が高い。
そこで多糖類を化学的に変成し水に溶解するように加工
したものが多く使用されている。例えば、セルロースは
水に不溶であるが、これに塩化メチル、エチレンオキシ
ド、プロピレンオキシドなどを反応させて得たメチルセ
ルロースは水に溶解するようになり、極く一般的な工業
材料の一つとして利用されている。しかし、化学的に変
成した半合成品を製造する場合、多くの場合反応は理想
的に進まず、部分的に親水基と疎水基の並びに偏りが生
じ、水に不溶解部分を生じ、これが継粉を生じたりする
原因となる。このような見地から多糖類としての諸性質
を有しつつ、水に溶解するものが望まれている。
2. Description of the Related Art Polysaccharides are carbohydrates in which a plurality of monosaccharides are linked by glycosidic bonds, and many are known, including naturally occurring ones and naturally occurring ones chemically modified. Monosaccharides are generally soluble in water,
Although there are many types of polysaccharides and their properties vary, they are generally difficult to dissolve in water, and when they are dissolved, they often dissolve in a colloidal state. However, even if dissolved in water or dissolved in colloid, it becomes a highly viscous solution,
It has very distinctive behavior and has high industrial utility value.
Therefore, many polysaccharides that have been chemically modified and processed to dissolve in water are used. For example, cellulose is insoluble in water, but methyl cellulose obtained by reacting this with methyl chloride, ethylene oxide, propylene oxide, etc., becomes soluble in water, and is used as one of the very general industrial materials. ing. However, in the case of producing a chemically modified semi-synthetic product, in many cases, the reaction does not proceed ideally and partial alignment of hydrophilic groups and hydrophobic groups occurs, resulting in a water-insoluble portion, which continues. May cause powder. From this point of view, it is desired to have various properties as a polysaccharide and be soluble in water.

【0003】[0003]

【発明が解決しようとする課題】このような背景のもと
に、本発明は特定の微生物を培養し、その培養物より新
規な多糖類を分離・採取することにあり、 またその多糖
類を有効成分とした水に非常に溶解し易い、安定性の高
い増粘剤を提供することにある。
Under such a background, the present invention is to cultivate a specific microorganism and to separate and collect a novel polysaccharide from the culture. It is intended to provide a highly stable thickener which is very easily dissolved in water as an active ingredient.

【0004】[0004]

【課題を解決するための手段】本発明者らは、特定の微
生物を培養し、その培養物の特定成分に着目した多糖類
が、特異な単糖類の結合様式になっており、これが水に
非常に溶解し易い、安定性の高いレオロジー改良剤、ま
たは増粘剤となりうることを見いだし本発明をなすに至
った。すなわち、本発明は、構成単糖が実質フコースと
マンノースである多糖類であり、この多糖類を用いた増
粘剤である。
[Means for Solving the Problems] The inventors of the present invention have cultivated a specific microorganism and focused on a specific component of the culture. The present inventors have found that they can be highly soluble and highly stable rheology improvers or thickeners, and have completed the present invention. That is, the present invention is a polysaccharide whose constituent monosaccharides are substantially fucose and mannose, and a thickener using this polysaccharide.

【0005】[0005]

【発明の実施の形態】本発明の多糖類は、構成単糖が実
質フコースとマンノースであり、好ましくはフコースと
マンノースの構成比が1:(0.8〜1.2)であり、
さらに好ましくは構成単糖のフコースとマンノースの多
くが交互に結合しているものである。本発明の多糖類
は、好ましくは分子量が1x102〜1x107である。
1x102より小さいと増粘効果が小さく、他方1x1
7より大きいとゲル状となり、いずれも増粘剤として
好ましくない。
BEST MODE FOR CARRYING OUT THE INVENTION In the polysaccharide of the present invention, the constituent monosaccharides are substantially fucose and mannose, preferably the composition ratio of fucose and mannose is 1: (0.8 to 1.2),
More preferably, most of the constituent monosaccharides, fucose, and mannose are alternately bonded. The polysaccharide of the present invention preferably has a molecular weight of 1 × 10 2 to 1 × 10 7 .
If it is smaller than 1x10 2 , the thickening effect is small, while on the other hand, it is 1x1
0 7 becomes larger and a gel, both unfavorable as a thickener.

【0006】本発明の多糖類は、アルカリゲネス・レイ
タス(Alcaligenes latus)に属する
アルカリゲネス・レイタスB−16株(FERM−BP
−2015)菌株の産出物より有利に抽出しうる。アル
カリゲネス・レイタスB−16株の菌学的性質、培養方
法は、特許公告公報平成6−37521号に記載されて
いる。アルカリゲネス・レイタスB−16株から産出す
る多糖類については、既に該前記特許公報、さらに特許
公開公報平4−200389号、特許公開公報平5−3
01904号に報告されているが、本発明の多糖類はこ
れら前記公報に記載された多糖類と同時に産出するもの
であるが、全く別種のものである。すなわち、該前記公
報に記載された多糖類(グルコース、ラムノース、グル
クロン酸、フコース、マンノースよりなる)の分別工程
で、分別されなかった分から別途分離精製されるもので
ある。
The polysaccharide of the present invention is an Alcaligenes laetus B-16 strain (FERM-BP) belonging to Alcaligenes latus.
-2015) can be advantageously extracted from the output of the strain. The mycological properties and culturing method of Alcaligenes laetus B-16 strain are described in Japanese Patent Publication No. Heisei 6-37521. Regarding the polysaccharides produced from Alcaligenes reitus strain B-16, the above-mentioned patent publications, further JP-A-4-200389 and JP-A-5-3 have already been described.
Although reported in No. 01904, the polysaccharide of the present invention is produced simultaneously with the polysaccharides described in these publications, but is a completely different kind. That is, the polysaccharide (comprising glucose, rhamnose, glucuronic acid, fucose, and mannose) described in the above publication is separately separated and purified from the unfractionated fraction.

【0007】本発明の多糖類を増粘剤として使用する場
合は、通常該多糖類を0.01〜10重量%程度の水溶
液にして使用される。0.01重量%より低い濃度の水
溶液では所期の目的を達するに多量必要とし効率的とは
いえず、また10重量%より高い濃度の水溶液は、該多
糖類の溶解度が充分でなく実質溶解できないこと、さら
に溶液の粘度が上がり過ぎて取り扱いの上から不可能な
ことなどの難点がある。本発明の多糖類は水に溶解し易
く、その水溶液の粘性は、pH、金属塩などの影響を受
け難く非常に安定である。従って、これを増粘剤として
使用すると、水に易溶で、かつ継粉状の不溶解分を残さ
ず、得られた水溶液の粘性が環境によって変わらないの
で、工程安定化、製品品質の向上に大きく寄与すること
ができる。
When the polysaccharide of the present invention is used as a thickener, it is usually used as an aqueous solution of about 0.01 to 10% by weight. An aqueous solution having a concentration of less than 0.01% by weight requires a large amount to achieve the intended purpose and is not efficient. An aqueous solution having a concentration of more than 10% by weight has insufficient solubility of the polysaccharide and is substantially soluble. There is a problem that it cannot be done, and further, the viscosity of the solution is too high, which makes it impossible to handle. The polysaccharide of the present invention is easily dissolved in water, and the viscosity of the aqueous solution thereof is hardly affected by pH, metal salts, etc. and is very stable. Therefore, when it is used as a thickener, it is easily soluble in water and does not leave a powdery insoluble component, and the viscosity of the resulting aqueous solution does not change depending on the environment, thus stabilizing the process and improving product quality. Can greatly contribute to

【0008】本発明の増粘剤の適用分野は、特に限定す
るものではないが、研磨剤、ワックス、顔料など微粒子
の懸濁安定化剤として、ラテックス、農薬、インク、ペ
イント、潤滑油、加工油などの乳化安定化剤として、あ
るいはペイント、ドレッシングなどの増粘剤などとして
実質的に水をベースとした系のものに適用される。適用
の際の添加量も限定するものではなく、適用場所、適用
目的に従って決められるべきである。この際、他の種類
の増粘剤を併用することをなんら妨げるものではない。
The application field of the thickener of the present invention is not particularly limited, but as a suspension stabilizer for fine particles such as abrasives, waxes and pigments, latex, agricultural chemicals, ink, paint, lubricating oil, processing It is applied to substantially water-based systems as an emulsion stabilizer for oils or as a thickener for paints and dressings. The amount to be added at the time of application is not limited, and should be determined according to the place of application and purpose of application. At this time, it does not prevent the combined use of other types of thickeners.

【0009】多糖類は、その培養生成物から分離精製し
て目的の多糖類を得るが、純度の高くない多糖類の場合
には、他の多糖類、オリゴ糖類などが混ざっていること
が多い。本発明多糖類を増粘剤として使用するときは、
その使用目的、対象製品によっては必ずしも純度の高い
ものが要求されない分野があり、この場合には本発明の
多糖類以外の多糖類が混在してもよい。本発明の増粘剤
の適用にあたっては、そのような他の多糖類の混在を妨
げるものではない。
[0009] Polysaccharides are separated and purified from their culture products to obtain the desired polysaccharides, but in the case of polysaccharides of low purity, other polysaccharides and oligosaccharides are often mixed. . When using the polysaccharide of the present invention as a thickener,
In some fields, high purity is not required depending on the purpose of use and target product, and in this case, a polysaccharide other than the polysaccharide of the present invention may be mixed. The application of the thickener of the present invention does not prevent the mixture of such other polysaccharides.

【0010】[0010]

【実施例】以下に実施例を挙げて本発明を詳細に説明す
るが、本発明はこれら実施例になんら限定されるもので
はない。
The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples.

【0011】[0011]

【実施例1】 1.培養条件 特開平5−301904の実施例1の方法に従い、アル
カリゲネス・レイタスBー16菌株(FERM BP−
2015号)の培養を行った。培養培地の組成は次の通
りである。 <培養培地の組成> 以下の成分をイオン交換水に溶解し、全体を1Lとした。 グルコース 〔関東化学(株)製 試薬〕 15 g KH2PO4 〔関東化学(株)製 試薬〕 4.5 g K2HPO4 〔関東化学(株)製 試薬〕 1.5 g NaCL 〔関東化学(株)製 試薬〕 0.1 g MgSO4・7H2O 〔関東化学(株)製 試薬〕 0.2 g 尿素 〔関東化学(株)製 試薬〕 1.0 g 酵母エキス 〔オキソイド(OXOID)社製〕 0.5 g pH=7 この培養培地100mLを、0.2μmの滅菌済みのメ
ンブレンフィルターで除菌した後、300mLの滅菌済
み三角フラスコに入れ、アルカリゲネス・レイタスBー
16菌株を一白金耳接種した後、温度を30℃に7日間
振とう培養した。
Embodiment 1 Culturing conditions According to the method of Example 1 of JP-A-5-301904, Alcaligenes reitus B-16 strain (FERM BP-
No. 2015) was cultured. The composition of the culture medium is as follows. <Composition of culture medium> The following components were dissolved in ion-exchanged water to make 1 L as a whole. Glucose [Kanto Chemical Co., Ltd. reagent] 15 g KH 2 PO 4 [Kanto Chemical Co., Ltd. reagent] 4.5 g K 2 HPO 4 [Kanto Chemical Co., Ltd. reagent] 1.5 g NaCL [Kanto Chemical Ltd. reagents 0.1 g MgSO 4 · 7H 2 O [Kanto Chemical Co., Ltd. reagents 0.2 g urea [Kanto Chemical Co., Ltd. reagents 1.0 g yeast extract [Oxoid (OXOID) 0.5 g pH = 7 100 mL of this culture medium was sterilized with a 0.2 μm sterilized membrane filter and then placed in a 300 mL sterilized Erlenmeyer flask, and Alcaligenes lettus B-16 strain was treated with 1 platinum. After inoculation with ears, the cells were cultured with shaking at 30 ° C. for 7 days.

【0012】2.分離・精製 培養により産出、蓄積された多糖類を、次の方法で分
離、精製した。アルカリゲネス・レイタスB−16菌株
を培養した培養物100mLに対して水400mLを加
え、1NのNaOH水溶液によりpHを12に調整し
た。ついでこの液をイオン交換樹脂:ダイヤイオンHP
A−75〔日本練水(株)製〕100mLを充填したカラ
ムに通した。(通水量はイオン交換樹脂の体積の8倍以
下とした)。この処理によりイオン交換樹脂に蛋白質、
核酸、および多糖類の低分子量成分が吸着される。この
時イオン交換樹脂カラムに吸着されずに通過した水に多
糖類の高分子量成分が含まれる。この高分子量成分が前
記公報(特開平5−301904号)に記載された多糖
類である。
2. Separation / Purification The polysaccharide produced and accumulated by the culture was separated and purified by the following method. 400 mL of water was added to 100 mL of the culture obtained by culturing Alcaligenes reitus B-16 strain, and the pH was adjusted to 12 with a 1N NaOH aqueous solution. Then use this solution as an ion exchange resin: Diaion HP
The mixture was passed through a column filled with 100 mL of A-75 [manufactured by Nippon Nermizu Co., Ltd.]. (The water flow rate was 8 times or less the volume of the ion exchange resin). By this treatment, the ion exchange resin is
Nucleic acids and low molecular weight components of polysaccharides are adsorbed. At this time, the high-molecular weight component of the polysaccharide is contained in the water that has passed through without being adsorbed by the ion exchange resin column. This high molecular weight component is the polysaccharide described in the above publication (JP-A-5-301904).

【0013】通水後のイオン交換樹脂に純水300mL
を通し十分に洗浄した後、0.1MのNaCL溶液を3
0mL通水し、イオン交換樹脂カラムに吸着した多糖類
を溶出させた。溶出液を別途イオン交換樹脂:AG50
W−X8(H型)〔バイオラッド(Bio−Rad)社
製〕,さらにAG1−X4(Ac−OH型)〔バイオラ
ッド社製〕に通して脱塩を行った。脱塩後の液をロータ
リエバポレーターにより濃縮した後、エタノールを加え
多糖類を沈澱させた。常温減圧乾燥し、本発明の多糖類
を得た。
300 mL of pure water in the ion exchange resin after passing water
After thoroughly washing through the column, add 0.1M NaCL solution to 3 times.
Water was passed through 0 mL to elute the polysaccharide adsorbed on the ion exchange resin column. Separate eluate from ion exchange resin: AG50
Desalination was carried out by passing through W-X8 (H type) [Bio-Rad] and AG1-X4 (Ac-OH type) [Bio-Rad]. After the desalted solution was concentrated by a rotary evaporator, ethanol was added to precipitate the polysaccharide. It was dried at room temperature under reduced pressure to obtain the polysaccharide of the present invention.

【0014】3.分子量測定 プルランを標準としてゲル浸透クロマトグラフィー(G
PC)分析により 平均分子量を求めた。得られた結果
を表1に示す。 <GPC分析の条件> 高速液体クロマトグラフィー(HPLC)装置〔ウオー
ターズ(Waters)社製〕 カラム : ウルトラハイドロゲンジェル1000、ウ
ルトラハイドロゲンジェル2000、ガードカラムの3
本使用〔いずれもウオーターズ(Waters)社製〕 移動相 : 0.1N−NaNO3 流速 : 0.5mL/分 カラム温度 : 45℃ 検出器 : 示差屈折計 標準サンプル : プルラン〔ショーデックス(Sho
dex)社製〕 標準分子量として、8.5×105、 4.8×104
5.8×103 の3種 GPC分析結果を下記表1に示す。
3. Molecular weight measurement Gel permeation chromatography (G
The average molecular weight was determined by PC) analysis. Table 1 shows the obtained results. <Conditions for GPC analysis> High performance liquid chromatography (HPLC) device [manufactured by Waters Co.] Column: Ultrahydrogen Gel 1000, Ultrahydrogen Gel 2000, and Guard Column 3
This use [all are manufactured by Waters Co., Ltd.] Mobile phase: 0.1N-NaNO 3 flow rate: 0.5 mL / min Column temperature: 45 ° C. Detector: Differential refractometer standard sample: Pullulan [Shodex (Shodex)
manufactured by dex)] as standard molecular weights of 8.5 × 10 5 , 4.8 × 10 4 ,
Table 1 below shows the results of three kinds of 5.8 × 10 3 GPC analysis.

【0015】[0015]

【表1】 これらの結果から、 この多糖類の分子量は、1×104
〜5×104であることが認められた。
[Table 1] From these results, the molecular weight of this polysaccharide is 1 × 10 4
It was found to be ˜5 × 10 4 .

【0016】4.構成単糖の決定 本発明の多糖類を以下の条件で加水分解した後、HPL
Cにて分析した。 加水分解の条件:本発明の多糖類14.0mgをイオン
交換水4mLに溶解し、濃硫酸1mLを加え アンプル
に封管し、100℃、2時間加熱した。冷却後、この処
理液を炭酸バリウムで中和、沈殿物を除去した後、濃縮
した。
4. Determination of constituent monosaccharides After hydrolysis of the polysaccharide of the present invention under the following conditions, HPL
Analyzed at C. Conditions for hydrolysis: 14.0 mg of the polysaccharide of the present invention was dissolved in 4 mL of ion-exchanged water, 1 mL of concentrated sulfuric acid was added, the tube was sealed in an ampoule, and heated at 100 ° C for 2 hours. After cooling, this treatment liquid was neutralized with barium carbonate to remove precipitates, and then concentrated.

【0017】 <HPLC測定条件> カラム : SH−1011〔ショーデックス社製〕 3本 カラム温度 : 50℃ 移動相 : 0.01N−H2SO4 流速 : 0.5mL/分 標準サンプル : グルクロン酸、グルコース、マンノース、ラムノース 、フコースを使用した。 標準ピーク(分) : グルクロン酸;38.35、 グルコース; 42.05、 マンノース;44.30、 ラムノース;45.98、 フコー ス;49.77 結果を図1に示した。この結果から、本発明の多糖類の
構成単糖は、フコースとマンノースであることがわかっ
た。
<HPLC measurement conditions> Column: SH-1011 [manufactured by Shoredex] Column temperature: 50 ° C Mobile phase: 0.01N-H 2 SO 4 Flow rate: 0.5 mL / min Standard sample: Glucuronic acid, Glucose, mannose, rhamnose and fucose were used. Standard peak (min): Glucuronic acid; 38.35, Glucose; 42.05, Mannose; 44.30, Rhamnose; 45.98, Fucose; 49.77 The results are shown in FIG. From this result, it was found that the constituent monosaccharides of the polysaccharide of the present invention were fucose and mannose.

【0018】5.部分加水分解物の分離、及び構成単糖
の決定 本発明の多糖類約100mgを0.25N−トリフルオ
ロ酢酸5mLに入れ、80℃、30分間加熱して加水分
解させた。この加水分解液をイオン交換樹脂:DEAE
−Sephadex(炭酸型)〔バイオラット社製〕で
中和した後ろ過し、そのろ液を凍結乾燥して部分加水分
解物を調製した。この加水分解物を、Asahipak
NH2P−50(4.6×250mm;ショーデックス
社製)のカラムを用いたHPLCにより分析した。結果
を図2に示した。本発明の多糖類の部分加水分解物とし
てNo.1〜No8のオリゴ糖成分として分取すること
ができた。
5. Separation of partially hydrolyzed product and determination of constituent monosaccharide About 100 mg of the polysaccharide of the present invention was put in 5 mL of 0.25N-trifluoroacetic acid, and heated at 80 ° C. for 30 minutes for hydrolysis. This hydrolyzed liquid is used as an ion exchange resin: DEAE
-Neutralized with Sephadex (carbonic acid type) (manufactured by Biorat), filtered, and the filtrate was freeze-dried to prepare a partial hydrolyzate. This hydrolyzate was converted to Asahipak
It was analyzed by HPLC using a column of NH2P-50 (4.6 x 250 mm; manufactured by Showdex). The results are shown in FIG. No. 6 as the partial hydrolyzate of the polysaccharide of the present invention. It was possible to fractionate the oligosaccharide components 1 to No8.

【0019】 <HPLC測定条件> カラム : AsahipakNH2P−50(4.6 × 250mm) 温度 : 30℃ 溶媒 : アセトニトリル:水(体積比6:4)の混合液 流速 : 1.0 mL/分 単離したNo.1〜No8のオリゴ糖成分それぞれにつ
いて、4で述べたと同じ条件、方法で加水分解し、構成
単糖を決定した。単離したオリゴ糖成分の組成を表2に
示した。この結果より、全てのオリゴ糖はフコースとマ
ンノースがほぼ等モルで構成されていることが判明し
た。
<HPLC measurement conditions> Column: Asahipak NH2P-50 (4.6 x 250 mm) Temperature: 30 ° C Solvent: A mixture of acetonitrile: water (volume ratio 6: 4) Flow rate: 1.0 mL / min Isolated No. Each of the oligosaccharide components 1 to No. 8 was hydrolyzed under the same conditions and method as described in 4, and the constituent monosaccharides were determined. The composition of the isolated oligosaccharide component is shown in Table 2. From this result, it was revealed that all oligosaccharides were composed of fucose and mannose in almost equimolar amounts.

【0020】[0020]

【表2】 [Table 2]

【0021】6.核磁気共鳴スペクトル(NMR)によ
る構成単糖の分析 本発明の多糖類を85%含水ジメチルスルホキシド(D
MSO)に溶解し、核磁気共鳴スペクトル分析装置〔ブ
ルカー(Bruker)社 ARX500、1Hに対し
て500Mz、13Cに対して125MHz〕を用い、9
0℃にて測定した。化学シフトはDMSOのシグナルを
トリメチルスルホキシド(TMS)よりδ2.49(
1H)、δ39.5(13C)として表記した。一次元N
MRの場合、1Hでは30°パルスで測定時間2.1
秒、待ち時間2.0秒で測定し、13Cでは30°パル
ス、測定時間0.5秒、待ち時間0.1秒で測定した。
結果を表3、図3と図4に示す。図3の13C一次元NM
Rの測定から、12本のシグナルが明瞭に観測されたの
で、フコースとマンノース以外の糖は存在しないことが
わかった。また、図4の 1H一次元NMRの測定から、
フコースとマンノースのアノマープロトン(H−1)の
シグナルの面積比を求めると、0.995:1.000
となることから、この構成単糖は、フコース:マンノー
ス=1:1であることがわかった。
6. Analysis of Constituent Monosaccharides by Nuclear Magnetic Resonance Spectra (NMR) The polysaccharide of the present invention contains 85% hydrous dimethyl sulfoxide (D).
MSO), and using a nuclear magnetic resonance spectrum analyzer [BRUKER ARX500, 500 Mz for 1 H, 125 MHz for 13 C],
It was measured at 0 ° C. The chemical shift is based on trimethylsulfoxide (TMS) δ 2.49 (
1 H) and δ39.5 ( 13 C). One-dimensional N
In case of MR, measurement time is 2.1 with 30 pulse at 1 H.
Second, the waiting time was 2.0 seconds, and for 13 C, 30 ° pulse, the measuring time was 0.5 seconds, and the waiting time was 0.1 seconds.
The results are shown in Table 3 and FIGS. 3 and 4. 13 C one-dimensional NM of 3
From the measurement of R, 12 signals were clearly observed, and it was found that there was no sugar other than fucose and mannose. Further, from the measurement of 1 H one-dimensional NMR in FIG. 4,
The area ratio of the signals of the anomeric proton (H-1) of fucose and mannose was calculated to be 0.995: 1.000.
Therefore, it was found that the constituent monosaccharide was fucose: mannose = 1: 1.

【0022】また、フコースとマンノースのアノマー位
13C一次元NMRのシグナルは、1本のシャープなピ
ークであるため、フコースとマンノースが交互に結合し
た構造であることがわかった。
Further, the 13 C one-dimensional NMR signal at the anomeric position of fucose and mannose has one sharp peak, and therefore it was found that the structure was such that fucose and mannose were alternately bonded.

【0023】<1H−NMRスペクトルの測定条件> 溶媒 : 85%含水DMSO−d61 H : 500MHz 温度 : 80 ℃ パルス : 30° 測定時間 : 2.1秒 待ち時間 : 2.0秒 化学シフト: DMSOのシグナルはTMSよりδ2.
49 (1H)
< 1 H-NMR spectrum measurement conditions> Solvent: 85% water-containing DMSO-d6 1 H: 500 MHz Temperature: 80 ° C. Pulse: 30 ° Measurement time: 2.1 seconds Waiting time: 2.0 seconds Chemical shift: The signal of DMSO is δ2.
49 ( 1 H)

【0024】<13C−NMRスペクトルの測定条件> 溶媒 : 85%含水DMSO−d613 C : 125MHz 温度 : 80 ℃ パルス : 30° 測定時間 : 0.5秒 待ち時間 : 0.1秒 化学シフト: DMSOのシグナルはTMSよりδ3
9.5 (13C)
<Measurement conditions for 13 C-NMR spectrum> Solvent: 85% water-containing DMSO-d6 13 C: 125 MHz Temperature: 80 ° C. Pulse: 30 ° Measurement time: 0.5 sec Waiting time: 0.1 sec Chemical shift: DMSO signal is δ3 from TMS
9.5 ( 13 C)

【表3】 [Table 3]

【0025】[0025]

【実施例2】 1. 比較に用いた多糖類 HPMC : ヒドロキシプロピルメチルセルロース
〔メトローズ90SH−15000(商品名)、信越化
学工業(株)製〕 HEC : ヒドロキシエチルセルロース〔HECダイ
セルSP−800(商品名)、ダイセル化学工業(株)
製〕 アルギン酸 : 〔紀文フード(株)社製〕 カードラン : 〔和光純薬(株)製〕 キサンタンガム : 〔ケルコ(Kelco)社製〕 ローカストビーンガム : 〔三晶(株)製〕
Embodiment 2 1. Polysaccharides used for comparison HPMC: Hydroxypropyl methylcellulose [Metroose 90SH-15000 (trade name), manufactured by Shin-Etsu Chemical Co., Ltd.] HEC: Hydroxyethyl cellulose [HEC Daicel SP-800 (trade name), Daicel Chemical Industry Co., Ltd.]
Made] Alginic acid: [made by Kibun Foods Co., Ltd.] Curdlan: [made by Wako Pure Chemical Industries, Ltd.] Xanthan gum: [made by Kelco] Locust bean gum: [made by Sansho Co., Ltd.]

【0026】2.水溶液の安定性に及ぼすpHの影響 本発明の多糖類、あるいは比較の多糖類それぞれの1重
量%の水溶液を作り、塩酸と酢酸、あるいは水酸化ナト
リウムとリン酸水素ナトリウムを加えpHを調整した。
B型粘度計を用い30℃、30rpmにて各水溶液の粘
度を測定した。結果を下記表4に示す。本発明の多糖類
の水溶液は、どのpHにおいても粘度が一定で安定して
いた。
2. Effect of pH on stability of aqueous solution An aqueous solution of 1% by weight of the polysaccharide of the present invention or a comparative polysaccharide was prepared, and hydrochloric acid and acetic acid or sodium hydroxide and sodium phosphate were added to adjust the pH.
The viscosity of each aqueous solution was measured using a B-type viscometer at 30 ° C. and 30 rpm. The results are shown in Table 4 below. The aqueous solution of the polysaccharide of the present invention had a constant viscosity and was stable at any pH.

【0027】[0027]

【表4】 [Table 4]

【0028】3.水溶液の安定性に及ぼす金属塩の影響 本発明の多糖類、あるいは比較の多糖類をそれぞれイオ
ン交換水に溶解し、1重量%水溶液を作った。ここに塩化
ナトリウム、 あるいは硫酸アルミニウムを所定量加えた
後、 B型粘度計を用い30℃、30rpmにて水溶液の
粘度を測定した。結果を下記表5に示す。本発明の多糖
類の水溶液は塩化ナトリウム、 あるいは硫酸アルミニウ
ムの存在に影響されず安定した粘度を示した。
3. Effect of metal salt on stability of aqueous solution The polysaccharide of the present invention or a comparative polysaccharide was dissolved in ion-exchanged water to prepare a 1 wt% aqueous solution. After adding a predetermined amount of sodium chloride or aluminum sulfate, the viscosity of the aqueous solution was measured with a B-type viscometer at 30 ° C. and 30 rpm. The results are shown in Table 5 below. The aqueous solution of the polysaccharide of the present invention showed stable viscosity without being affected by the presence of sodium chloride or aluminum sulfate.

【0029】[0029]

【表5】 [Table 5]

【0030】4.溶解のし易さの比較 本発明の多糖類、 あるいは比較の多糖類のそれぞれを、
粒径100〜200メッシュにそろえて、その1gをイ
オン交換水1000mLを入れたビーカーに添加し、撹
拌装置にて、300rpm、30℃で10分間攪拌を行
った。各多糖類の溶解液を、恒量測定済みのNo6濾紙
(直径150mm)にて吸引濾過を行った。この濾紙を
105℃で2時間乾燥させた後、デシケーターに入れ1
時間、室温まで冷却した。この乾燥濾紙の重量を測定し
た後、各多糖類の溶解率を下記の式にて求めた。
4. Comparison of ease of dissolution Each of the polysaccharide of the present invention, or the comparative polysaccharide,
The particle size was adjusted to 100 to 200 mesh, 1 g thereof was added to a beaker containing 1000 mL of ion-exchanged water, and the mixture was stirred with a stirring device at 300 rpm and 30 ° C. for 10 minutes. The solution of each polysaccharide was suction-filtered with No6 filter paper (diameter 150 mm) whose constant weight had been measured. After drying this filter paper at 105 ° C for 2 hours, put it in a desiccator 1
Cool to room temperature for hours. After measuring the weight of this dried filter paper, the dissolution rate of each polysaccharide was determined by the following formula.

【0031】次に本発明の多糖類と比較の多糖類を、そ
れぞれ1gをイオン交換水1000mlに入れ、撹拌装
置にて、300rpm、60℃で120分間攪拌を行っ
た後、前述の方法に従い、溶解率を求めた。下記表6に
示したように、本発明の多糖類は、室温程度の水温にお
いても短時間で完全に溶解することが確認できた。
Next, 1 g of each of the polysaccharides of the present invention and comparative polysaccharides was placed in 1000 ml of ion-exchanged water, and the mixture was stirred with a stirring device at 300 rpm and 60 ° C. for 120 minutes, and then according to the above-mentioned method. The dissolution rate was determined. As shown in Table 6 below, it was confirmed that the polysaccharide of the present invention was completely dissolved in a short time even at a water temperature of about room temperature.

【表6】 [Table 6]

【0032】[0032]

【発明の効果】本発明の多糖類は、新規の多糖類であ
り、水に非常に溶解し易い、安定性の高い増粘剤とな
る。各種産業分野において広く適用が可能である。
INDUSTRIAL APPLICABILITY The polysaccharide of the present invention is a novel polysaccharide and becomes a highly stable thickener which is very soluble in water. It can be widely applied in various industrial fields.

【図面の簡単な説明】[Brief description of drawings]

【図1】Aは標準物質の加水分解物の HPLCチャー
トであり、Bは本発明の多糖類の加水分解物の HPL
Cチャートである。
FIG. 1A is a HPLC chart of a hydrolyzate of a standard substance, and B is HPL of a hydrolyzate of a polysaccharide of the present invention.
It is a C chart.

【図2】本発明の多糖類の加水分解物の逆相HPLCの
溶出パターンを示す。
FIG. 2 shows a reverse-phase HPLC elution pattern of the hydrolyzate of the polysaccharide of the present invention.

【図3】本発明の多糖類の1H−NMRスペクトルを示
す。
FIG. 3 shows a 1 H-NMR spectrum of the polysaccharide of the present invention.

【図4】本発明の多糖類の13C−NMRスペクトルを示
す。
FIG. 4 shows a 13 C-NMR spectrum of the polysaccharide of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 倉根 隆一郎 茨城県つくば市東1丁目1番3 工業技術 院生命工学工業技術研究所内 (72)発明者 野畑 靖浩 三重県四日市市別名6丁目6番9号 伯東 株式会社四日市研究所内 (72)発明者 山口 善治 三重県四日市市別名6丁目6番9号 伯東 株式会社四日市研究所内 (72)発明者 穴澤 秀治 東京都練馬区南大泉4丁目19番18号 (72)発明者 松浦 一郎 東京都板橋区中台3−27 K−212 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ryuichiro Kurane 1-3 East Higashi Tsukuba, Ibaraki Prefectural Institute of Industrial Science and Technology, Institute of Biotechnology (72) Inventor Yasuhiro Nobata Yokkaichi, Mie 6-6-9 No. Hakuto Co., Ltd. Yokkaichi Research Institute (72) Inventor Zenji Yamaguchi Yokkaichi City, Mie Prefecture 6-69 Another name Hakuto Co., Ltd. Yokkaichi Research Institute (72) Inventor Shuji Anazawa 4-19-18 Minamioizumi, Nerima-ku, Tokyo (72) Inventor Ichiro Matsuura 3-27 Nakadai, Itabashi-ku, Tokyo K-212

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 構成単糖が、実質的にフコースとマンノ
ースからなる多糖類。
1. A polysaccharide whose constituent monosaccharide consists essentially of fucose and mannose.
【請求項2】 フコースとマンノースとの構成比が、
1:(0.8〜1.2)である請求項1記載の多糖類。
2. The composition ratio of fucose and mannose is
The polysaccharide according to claim 1, which is 1: (0.8 to 1.2).
【請求項3】 分子量が1x102〜1x107である請
求項1または2記載の多糖類。
3. The polysaccharide according to claim 1, which has a molecular weight of 1 × 10 2 to 1 × 10 7 .
【請求項4】 アルカリゲネス・レイタス(Alcal
igenes latus)に属するアルカリゲネス・
レイタスB−16株(FERM−BP−2015)菌を
培養し、その培養物より分離・採取することを特徴とす
る請求項1〜3のいずれかに記載の多糖類の製造方法。
4. Alcaligenes laitas (Alcal
igenes latus) Alcaligenes
The method for producing a polysaccharide according to any one of claims 1 to 3, which comprises culturing Lactus B-16 strain (FERM-BP-2015), and separating and collecting from the culture.
【請求項5】 請求項1〜3のいずれかに記載の多糖類
を有効成分とする増粘剤。
5. A thickener containing the polysaccharide according to any one of claims 1 to 3 as an active ingredient.
JP11236096A 1996-05-07 1996-05-07 Polysaccharides derived from microorganisms Expired - Lifetime JP3826168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11236096A JP3826168B2 (en) 1996-05-07 1996-05-07 Polysaccharides derived from microorganisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11236096A JP3826168B2 (en) 1996-05-07 1996-05-07 Polysaccharides derived from microorganisms

Publications (2)

Publication Number Publication Date
JPH09296002A true JPH09296002A (en) 1997-11-18
JP3826168B2 JP3826168B2 (en) 2006-09-27

Family

ID=14584749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11236096A Expired - Lifetime JP3826168B2 (en) 1996-05-07 1996-05-07 Polysaccharides derived from microorganisms

Country Status (1)

Country Link
JP (1) JP3826168B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003020433A (en) * 2001-07-10 2003-01-24 Pentel Corp Ink composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003020433A (en) * 2001-07-10 2003-01-24 Pentel Corp Ink composition

Also Published As

Publication number Publication date
JP3826168B2 (en) 2006-09-27

Similar Documents

Publication Publication Date Title
Koizumi et al. High-performance anion-exchange chromatography of homogeneous d-gluco-oligosaccharides and-polysaccharides (polymerization degree⩾ 50) with pulsed amperometric detection
Zajic et al. Flocculant and chemical properties of a polysaccharide from Pullularia pullulans
US5730876A (en) Separation and purification of low molecular weight chitosan using multi-step membrane separation process
HU205955B (en) Process for producing heteropolysaccharides of law viscosity
JPH0751083A (en) Preparation of long chain inulin
JP3181337B2 (en) Method for producing chitosan oligosaccharide mixture and method for producing chitin oligosaccharide mixture
Gross et al. Studies on the Extracellular Polysaccharides (EPS) Produced in vitro by Pseudomonas phaseolicola: II. Characterization of Levan, Alginate, and ‘LPS'
CA2309858A1 (en) Use of liquid carbohydrate fermentation product in foods
US4960697A (en) Recovery of polysaccharides by employing a divalent cation with a water miscible organic solvent
JP4441304B2 (en) Method for preparing water-soluble low-viscosity β-D-glucan-containing culture solution
IE62995B1 (en) New heteropolysaccharide, process for its manufacture and its use
KR100200547B1 (en) Method of separation and purification for low molecular weight chitosan using multi-step membrane process
US4673707A (en) Synthetic polymers with glycoside side chains
EP0015691B1 (en) Microbial polysaccharide, its preparation and use
KR20030047878A (en) Lipopolysaccharides(lps) extracted from escherichia coli
JPH09296002A (en) Microorganism-derived polysaccharide
Fawzya et al. Physicochemical properties of chitooligosaccharide prepared by using chitosanase from Stenotrophomonas maltophilia KPU 2123
US2856398A (en) Carboxymethyl dextran-iron complexes
US5378832A (en) Polysaccharide and a method of producing it
CN1325454A (en) Method for enzymatic splitting of rutinosides
US5043287A (en) Recovery of water soluble biopolymers from an aqueous solution by employing a polyoxide
JP3286713B2 (en) Polysaccharides, mainly water-absorbing, moisture-absorbing, moisturizing and thickening agents
US3000872A (en) Preparation of carboxymethyl dextran-iron complexes
JP2003176353A (en) Polylysine and method for producing the same
Il’ina et al. Galactosylated derivatives of low-molecular-weight chitosan: Obtaining and properties

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 19960613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 19960813

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20010116

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20010925

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20030408

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term