JP3826168B2 - Polysaccharides derived from microorganisms - Google Patents

Polysaccharides derived from microorganisms Download PDF

Info

Publication number
JP3826168B2
JP3826168B2 JP11236096A JP11236096A JP3826168B2 JP 3826168 B2 JP3826168 B2 JP 3826168B2 JP 11236096 A JP11236096 A JP 11236096A JP 11236096 A JP11236096 A JP 11236096A JP 3826168 B2 JP3826168 B2 JP 3826168B2
Authority
JP
Japan
Prior art keywords
polysaccharide
present
water
mannose
fucose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11236096A
Other languages
Japanese (ja)
Other versions
JPH09296002A (en
Inventor
隆一郎 倉根
靖浩 野畑
善治 山口
秀治 穴澤
一郎 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hakuto Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Hakuto Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hakuto Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Hakuto Co Ltd
Priority to JP11236096A priority Critical patent/JP3826168B2/en
Publication of JPH09296002A publication Critical patent/JPH09296002A/en
Application granted granted Critical
Publication of JP3826168B2 publication Critical patent/JP3826168B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、微生物由来の新規な多糖類と、これを有効成分とする増粘剤に関するものである。
【0002】
【従来の技術】
多糖類は複数の単糖類がグリコシド結合によって結合した炭水化物で、天然に存在するもの、天然に存在するものをさらに化学的に変性させたものなど数多く知られている。単糖類は一般に水に溶解するが、多糖類は種類も多く性質もまちまちであるが、一般に水には溶解し難く、溶解する場合もコロイド状態に溶けていることが多い。しかし水に溶解させたもの、あるいはコロイド状に溶解したものでも粘性の高い溶液となり、非常に特徴のある挙動をし、産業上の利用価値が高い。そこで多糖類を化学的に変成し水に溶解するように加工したものが多く使用されている。例えば、セルロースは水に不溶であるが、これに塩化メチル、エチレンオキシド、プロピレンオキシドなどを反応させて得たメチルセルロースは水に溶解するようになり、極く一般的な工業材料の一つとして利用されている。しかし、化学的に変成した半合成品を製造する場合、多くの場合反応は理想的に進まず、部分的に親水基と疎水基の並びに偏りが生じ、水に不溶解部分を生じ、これが継粉を生じたりする原因となる。このような見地から多糖類としての諸性質を有しつつ、水に溶解するものが望まれている。
【0003】
【発明が解決しようとする課題】
このような背景のもとに、本発明は特定の微生物を培養し、その培養物より新規な多糖類を分離・採取することにあり、 またその多糖類を有効成分とした水に非常に溶解し易い、安定性の高い増粘剤を提供することにある。
【0004】
【課題を解決するための手段】
本発明者らは、特定の微生物を培養し、その培養物の特定成分に着目した多糖類が、特異な単糖類の結合様式になっており、これが水に非常に溶解し易い、安定性の高いレオロジー改良剤、または増粘剤となりうることを見いだし本発明をなすに至った。
すなわち、本発明は、構成単糖が実質フコースとマンノースである多糖類であり、この多糖類を用いた増粘剤である。
【0005】
【発明の実施の形態】
本発明の多糖類は、構成単糖が実質フコースとマンノースであり、好ましくはフコースとマンノースの構成比が1:(0.8〜1.2)であり、さらに好ましくは構成単糖のフコースとマンノースの多くが交互に結合しているものである。本発明の多糖類は、好ましくは分子量が1x102〜1x107である。1x102より小さいと増粘効果が小さく、他方1x107より大きいとゲル状となり、いずれも増粘剤として好ましくない。
【0006】
本発明の多糖類は、アルカリゲネス・レイタス(Alcaligenes latus)に属するアルカリゲネス・レイタスB−16株(FERM−BP−2015)菌株の産出物より有利に抽出しうる。アルカリゲネス・レイタスB−16株の菌学的性質、培養方法は、特許公告公報平成6−37521号に記載されている。アルカリゲネス・レイタスB−16株から産出する多糖類については、既に該前記特許公報、さらに特許公開公報平4−200389号、特許公開公報平5−301904号に報告されているが、本発明の多糖類はこれら前記公報に記載された多糖類と同時に産出するものであるが、全く別種のものである。すなわち、該前記公報に記載された多糖類(グルコース、ラムノース、グルクロン酸、フコース、マンノースよりなる)の分別工程で、分別されなかった分から別途分離精製されるものである。
【0007】
本発明の多糖類を増粘剤として使用する場合は、通常該多糖類を0.01〜10重量%程度の水溶液にして使用される。0.01重量%より低い濃度の水溶液では所期の目的を達するに多量必要とし効率的とはいえず、また10重量%より高い濃度の水溶液は、該多糖類の溶解度が充分でなく実質溶解できないこと、さらに溶液の粘度が上がり過ぎて取り扱いの上から不可能なことなどの難点がある。
本発明の多糖類は水に溶解し易く、その水溶液の粘性は、pH、金属塩などの影響を受け難く非常に安定である。従って、これを増粘剤として使用すると、水に易溶で、かつ継粉状の不溶解分を残さず、得られた水溶液の粘性が環境によって変わらないので、工程安定化、製品品質の向上に大きく寄与することができる。
【0008】
本発明の増粘剤の適用分野は、特に限定するものではないが、研磨剤、ワックス、顔料など微粒子の懸濁安定化剤として、ラテックス、農薬、インク、ペイント、潤滑油、加工油などの乳化安定化剤として、あるいはペイント、ドレッシングなどの増粘剤などとして実質的に水をベースとした系のものに適用される。適用の際の添加量も限定するものではなく、適用場所、適用目的に従って決められるべきである。この際、他の種類の増粘剤を併用することをなんら妨げるものではない。
【0009】
多糖類は、その培養生成物から分離精製して目的の多糖類を得るが、純度の高くない多糖類の場合には、他の多糖類、オリゴ糖類などが混ざっていることが多い。本発明多糖類を増粘剤として使用するときは、その使用目的、対象製品によっては必ずしも純度の高いものが要求されない分野があり、この場合には本発明の多糖類以外の多糖類が混在してもよい。本発明の増粘剤の適用にあたっては、そのような他の多糖類の混在を妨げるものではない。
【0010】
【実施例】
以下に実施例を挙げて本発明を詳細に説明するが、本発明はこれら実施例になんら限定されるものではない。
【0011】
【実施例1】
1.培養条件
特開平5−301904の実施例1の方法に従い、アルカリゲネス・レイタスBー16菌株(FERM BP−2015号)の培養を行った。培養培地の組成は次の通りである。
<培養培地の組成>
以下の成分をイオン交換水に溶解し、全体を1Lとした。
グルコース 〔関東化学(株)製 試薬〕 15 g
KH2PO4 〔関東化学(株)製 試薬〕 4.5 g
2HPO4 〔関東化学(株)製 試薬〕 1.5 g
NaCL 〔関東化学(株)製 試薬〕 0.1 g
MgSO4・7H2O 〔関東化学(株)製 試薬〕 0.2 g
尿素 〔関東化学(株)製 試薬〕 1.0 g
酵母エキス 〔オキソイド(OXOID)社製〕 0.5 g
pH=7
この培養培地100mLを、0.2μmの滅菌済みのメンブレンフィルターで除菌した後、300mLの滅菌済み三角フラスコに入れ、アルカリゲネス・レイタスBー16菌株を一白金耳接種した後、温度を30℃に7日間振とう培養した。
【0012】
2.分離・精製
培養により産出、蓄積された多糖類を、次の方法で分離、精製した。
アルカリゲネス・レイタスB−16菌株を培養した培養物100mLに対して水400mLを加え、1NのNaOH水溶液によりpHを12に調整した。ついでこの液をイオン交換樹脂:ダイヤイオンHPA−75〔日本練水(株)製〕100mLを充填したカラムに通した。(通水量はイオン交換樹脂の体積の8倍以下とした)。この処理によりイオン交換樹脂に蛋白質、核酸、および多糖類の低分子量成分が吸着される。この時イオン交換樹脂カラムに吸着されずに通過した水に多糖類の高分子量成分が含まれる。この高分子量成分が前記公報(特開平5−301904号)に記載された多糖類である。
【0013】
通水後のイオン交換樹脂に純水300mLを通し十分に洗浄した後、0.1MのNaCL溶液を30mL通水し、イオン交換樹脂カラムに吸着した多糖類を溶出させた。溶出液を別途イオン交換樹脂:AG50W−X8(H型)〔バイオラッド(Bio−Rad)社製〕,さらにAG1−X4(Ac−OH型)〔バイオラッド社製〕に通して脱塩を行った。脱塩後の液をロータリエバポレーターにより濃縮した後、エタノールを加え多糖類を沈澱させた。常温減圧乾燥し、本発明の多糖類を得た。
【0014】
3.分子量測定
プルランを標準としてゲル浸透クロマトグラフィー(GPC)分析により 平均分子量を求めた。得られた結果を表1に示す。
<GPC分析の条件>
高速液体クロマトグラフィー(HPLC)装置〔ウオーターズ(Waters)社製〕
カラム : ウルトラハイドロゲンジェル1000、ウルトラハイドロゲンジェル2000、ガードカラムの3本使用〔いずれもウオーターズ(Waters)社製〕
移動相 : 0.1N−NaNO3
流速 : 0.5mL/分
カラム温度 : 45℃
検出器 : 示差屈折計
標準サンプル : プルラン〔ショーデックス(Shodex)社製〕
標準分子量として、8.5×105、 4.8×104、 5.8×103 の3種
GPC分析結果を下記表1に示す。
【0015】
【表1】

Figure 0003826168
これらの結果から、 この多糖類の分子量は、1×104〜5×104であることが認められた。
【0016】
4.構成単糖の決定
本発明の多糖類を以下の条件で加水分解した後、HPLCにて分析した。
加水分解の条件:本発明の多糖類14.0mgをイオン交換水4mLに溶解し、濃硫酸1mLを加え アンプルに封管し、100℃、2時間加熱した。冷却後、この処理液を炭酸バリウムで中和、沈殿物を除去した後、濃縮した。
【0017】
<HPLC測定条件>
カラム : SH−1011〔ショーデックス社製〕 3本
カラム温度 : 50℃
移動相 : 0.01N−H2SO4
流速 : 0.5mL/分
標準サンプル : グルクロン酸、グルコース、マンノース、ラムノース、フコースを使用した。
標準ピーク(分) : グルクロン酸;38.35、 グルコース;
42.05、 マンノース;44.30、 ラムノース;45.98、 フコース;49.77
結果を図1に示した。この結果から、本発明の多糖類の構成単糖は、フコースとマンノースであることがわかった。
【0018】
5.部分加水分解物の分離、及び構成単糖の決定
本発明の多糖類約100mgを0.25N−トリフルオロ酢酸5mLに入れ、 80℃、30分間加熱して加水分解させた。この加水分解液をイオン交換樹脂:DEAE−Sephadex(炭酸型)〔バイオラット社製〕で中和した後ろ過し、そのろ液を凍結乾燥して部分加水分解物を調製した。
この加水分解物を、AsahipakNH2P−50(4.6×250mm;ショーデックス社製)のカラムを用いたHPLCにより分析した。結果を図2に示した。本発明の多糖類の部分加水分解物としてNo.1〜No8のオリゴ糖成分として分取することができた。
【0019】
<HPLC測定条件>
カラム : AsahipakNH2P−50(4.6 × 250mm)
温度 : 30℃
溶媒 : アセトニトリル:水(体積比6:4)の混合液
流速 : 1.0 mL/分
単離したNo.1〜No8のオリゴ糖成分それぞれについて、4で述べたと同じ条件、方法で加水分解し、構成単糖を決定した。単離したオリゴ糖成分の組成を表2に示した。この結果より、全てのオリゴ糖はフコースとマンノースがほぼ等モルで構成されていることが判明した。
【0020】
【表2】
Figure 0003826168
【0021】
6.核磁気共鳴スペクトル(NMR)による構成単糖の分析
本発明の多糖類を85%含水ジメチルスルホキシド(DMSO)に溶解し、核磁気共鳴スペクトル分析装置〔ブルカー(Bruker)社 ARX500、1Hに対して500Mz、13Cに対して125MHz〕を用い、90℃にて測定した。化学シフトはDMSOのシグナルを トリメチルスルホキシド(TMS)よりδ2.49(1H)、δ39.5(13C)として表記した。一次元NMRの場合、1Hでは30°パルスで測定時間2.1秒、待ち時間2.0秒で測定し、13Cでは30°パルス、測定時間0.5秒、待ち時間0.1秒で測定した。結果を表3、図3と図4に示す。図3の13C一次元NMRの測定から、12本のシグナルが明瞭に観測されたので、フコースとマンノース以外の糖は存在しないことがわかった。また、図4の 1H一次元NMRの測定から、フコースとマンノースのアノマープロトン(H−1)のシグナルの面積比を求めると、0.995:1.000となることから、この構成単糖は、フコース:マンノース=1:1であることがわかった。
【0022】
また、フコースとマンノースのアノマー位の13C一次元NMRのシグナルは、1本のシャープなピークであるため、フコースとマンノースが交互に結合した構造であることがわかった。
【0023】
1H−NMRスペクトルの測定条件>
溶媒 : 85%含水DMSO−d6
1H : 500MHz
温度 : 80 ℃
パルス : 30°
測定時間 : 2.1秒
待ち時間 : 2.0秒
化学シフト: DMSOのシグナルはTMSよりδ2.49 (1H)
【0024】
13C−NMRスペクトルの測定条件>
溶媒 : 85%含水DMSO−d6
13C : 125MHz
温度 : 80 ℃
パルス : 30°
測定時間 : 0.5秒
待ち時間 : 0.1秒
化学シフト: DMSOのシグナルはTMSよりδ39.5 (13C)
【表3】
Figure 0003826168
【0025】
【実施例2】
1. 比較に用いた多糖類
HPMC : ヒドロキシプロピルメチルセルロース〔メトローズ90SH−15000(商品名)、信越化学工業(株)製〕
HEC : ヒドロキシエチルセルロース〔HECダイセルSP−800(商品名)、ダイセル化学工業(株)製〕
アルギン酸 : 〔紀文フード(株)社製〕
カードラン : 〔和光純薬(株)製〕
キサンタンガム : 〔ケルコ(Kelco)社製〕
ローカストビーンガム : 〔三晶(株)製〕
【0026】
2.水溶液の安定性に及ぼすpHの影響
本発明の多糖類、あるいは比較の多糖類それぞれの1重量%の水溶液を作り、塩酸と酢酸、あるいは水酸化ナトリウムとリン酸水素ナトリウムを加えpHを調整した。B型粘度計を用い30℃、30rpmにて各水溶液の粘度を測定した。結果を下記表4に示す。本発明の多糖類の水溶液は、どのpHにおいても粘度が一定で安定していた。
【0027】
【表4】
Figure 0003826168
【0028】
3.水溶液の安定性に及ぼす金属塩の影響
本発明の多糖類、あるいは比較の多糖類をそれぞれイオン交換水に溶解し、1重量%水溶液を作った。ここに塩化ナトリウム、 あるいは硫酸アルミニウムを所定量加えた後、 B型粘度計を用い30℃、30rpmにて水溶液の粘度を測定した。結果を下記表5に示す。本発明の多糖類の水溶液は塩化ナトリウム、 あるいは硫酸アルミニウムの存在に影響されず安定した粘度を示した。
【0029】
【表5】
Figure 0003826168
【0030】
4.溶解のし易さの比較
本発明の多糖類、 あるいは比較の多糖類のそれぞれを、粒径100〜200メッシュにそろえて、その1gをイオン交換水1000mLを入れたビーカーに添加し、撹拌装置にて、300rpm、30℃で10分間攪拌を行った。
各多糖類の溶解液を、恒量測定済みのNo6濾紙(直径150mm)にて吸引濾過を行った。この濾紙を105℃で2時間乾燥させた後、デシケーターに入れ1時間、室温まで冷却した。この乾燥濾紙の重量を測定した後、各多糖類の溶解率を下記の式にて求めた。
Figure 0003826168
【0031】
次に本発明の多糖類と比較の多糖類を、それぞれ1gをイオン交換水1000mlに入れ、撹拌装置にて、300rpm、60℃で120分間攪拌を行った後、前述の方法に従い、溶解率を求めた。下記表6に示したように、本発明の多糖類は、室温程度の水温においても短時間で完全に溶解することが確認できた。
【表6】
Figure 0003826168
【0032】
【発明の効果】
本発明の多糖類は、新規の多糖類であり、水に非常に溶解し易い、安定性の高い増粘剤となる。各種産業分野において広く適用が可能である。
【図面の簡単な説明】
【図1】Aは標準物質の加水分解物の HPLCチャートであり、Bは本発明の多糖類の加水分解物の HPLCチャートである。
【図2】本発明の多糖類の加水分解物の逆相HPLCの溶出パターンを示す。
【図3】本発明の多糖類の1H−NMRスペクトルを示す。
【図4】本発明の多糖類の13C−NMRスペクトルを示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel microorganism-derived polysaccharide and a thickener containing the same as an active ingredient.
[0002]
[Prior art]
Polysaccharides are carbohydrates in which a plurality of monosaccharides are linked by glycosidic bonds, and many are known in nature, such as those that are naturally modified and those that are further chemically modified. Monosaccharides are generally soluble in water, but polysaccharides are of many types and vary in nature, but are generally difficult to dissolve in water and often dissolve in a colloidal state. However, even those dissolved in water or in a colloidal form become highly viscous solutions, behave very distinctly, and have high industrial utility value. Therefore, a material obtained by chemically modifying a polysaccharide so as to be dissolved in water is often used. For example, cellulose is insoluble in water, but methylcellulose obtained by reacting it with methyl chloride, ethylene oxide, propylene oxide, etc., becomes soluble in water and is used as one of the most common industrial materials. ing. However, in the case of producing chemically modified semi-synthetic products, in many cases, the reaction does not proceed ideally, and the partial alignment of hydrophilic and hydrophobic groups occurs, resulting in an insoluble part in water, which is inherited. It may cause powder. From such a viewpoint, what dissolves in water is desired while having various properties as a polysaccharide.
[0003]
[Problems to be solved by the invention]
Under such a background, the present invention is to cultivate a specific microorganism, to separate and collect a novel polysaccharide from the culture, and to dissolve very much in water containing the polysaccharide as an active ingredient. An object of the present invention is to provide a highly stable thickener that is easy to do.
[0004]
[Means for Solving the Problems]
The present inventors have cultivated a specific microorganism, and the polysaccharide focused on a specific component of the culture has a specific monosaccharide binding mode, which is very easy to dissolve in water. It has been found that it can be a high rheology improving agent or a thickening agent, and has led to the present invention.
That is, the present invention is a polysaccharide whose constituent monosaccharides are substantially fucose and mannose, and is a thickener using this polysaccharide.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the polysaccharide of the present invention, the constituent monosaccharide is substantially fucose and mannose, preferably the constituent ratio of fucose and mannose is 1: (0.8 to 1.2), more preferably fucose of the constituent monosaccharide. Most of the mannose is linked alternately. The polysaccharide of the present invention preferably has a molecular weight of 1 × 10 2 to 1 × 10 7 . If it is smaller than 1 × 10 2 , the effect of thickening is small, and if it is larger than 1 × 10 7 , it becomes a gel, which is not preferable as a thickener.
[0006]
The polysaccharide of the present invention can be advantageously extracted from the product of Alkalinenes latus B-16 strain (FERM-BP-2015) belonging to Alcaligenes latus. The mycological properties and culture method of Alkaligenes Leitas B-16 strain are described in Japanese Patent Publication No. Hei 6-37521. Polysaccharides produced from Alkaligenes Leitas B-16 strain have already been reported in the above-mentioned patent publications, as well as in Japanese Patent Publication Nos. 4-240309 and 5-301904. Saccharides are produced at the same time as the polysaccharides described in these publications, but are completely different. That is, it is separated and purified separately from the fraction that was not fractionated in the fractionation step of the polysaccharide (consisting of glucose, rhamnose, glucuronic acid, fucose, and mannose) described in the publication.
[0007]
When the polysaccharide of the present invention is used as a thickener, the polysaccharide is usually used in an aqueous solution of about 0.01 to 10% by weight. An aqueous solution having a concentration lower than 0.01% by weight requires a large amount to achieve the intended purpose, and cannot be said to be efficient. An aqueous solution having a concentration higher than 10% by weight does not have sufficient solubility of the polysaccharide and is substantially soluble. In addition, there are difficulties such as inability to handle due to too high viscosity of the solution.
The polysaccharide of the present invention is easily dissolved in water, and the viscosity of the aqueous solution is very stable and hardly affected by pH, metal salts and the like. Therefore, when it is used as a thickener, it is easily soluble in water and does not leave a pollen-like insoluble matter, and the viscosity of the resulting aqueous solution does not change depending on the environment, so process stabilization and product quality improvement Can greatly contribute.
[0008]
The field of application of the thickener of the present invention is not particularly limited, but as a suspension stabilizer for fine particles such as abrasives, waxes, pigments, latex, agricultural chemicals, inks, paints, lubricating oils, processing oils, etc. Applicable to systems based on water substantially as an emulsion stabilizer or as a thickener for paints, dressings and the like. The amount of addition at the time of application is not limited, and should be determined according to the place of application and purpose of application. At this time, it does not prevent any other type of thickener from being used in combination.
[0009]
The polysaccharide is separated and purified from the culture product to obtain the target polysaccharide, but in the case of a polysaccharide having a low purity, other polysaccharides, oligosaccharides and the like are often mixed. When the polysaccharide of the present invention is used as a thickener, there is a field where high purity is not necessarily required depending on the purpose of use and the target product. In this case, a polysaccharide other than the polysaccharide of the present invention is mixed. May be. The application of the thickener of the present invention does not prevent the mixture of such other polysaccharides.
[0010]
【Example】
The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples.
[0011]
[Example 1]
1. Culture conditions According to the method of Example 1 of JP-A-5-301904, Alkaligenes Leitas B-16 strain (FERM BP-2015) was cultured. The composition of the culture medium is as follows.
<Composition of culture medium>
The following components were dissolved in ion exchange water to make 1 L as a whole.
Glucose [Reagent made by Kanto Chemical Co., Ltd.] 15 g
KH 2 PO 4 [Reagent manufactured by Kanto Chemical Co., Ltd.] 4.5 g
K 2 HPO 4 [Reagent manufactured by Kanto Chemical Co., Ltd.] 1.5 g
NaCl [Reagent manufactured by Kanto Chemical Co., Ltd.] 0.1 g
MgSO 4 .7H 2 O [Reagent made by Kanto Chemical Co., Ltd.] 0.2 g
Urea [Reagent made by Kanto Chemical Co., Ltd.] 1.0 g
Yeast extract [Oxoid (OXOID)] 0.5 g
pH = 7
100 mL of this culture medium was sterilized with a 0.2 μm sterilized membrane filter, then placed in a 300 mL sterilized Erlenmeyer flask, inoculated with one platinum loop of Alcaligenes leitas B-16 strain, and then the temperature was raised to 30 ° C. Cultured with shaking for 7 days.
[0012]
2. The polysaccharide produced and accumulated by the separation / purification culture was separated and purified by the following method.
400 mL of water was added to 100 mL of the culture obtained by culturing the Alkalinegenes Leitas B-16 strain, and the pH was adjusted to 12 with 1N NaOH aqueous solution. Subsequently, this liquid was passed through a column packed with 100 mL of ion exchange resin: Diaion HPA-75 (manufactured by Nippon Nersui Co., Ltd.). (The water flow rate was 8 times or less the volume of the ion exchange resin). By this treatment, low molecular weight components of proteins, nucleic acids, and polysaccharides are adsorbed on the ion exchange resin. At this time, the high molecular weight component of the polysaccharide is contained in the water that has passed without being adsorbed on the ion exchange resin column. This high molecular weight component is a polysaccharide described in the above-mentioned publication (Japanese Patent Laid-Open No. 5-301904).
[0013]
After passing 300 mL of pure water sufficiently through the ion exchange resin after passing water, 30 mL of 0.1 M NaCl solution was passed through to elute the polysaccharide adsorbed on the ion exchange resin column. The eluate is separately passed through an ion exchange resin: AG50W-X8 (H type) (manufactured by Bio-Rad), and further AG1-X4 (Ac-OH type) (manufactured by Bio-Rad) to perform desalting. It was. After the desalted solution was concentrated by a rotary evaporator, ethanol was added to precipitate the polysaccharide. The polysaccharide of the present invention was obtained by drying at room temperature under reduced pressure.
[0014]
3. Molecular weight measurement The average molecular weight was determined by gel permeation chromatography (GPC) analysis using pullulan as a standard. The results obtained are shown in Table 1.
<Conditions for GPC analysis>
High Performance Liquid Chromatography (HPLC) apparatus (manufactured by Waters)
Columns: Ultra hydrogen gel 1000, ultra hydrogen gel 2000, and guard column are used (all manufactured by Waters)
Mobile phase: 0.1N-NaNO 3
Flow rate: 0.5 mL / min Column temperature: 45 ° C
Detector: Differential refractometer standard sample: Pullulan (manufactured by Shodex)
Table 1 shows the results of three kinds of GPC analysis of 8.5 × 10 5 , 4.8 × 10 4 , and 5.8 × 10 3 as standard molecular weights.
[0015]
[Table 1]
Figure 0003826168
From these results, it was confirmed that the molecular weight of this polysaccharide was 1 × 10 4 to 5 × 10 4 .
[0016]
4). Determination of Constituent Monosaccharide The polysaccharide of the present invention was hydrolyzed under the following conditions and then analyzed by HPLC.
Hydrolysis conditions: 14.0 mg of the polysaccharide of the present invention was dissolved in 4 mL of ion-exchanged water, 1 mL of concentrated sulfuric acid was added, sealed in an ampoule, and heated at 100 ° C. for 2 hours. After cooling, the treatment solution was neutralized with barium carbonate, the precipitate was removed, and the solution was concentrated.
[0017]
<HPLC measurement conditions>
Column: SH-1011 [manufactured by Shodex Co., Ltd.] Three column temperature: 50 ° C.
Mobile phase: 0.01 N—H 2 SO 4
Flow rate: 0.5 mL / min Standard sample: Glucuronic acid, glucose, mannose, rhamnose, fucose were used.
Standard peak (min): glucuronic acid; 38.35, glucose;
42.05, mannose; 44.30, rhamnose; 45.98, fucose; 49.77
The results are shown in FIG. From this result, it was found that the constituent monosaccharides of the polysaccharide of the present invention are fucose and mannose.
[0018]
5). Separation of Partial Hydrolyzate and Determination of Constituent Monosaccharide About 100 mg of the polysaccharide of the present invention was placed in 5 mL of 0.25N-trifluoroacetic acid and hydrolyzed by heating at 80 ° C. for 30 minutes. This hydrolyzed solution was neutralized with an ion exchange resin: DEAE-Sephadex (carbonic acid type) [manufactured by Biorats] and filtered, and the filtrate was freeze-dried to prepare a partially hydrolyzed product.
This hydrolyzate was analyzed by HPLC using a column of AsahipakNH2P-50 (4.6 × 250 mm; manufactured by Shodex). The results are shown in FIG. As a partial hydrolyzate of the polysaccharide of the present invention, No. 1 to No. 8 can be separated as oligosaccharide components.
[0019]
<HPLC measurement conditions>
Column: AsahipakNH2P-50 (4.6 × 250 mm)
Temperature: 30 ° C
Solvent: A mixture of acetonitrile: water (volume ratio 6: 4) Flow rate: 1.0 mL / min Each of the oligosaccharide components 1 to No8 was hydrolyzed under the same conditions and methods as described in 4 to determine the constituent monosaccharide. The composition of the isolated oligosaccharide component is shown in Table 2. From this result, it was found that all oligosaccharides consisted of approximately equimolar fucose and mannose.
[0020]
[Table 2]
Figure 0003826168
[0021]
6). Analysis of Constituent Monosaccharides by Nuclear Magnetic Resonance Spectrum (NMR) The polysaccharide of the present invention was dissolved in 85% hydrous dimethyl sulfoxide (DMSO), and a nuclear magnetic resonance spectrum analyzer [for Bruker ARX500, 1 H 500 MHz, 125 MHz for 13 C], and measurement was performed at 90 ° C. For chemical shifts, DMSO signals were expressed as δ2.49 ( 1 H) and δ39.5 ( 13 C) from trimethylsulfoxide (TMS). In the case of one-dimensional NMR, measurement is performed with a 30 ° pulse with a measurement time of 2.1 seconds and a waiting time of 2.0 seconds with 1 H, and with 13 C, a 30 ° pulse with a measurement time of 0.5 seconds and a waiting time of 0.1 seconds. Measured with The results are shown in Table 3, FIG. 3 and FIG. From the measurement of 13 C one-dimensional NMR in FIG. 3, since 12 signals were clearly observed, it was found that there was no sugar other than fucose and mannose. In addition, when the area ratio of the fumarose and mannose anomeric protons (H-1) is determined from the 1 H one-dimensional NMR measurement of FIG. 4, it is 0.995: 1.000. Was found to be fucose: mannose = 1: 1.
[0022]
In addition, the 13 C one-dimensional NMR signal at the anomeric position of fucose and mannose is a single sharp peak, and thus it was found that fucose and mannose had a structure bonded alternately.
[0023]
<Measurement conditions for 1 H-NMR spectrum>
Solvent: DMSO-d6 containing 85% water
1 H: 500 MHz
Temperature: 80 ° C
Pulse: 30 °
Measurement time: 2.1 seconds wait time: 2.0 seconds Chemical shift: DMSO signal is δ2.49 ( 1 H) from TMS
[0024]
<Measurement conditions for 13 C-NMR spectrum>
Solvent: DMSO-d6 containing 85% water
13 C: 125 MHz
Temperature: 80 ° C
Pulse: 30 °
Measurement time: 0.5 second wait time: 0.1 second Chemical shift: DMSO signal from TMS is δ39.5 ( 13 C)
[Table 3]
Figure 0003826168
[0025]
[Example 2]
1. Polysaccharide HPMC used for comparison: Hydroxypropylmethylcellulose [Metroise 90SH-15000 (trade name), manufactured by Shin-Etsu Chemical Co., Ltd.]
HEC: Hydroxyethyl cellulose [HEC Daicel SP-800 (trade name), manufactured by Daicel Chemical Industries, Ltd.]
Alginic acid: [Kibun Food Co., Ltd.]
Card run: [Wako Pure Chemical Industries, Ltd.]
Xanthan gum: [manufactured by Kelco]
Locust bean gum: [Made by Sanki Co., Ltd.]
[0026]
2. Effect of pH on Stability of Aqueous Solution A 1% by weight aqueous solution of each of the polysaccharide of the present invention or a comparative polysaccharide was prepared, and the pH was adjusted by adding hydrochloric acid and acetic acid, or sodium hydroxide and sodium hydrogen phosphate. The viscosity of each aqueous solution was measured at 30 ° C. and 30 rpm using a B-type viscometer. The results are shown in Table 4 below. The polysaccharide aqueous solution of the present invention had a constant viscosity and was stable at any pH.
[0027]
[Table 4]
Figure 0003826168
[0028]
3. Effect of Metal Salt on Aqueous Solution Stability A polysaccharide of the present invention or a comparative polysaccharide was dissolved in ion-exchanged water to make a 1% by weight aqueous solution. After adding a predetermined amount of sodium chloride or aluminum sulfate, the viscosity of the aqueous solution was measured at 30 ° C. and 30 rpm using a B-type viscometer. The results are shown in Table 5 below. The polysaccharide aqueous solution of the present invention showed a stable viscosity without being affected by the presence of sodium chloride or aluminum sulfate.
[0029]
[Table 5]
Figure 0003826168
[0030]
4). Comparison of Easiness of Dissolution The polysaccharides of the present invention or each of the comparative polysaccharides are aligned to a particle size of 100 to 200 mesh, and 1 g thereof is added to a beaker containing 1000 mL of ion-exchanged water and added to a stirrer. The mixture was stirred at 300 rpm and 30 ° C. for 10 minutes.
The solution of each polysaccharide was subjected to suction filtration with a No6 filter paper (diameter 150 mm) that had been subjected to constant weight measurement. The filter paper was dried at 105 ° C. for 2 hours, then placed in a desiccator and cooled to room temperature for 1 hour. After measuring the weight of the dry filter paper, the dissolution rate of each polysaccharide was determined by the following formula.
Figure 0003826168
[0031]
Next, 1 g each of the polysaccharide of the present invention and the polysaccharide for comparison are placed in 1000 ml of ion-exchanged water, stirred with a stirrer at 300 rpm and 60 ° C. for 120 minutes, and the dissolution rate is adjusted according to the method described above. Asked. As shown in Table 6 below, it was confirmed that the polysaccharide of the present invention was completely dissolved in a short time even at a water temperature of about room temperature.
[Table 6]
Figure 0003826168
[0032]
【The invention's effect】
The polysaccharide of the present invention is a novel polysaccharide and is a highly stable thickener that is very soluble in water. It can be widely applied in various industrial fields.
[Brief description of the drawings]
FIG. 1A is an HPLC chart of a hydrolyzate of a standard substance, and B is an HPLC chart of a hydrolyzate of a polysaccharide of the present invention.
FIG. 2 shows an elution pattern of reverse-phase HPLC of a polysaccharide hydrolyzate of the present invention.
FIG. 3 shows a 1 H-NMR spectrum of the polysaccharide of the present invention.
FIG. 4 shows a 13 C-NMR spectrum of the polysaccharide of the present invention.

Claims (3)

構成単糖が、フコースとマンノースからなり;フコースとマンノースとの構成比が、1:(0.8〜1.2)であり;分子量が1x102〜1x107であり;アルカリゲネス・レイタス(Alcaligenes latus)に属するアルカリゲネス・レイタスB−16株(FERM−BP−2015)菌を培養し、その培養物より分離・採取するものであること;を特徴とする多糖類。Constituent monosaccharide is comprised fucose and mannose; composition ratio of fucose and mannose is 1: be (0.8-1.2); molecular weight be 1x10 2 ~1x10 7; Alcaligenes Reitasu (Alcaligenes A polysaccharide characterized by culturing Alkagengenes Leitas B-16 strain (FERM-BP-2015) belonging to (latus), and separating and collecting from the culture. アルカリゲネス・レイタス(Alcaligenes latus)に属するアルカリゲネス・レイタスB−16株(FERM−BP−2015)菌を培養し、その培養物より分離・採取することを特徴とする請求項1に記載の多糖類の製造方法。  2. The polysaccharide of claim 1, wherein the bacterium Alkalinenes latus B-16 strain (FERM-BP-2015) belonging to Alcaligenes latus is cultured and separated and collected from the culture. Production method. 請求項1又は2に記載の多糖類を有効成分とする増粘剤。  A thickener comprising the polysaccharide according to claim 1 or 2 as an active ingredient.
JP11236096A 1996-05-07 1996-05-07 Polysaccharides derived from microorganisms Expired - Lifetime JP3826168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11236096A JP3826168B2 (en) 1996-05-07 1996-05-07 Polysaccharides derived from microorganisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11236096A JP3826168B2 (en) 1996-05-07 1996-05-07 Polysaccharides derived from microorganisms

Publications (2)

Publication Number Publication Date
JPH09296002A JPH09296002A (en) 1997-11-18
JP3826168B2 true JP3826168B2 (en) 2006-09-27

Family

ID=14584749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11236096A Expired - Lifetime JP3826168B2 (en) 1996-05-07 1996-05-07 Polysaccharides derived from microorganisms

Country Status (1)

Country Link
JP (1) JP3826168B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003020433A (en) * 2001-07-10 2003-01-24 Pentel Corp Ink composition

Also Published As

Publication number Publication date
JPH09296002A (en) 1997-11-18

Similar Documents

Publication Publication Date Title
US4326052A (en) Deacetylated polysaccharide S-60
US4377636A (en) Polysaccharide S-60 and bacterial fermentation process for its preparation
US4385123A (en) Deacetylated polysaccharide S-60
US5478732A (en) Process for the preparation of long-chain inulin with inulinase
JPH07504928A (en) High-molecular glucuronic acid compounds, their production methods and uses, especially as gelling agents, viscosity-imparting agents, moisture-imparting agents, stabilizers, chelating agents, or flocculants
EP0012552B1 (en) Heteropolysaccharides produced by bacteria and derived products, their preparation, and the lyophilized culture of the bacteria
KR19980080116A (en) Purification Method of Sodium Hyaluronate
JP3181337B2 (en) Method for producing chitosan oligosaccharide mixture and method for producing chitin oligosaccharide mixture
KR20010032094A (en) Use of liquid carbohydrate fermentation product in foods
JP4441304B2 (en) Method for preparing water-soluble low-viscosity β-D-glucan-containing culture solution
JP3826168B2 (en) Polysaccharides derived from microorganisms
US4146705A (en) Method for increasing solution viscosity of Arthrobacter stabilis polysaccharides
KR100200547B1 (en) Method of separation and purification for low molecular weight chitosan using multi-step membrane process
US2856398A (en) Carboxymethyl dextran-iron complexes
JP2000351790A (en) Production of fucose-containing oligosaccharide, or its composition and fucose-containing oligosaccharide or its composition
DE69007892T2 (en) Heteropolysaccharides 105-4.
JP3286713B2 (en) Polysaccharides, mainly water-absorbing, moisture-absorbing, moisturizing and thickening agents
JP2003176353A (en) Polylysine and method for producing the same
JPH0222301A (en) Production of water-soluble chitosan
EP0247899B1 (en) Substance useful as a thickening agent and/or emulsion stabilizer
KR100252704B1 (en) Method of making n,o-carboxy methyl chitosan with high purity crystallization and a method of controlling a molecular weight of water-soluble chitosan
JPH0637521B2 (en) Polysaccharides, water-absorbing / moisture-absorbing / moisturizing-thickeners mainly consisting of them, and culture production method thereof
JP2761437B2 (en) Heteropolysaccharide 35-80
JPH02145602A (en) Production of chitosan derivative
JPH11246588A (en) 2-methyl-(4-o-(2-amino-2-deoxy-beta-glucopyranosyl)-1,2-dideoxy-alfa-glucopyrano) (2,1-d)-2-oxazoline and its salt, and 50% deacetylated chitin or its oligosaccharide and acid addition salt thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 19960613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 19960813

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20010116

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20010925

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20030408

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term