JPH09294706A - Fluorescent diagnostic system - Google Patents

Fluorescent diagnostic system

Info

Publication number
JPH09294706A
JPH09294706A JP8109369A JP10936996A JPH09294706A JP H09294706 A JPH09294706 A JP H09294706A JP 8109369 A JP8109369 A JP 8109369A JP 10936996 A JP10936996 A JP 10936996A JP H09294706 A JPH09294706 A JP H09294706A
Authority
JP
Japan
Prior art keywords
fluorescence
infrared light
image
light
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8109369A
Other languages
Japanese (ja)
Other versions
JP3664541B2 (en
Inventor
Kazuo Hakamata
和男 袴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP10936996A priority Critical patent/JP3664541B2/en
Publication of JPH09294706A publication Critical patent/JPH09294706A/en
Application granted granted Critical
Publication of JP3664541B2 publication Critical patent/JP3664541B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths

Abstract

PROBLEM TO BE SOLVED: To provide a fluorescent diagnostic system with which the distribution of exciting light illuminance inside a living body can be exactly compensated. SOLUTION: Concerning the configuration of this system, a part 30 of a living body 16 is irradiated with exciting light L1 in the exciting wavelength area of a photosensitive material to emit fluorescent light and the fluorescent image formed by fluorescent light L3 emitted at that time is picked up by a fluorescent image pickup means 23. In this case, the part 30 is irradiated with near infrared light L2 longer than a wavelength 650nm, and a near infrared image formed by the reflected light is picked up by a near infrared video camera 28. Between a fluorescent image signal S1 outputted from the fluorescent image pickup means 23 and a near infrared image signal S2 outputted from the near infrared video camera 28, the division of S1/S2 is performed for each common picture element, a standardized image signal S=S1/S2 provided by that division is inputted to an image display means 25 and based on the standardized image signal S, the fluorescent image is displayed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、蛍光を発する光感
受性物質を吸収している生体に励起光を照射し、そのと
き該光感受性物質から発せられる蛍光による画像を撮像
したり、あるいはこの蛍光強度を検出して、生体の診断
に供する蛍光診断装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention irradiates a living body absorbing a fluorescent substance that emits fluorescence with excitation light and picks up an image based on the fluorescence emitted from the photosensitive substance at that time, or The present invention relates to a fluorescence diagnostic device that detects intensity and is used for diagnosis of a living body.

【0002】[0002]

【従来の技術】従来より、一般にPDD(Photodynamic
Diagnosis)と称される光力学診断についての研究が種
々なされている。このPDDとは、腫瘍親和性を有し、
光により励起されたとき蛍光を発する光感受性物質を予
め生体の腫瘍部分に吸収させておき、その部分に光感受
性物質の励起波長領域にある励起光を照射して蛍光を生
じさせ、この蛍光による画像を表示して腫瘍部分を診断
する技術である。
2. Description of the Related Art Conventionally, PDD (Photodynamic
Various studies have been made on photodynamic diagnosis called "diagnosis". This PDD has tumor affinity,
A photosensitizer that emits fluorescence when excited by light is previously absorbed in a tumor portion of a living body, and the portion is irradiated with excitation light in the excitation wavelength region of the photosensitizer to generate fluorescence, and the fluorescence is generated. This is a technique for diagnosing a tumor part by displaying an image.

【0003】例えば特公昭63−9464号公報、特開
平1−136630号公報、特開平7−59783号公
報には、このPDDを行なうための蛍光診断装置が開示
されている。この種の蛍光診断装置は基本的に、光感受
性物質の励起波長領域にある励起光を生体に対して照射
する励起光照射手段と、光感受性物質が発する蛍光を検
出して生体の蛍光像を撮像する手段と、この撮像手段の
出力を受けて上記蛍光像を表示する画像表示手段とから
なるものであり、多くの場合、体腔内部に挿入される内
視鏡や、手術用顕微鏡等に組み込まれた形に構成され
る。
[0003] For example, Japanese Patent Publication No. 63-964, Japanese Patent Application Laid-Open No. 1-136630, and Japanese Patent Application Laid-Open No. 7-59783 disclose a fluorescence diagnostic apparatus for performing this PDD. Basically, this kind of fluorescence diagnostic apparatus basically includes an excitation light irradiating means for irradiating a living body with excitation light in an excitation wavelength region of a photosensitive substance, and a fluorescence image of the living body by detecting fluorescence emitted from the photosensitive substance. It comprises an imaging unit and an image display unit that receives the output of the imaging unit and displays the fluorescent image, and is often incorporated in an endoscope inserted into a body cavity, a surgical microscope, or the like. It is composed in the shape of

【0004】また、特に上述のような2次元的蛍光像を
撮像せずに、生体部位上の一点毎に蛍光強度を検出する
ことにより、その一点が腫瘍部分であるか否かを診断で
きるようにした蛍光診断装置も提案されている(例えば
本出願人による特願平7−252295号明細書参
照)。
In addition, by detecting the fluorescence intensity for each point on a living body part without picking up a two-dimensional fluorescence image as described above, it is possible to diagnose whether or not one point is a tumor part. (See, for example, Japanese Patent Application No. 7-252295 by the present applicant).

【0005】ところで、上述のような蛍光診断装置にお
いては、生体の部位に凹凸が有るために、また励起光照
射系から生体までの距離が均一ではないために、生体の
励起光照射部分における励起光照度は一般に不均一であ
る。このように励起光照度が不均一であると、励起光照
度の高低に応じて蛍光強度が変化するので、それによっ
て腫瘍部分の診断を誤ることも有り得る。
In the above-described fluorescence diagnostic apparatus, the excitation light is irradiated at the part of the living body irradiated with the excitation light because the body has irregularities and the distance from the excitation light irradiation system to the living body is not uniform. Light illuminance is generally non-uniform. When the illuminance of the excitation light is non-uniform, the fluorescence intensity changes according to the level of the illuminance of the excitation light, so that the diagnosis of the tumor part may be erroneously performed.

【0006】そこで、このような励起光照度の分布を補
償するために、例えば特開昭62−247232号公
報、特公平3−58729号公報に示されるように、蛍
光像を撮像する際に生体で反射した励起光による反射像
も撮像し、蛍光画像信号を、この反射像を示す画像信号
で割算して規格化することが考えられている。
Therefore, in order to compensate for such a distribution of the illuminance of the excitation light, for example, as disclosed in Japanese Patent Application Laid-Open No. 62-247232 and Japanese Patent Publication No. 3-58729, a biological image is taken when a fluorescent image is taken. It has been considered that a reflected image by the reflected excitation light is also captured, and the fluorescence image signal is divided by an image signal indicating the reflected image to standardize the fluorescence image signal.

【0007】[0007]

【発明が解決しようとする課題】しかし、蛍光診断装置
において通常用いられる励起光の波長範囲は、紫外部か
ら可視部(300〜600nm程度)にあり、このよう
な励起光は人体等の生体に大きく吸収されてしまう。な
お図3には、生体の主な成分の吸収スペクトルを示して
ある。
However, the wavelength range of the excitation light generally used in the fluorescence diagnostic apparatus is in the ultraviolet to visible range (about 300 to 600 nm), and such excitation light is applied to living bodies such as the human body. It is greatly absorbed. Note that FIG. 3 shows absorption spectra of main components of a living body.

【0008】以上のように励起光が生体に大きく吸収さ
れると、前記反射像を示す画像信号は励起光照度分布だ
けではなく、この吸収の分布も反映したものとなってし
まう。そうであると、この画像信号を用いて前述の規格
化を行なっても、励起光照度の分布を正確に補償するこ
とは不可能となる。
When the excitation light is largely absorbed by the living body as described above, the image signal showing the reflected image reflects not only the excitation light illuminance distribution but also this absorption distribution. If so, even if the above-mentioned normalization is performed using this image signal, it is impossible to accurately compensate the distribution of the excitation light illuminance.

【0009】本発明は上記の事情に鑑みてなされたもの
であり、生体における励起光照度の分布を正確に補償し
得る蛍光診断装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a fluorescence diagnostic apparatus capable of accurately compensating the distribution of excitation light illuminance in a living body.

【0010】[0010]

【課題を解決するための手段】本発明による蛍光診断装
置は、生体での吸収が比較的小さい波長650nm以上
の近赤外光を使用して、前記規格化のための画像信号や
光検出信号を得ることを特徴とするものである。
A fluorescence diagnostic apparatus according to the present invention uses near-infrared light having a wavelength of 650 nm or more, which has a relatively small absorption in a living body, and uses an image signal or a photodetection signal for the standardization. It is characterized by obtaining.

【0011】すなわち、本発明による第1の蛍光診断装
置は、請求項1に記載の通り、蛍光を発する光感受性物
質を吸収している生体の部位に、該光感受性物質の励起
波長領域にある励起光を照射する励起光照射手段と、上
記光感受性物質が発する蛍光を検出して生体の蛍光像を
撮像する蛍光像撮像手段と、上記生体の部位に波長65
0nm以上の近赤外光を照射する近赤外光照射手段と、
上記部位で反射した近赤外光を検出して、生体の近赤外
像を撮像する近赤外像撮像手段と、上記蛍光像撮像手段
が出力した蛍光画像信号を、上記近赤外像撮像手段が出
力した近赤外画像信号に基づいて各画素毎に規格化する
演算手段とを備えたことを特徴とするものである。
That is, the first fluorescence diagnostic apparatus according to the present invention is, as set forth in claim 1, located at the site of the living body absorbing the photosensitizer that emits fluorescence, and in the excitation wavelength region of the photosensitizer. Excitation light irradiating means for irradiating excitation light, fluorescence image capturing means for detecting fluorescence emitted by the photosensitizer and capturing a fluorescence image of a living body, and wavelength 65 at the site of the living body.
Near-infrared light irradiation means for irradiating near-infrared light of 0 nm or more;
The near-infrared image pickup means for detecting the near-infrared light reflected at the site and picking up a near-infrared image of a living body, and the fluorescence image signal output by the fluorescence image pickup means are used for the near-infrared image pickup. And a calculating means for normalizing each pixel based on the near-infrared image signal output by the means.

【0012】なお、この第1の蛍光診断装置において
は、請求項2に記載の通り、近赤外光照射手段が、近赤
外光の強度を変え得るように構成され、近赤外光の強度
が相異なる場合にそれぞれ近赤外像撮像手段から出力さ
れた少なくとも2通りの画像信号を、各画素毎に減算処
理して差信号を得る手段が設けられ、前記演算手段が、
規格化用の近赤外画像信号として上記差信号を用いるよ
うに構成されるのが望ましい。
In this first fluorescence diagnostic apparatus, the near infrared light irradiating means is constructed so as to change the intensity of the near infrared light, as described in claim 2, When the intensities are different from each other, at least two types of image signals output from the near-infrared image pickup means are subtracted for each pixel to obtain a difference signal.
It is desirable that the difference signal is used as a near infrared image signal for normalization.

【0013】以上説明した本発明による第1の蛍光診断
装置は、蛍光像を撮像するタイプのものであるが、本発
明の技術思想は、生体部位上の一点毎に蛍光強度を検出
するタイプの蛍光診断装置にも適用可能である。すなわ
ち、この後者のタイプである本発明による第2の蛍光診
断装置は、請求項3に記載の通り、蛍光を発する光感受
性物質を吸収している生体の部位に、該光感受性物質の
励起波長領域にある励起光を照射する励起光照射手段
と、光感受性物質が発する蛍光の強度を、上記部位上の
一点毎に検出する蛍光検出手段と、上記生体の部位に波
長650nm以上の近赤外光を照射する近赤外光照射手
段と、上記部位で反射した近赤外光の強度を、上記部位
上の一点毎に検出する近赤外光検出手段と、上記蛍光強
度検出手段が出力した蛍光検出信号を、近赤外光検出手
段が出力した近赤外光検出信号に基づいて規格化する演
算手段とを備えたことを特徴とするものである。
The first fluorescence diagnostic apparatus according to the present invention described above is of a type for picking up a fluorescence image, but the technical idea of the present invention is that of a type for detecting the fluorescence intensity for each point on the living body part. It is also applicable to a fluorescence diagnostic device. That is, the latter type of the second fluorescence diagnostic apparatus according to the present invention is, as described in claim 3, the excitation wavelength of the photosensitizer at the site of the living body absorbing the photosensitizer that emits fluorescence. Excitation light irradiating means for irradiating excitation light in a region, fluorescence detecting means for detecting the intensity of fluorescence emitted by the photosensitizer for each point on the site, and near-infrared light having a wavelength of 650 nm or more at the site of the living body. Near-infrared light irradiation means for irradiating light, intensity of near-infrared light reflected at the site, near-infrared light detection means for detecting each point on the site, and the fluorescence intensity detection means output An arithmetic means for normalizing the fluorescence detection signal based on the near-infrared light detection signal output by the near-infrared light detecting means is provided.

【0014】なお、この第2の蛍光診断装置において
は、請求項4に記載の通り、近赤外光照射手段が、近赤
外光の強度を変え得るように構成され、近赤外光の強度
が相異なる場合にそれぞれ近赤外光検出手段から出力さ
れた少なくとも2通りの近赤外光検出信号を減算処理し
て、差信号を得る手段が設けられ、前記演算手段が、規
格化用の近赤外光検出信号として上記差信号を用いるよ
うに構成されるのが望ましい。
In the second fluorescence diagnostic apparatus, as described in claim 4, the near-infrared light irradiating means is constructed so that the intensity of the near-infrared light can be changed. When the intensities are different from each other, means for subtracting at least two types of near-infrared light detection signals output from the near-infrared light detecting means to obtain a difference signal are provided, and the calculating means is for normalization. It is desirable that the difference signal be used as the near-infrared light detection signal.

【0015】また本発明の蛍光診断装置においては、請
求項5に記載の通り、前記近赤外光照射手段として、光
感受性物質の蛍光波長領域から外れた波長700〜95
0nmの近赤外光を発するものを用いるのが望ましい。
Further, in the fluorescence diagnostic apparatus of the present invention, as described in claim 5, as the near-infrared light irradiation means, wavelengths 700 to 95 deviated from the fluorescence wavelength range of the photosensitizer.
It is desirable to use one that emits near infrared light of 0 nm.

【0016】[0016]

【発明の効果】上述の通り本発明の蛍光診断装置におい
ては、照度分布を調べるために生体の部位に照射する光
として、生体での吸収が比較的小さい波長650nm以
上の近赤外光を使用しているので、生体で反射したこの
近赤外光を検出して得た近赤外画像信号や近赤外光検出
信号は、上記吸収の影響をほとんど受けないでほぼ照度
のみを反映したものとなる。したがって、このような近
赤外画像信号やあるいは近赤外光検出信号を用いて前述
の規格化を行なえば、励起光照度の分布を正確に補償す
ることができ、診断性能の高い蛍光画像信号や蛍光検出
信号が得られるようになる。なお、波長650nm以上
の近赤外光が生体に吸収され難いことは、前述の図3か
らも明らかである。
As described above, in the fluorescence diagnostic apparatus of the present invention, near-infrared light having a wavelength of 650 nm or more, which has a relatively small absorption in the living body, is used as the light for irradiating the living body portion in order to check the illuminance distribution. Therefore, the near-infrared image signal and the near-infrared light detection signal obtained by detecting this near-infrared light reflected by the living body reflect almost only the illuminance without being affected by the above absorption. Becomes Therefore, if the above-mentioned standardization is performed using such a near-infrared image signal or a near-infrared light detection signal, the distribution of excitation light illuminance can be accurately compensated for, and a fluorescence image signal with high diagnostic performance or The fluorescence detection signal can be obtained. It is clear from FIG. 3 described above that near-infrared light having a wavelength of 650 nm or more is difficult to be absorbed by the living body.

【0017】また、請求項2に記載のように、近赤外光
の強度が相異なる場合にそれぞれ近赤外像撮像手段から
出力された少なくとも2通りの画像信号を、各画素毎に
減算処理して差信号を得ると、この差信号は生体部位の
体温分布に基づく変化分がキャンセルされたものとな
る。そこで、この差信号を用いて蛍光画像信号を規格化
すれば、上記体温分布の影響も排除して、励起光照度の
分布をより正確に補償可能となる。この点は、請求項4
に記載の構成においても同様である。
Further, as described in claim 2, at least two kinds of image signals output from the near-infrared image pickup means when the intensities of near-infrared light are different from each other are subtracted for each pixel. Then, when the difference signal is obtained, the difference signal has the change amount canceled based on the body temperature distribution of the living body part. Therefore, if the fluorescence image signal is standardized using this difference signal, the influence of the body temperature distribution can be eliminated and the distribution of the excitation light illuminance can be more accurately compensated. This point relates to claim 4.
The same applies to the configuration described in (1).

【0018】他方、請求項5に記載のように、光感受性
物質の蛍光波長領域から外れた波長700〜950nm
の近赤外光を用いれば、光感受性物質による吸収の影響
も排除して、励起光照度の分布をより正確に補償可能と
なる。なおこのような波長領域の近赤外光は、生体に多
く含まれる水にも吸収され難いので、非常に好適であ
る。
On the other hand, as described in claim 5, a wavelength outside the fluorescence wavelength region of the photosensitizer is 700 to 950 nm.
If the near-infrared light is used, the influence of absorption by the photosensitizer can be eliminated and the distribution of the excitation light illuminance can be more accurately compensated. Note that near-infrared light in such a wavelength range is very suitable because it is difficult for water contained in a large amount of living body to absorb it.

【0019】[0019]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を詳細に説明する。図1は、本発明の第1の実
施形態である蛍光内視鏡の側面形状を示すものである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a side view of a fluorescence endoscope according to a first embodiment of the present invention.

【0020】この蛍光内視鏡は、例えば波長が400n
m前後の励起光L1を発する励起光源10と、この励起光
L1を集光する集光レンズ11と、集光された励起光L1
が入射するように配置された光ファイバーからなるライ
トガイド12とを有している。さらにこの蛍光内視鏡は、
波長700〜950nmの近赤外光L2を発する近赤外
光源13と、この近赤外光L2を反射させる一方上記励起
光L1は透過させて、これら双方の光をライトガイド12
に入射させるダイクロイックミラー14とを有している。
This fluorescent endoscope has a wavelength of 400 n, for example.
Excitation light source 10 that emits excitation light L1 of around m, a condenser lens 11 that condenses this excitation light L1, and condensed excitation light L1
And a light guide 12 made of an optical fiber arranged so as to enter. Furthermore, this fluorescent endoscope
A near-infrared light source 13 that emits near-infrared light L2 having a wavelength of 700 to 950 nm and the near-infrared light L2 are reflected while the excitation light L1 is transmitted, and both of these lights are transmitted to the light guide 12.
And a dichroic mirror 14 for making the light incident on.

【0021】上記ライトガイド12は、生体16の内部に挿
入される可撓性のプローブ17内に収められている。また
このプローブ17内には、光ファイバー束からなるイメー
ジガイド18が収められている。
The light guide 12 is housed in a flexible probe 17 inserted into the living body 16. An image guide 18 formed of an optical fiber bundle is housed in the probe 17.

【0022】上記イメージガイド18の先端(図1中の左
端)に近接した位置には、結像レンズ20が配設されてい
る。イメージガイド18の後端側にはダイクロイックミラ
ー19、励起光カットフィルター21、集光レンズ22、蛍光
像撮像手段23がこの順に配設されている。蛍光像撮像手
段23としては、高感度撮像が可能な例えばイメージ・イ
ンテンシファイアが用いられ、その出力は規格化用演算
手段24に入力される。この演算手段24は、CRT等から
なる画像表示手段25に接続されている。
An image forming lens 20 is arranged at a position close to the tip of the image guide 18 (the left end in FIG. 1). On the rear end side of the image guide 18, a dichroic mirror 19, an excitation light cut filter 21, a condenser lens 22, and a fluorescence image pickup means 23 are arranged in this order. As the fluorescence image pickup means 23, for example, an image intensifier capable of high-sensitivity image pickup is used, and its output is inputted to the standardization calculation means 24. The calculation means 24 is connected to an image display means 25 such as a CRT.

【0023】ダイクロイックミラー19は、後述のように
してそこに入射して来るピーク波長約640nmの蛍光
L3を透過させ、波長700〜950nmの近赤外光L
2は反射させる。ダイクロイックミラー19で反射した近
赤外光L2が入射する位置には、励起光カットフィルタ
ー26、集光レンズ27、近赤外ビデオカメラ28がこの順に
配設されている。近赤外ビデオカメラ28の出力は上記の
演算手段24に入力される。
The dichroic mirror 19 transmits the fluorescent light L3 having a peak wavelength of about 640 nm which is incident on the dichroic mirror 19 as described later, and the near infrared light L having a wavelength of 700 to 950 nm.
2 reflects. An excitation light cut filter 26, a condenser lens 27, and a near infrared video camera 28 are arranged in this order at a position where the near infrared light L2 reflected by the dichroic mirror 19 is incident. The output of the near-infrared video camera 28 is input to the calculating means 24.

【0024】以下、上記構成の蛍光内視鏡の作用につい
て説明する。生体16の内部の診断部位30には、腫瘍親和
性を有し、光により励起されたとき蛍光を発する光感受
性物質が予め吸収されている。この光感受性物質として
は、例えばポルフィリン系のものが用いられる。診断部
位30には、ライトガイド12から励起光L1と近赤外光L
2が同時に照射される。するとそれらの光は診断部位30
で反射し、また励起光L1の照射を受けて上記光感受性
物質から蛍光L3が発せられる。
The operation of the fluorescent endoscope having the above structure will be described below. The diagnostic site 30 inside the living body 16 is preliminarily absorbed with a photosensitizer having a tumor affinity and emitting fluorescence when excited by light. As the photosensitizer, for example, a porphyrin-based substance is used. Excitation light L1 and near-infrared light L are emitted from the light guide 12 to the diagnosis site 30.
2 are irradiated at the same time. Then, those lights are 30
And is irradiated with the excitation light L1 to emit fluorescence L3 from the photosensitizer.

【0025】結像レンズ20は、この蛍光L3による診断
部位30の蛍光像をイメージガイド18の端面に結像させ
る。この蛍光像はイメージガイド18によって生体16外ま
で導かれて、蛍光像撮像手段23により撮像される。な
お、診断部位30で反射して蛍光像撮像手段23に向かう励
起光L1は、励起光カットフィルター21によってカット
される。こうして撮像された蛍光像を示す蛍光画像信号
S1は、演算手段24に入力される。なお、前記光感受性
物質は腫瘍親和性を有するので、蛍光画像信号S1は基
本的に腫瘍部分のみを蛍光像として示すものとなる。
The image forming lens 20 forms a fluorescent image of the diagnostic region 30 by the fluorescent light L3 on the end face of the image guide 18. This fluorescence image is guided to the outside of the living body 16 by the image guide 18, and is captured by the fluorescence image capturing means 23. The excitation light L1 reflected at the diagnostic site 30 and traveling toward the fluorescence image capturing means 23 is cut by the excitation light cut filter 21. The fluorescence image signal S1 representing the fluorescence image thus captured is input to the calculating means 24. Since the photosensitizer has a tumor affinity, the fluorescence image signal S1 basically shows only the tumor portion as a fluorescence image.

【0026】ここで蛍光像撮像手段23としては、前述し
たように高感度撮像が可能な例えばイメージ・インテン
シファイアが用いられているから、蛍光像を高感度で撮
像することができる。またこの蛍光像撮像手段23とし
て、時間蓄積型撮像手段を用いたり、さらには該蛍光像
撮像手段23を冷却手段によって冷却する等しても、高感
度撮像が可能となる。
Here, as the fluorescence image pickup means 23, for example, an image intensifier capable of high-sensitivity image pickup is used as described above, so that a fluorescence image can be picked up with high sensitivity. High-sensitivity imaging can be performed by using a time-accumulation type imaging means as the fluorescence image capturing means 23, or by cooling the fluorescence image capturing means 23 by a cooling means.

【0027】一方、近赤外光L2も診断部位30で反射し
て、結像レンズ20に入射する。結像レンズ20は、この近
赤外光L2による診断部位30の像をイメージガイド18の
端面に結像させる。この近赤外像もイメージガイド18に
よって生体16外まで導かれ、近赤外ビデオカメラ28によ
り撮像される。なお、診断部位30で反射して近赤外ビデ
オカメラ28に向かう励起光L1は、励起光カットフィル
ター26によってカットされる。こうして撮像された近赤
外像を示す近赤外画像信号S2は、演算手段24に入力
される。
On the other hand, the near-infrared light L2 is also reflected by the diagnosis site 30 and enters the imaging lens 20. The imaging lens 20 forms an image of the diagnostic region 30 by the near infrared light L2 on the end surface of the image guide 18. This near-infrared image is also guided to the outside of the living body 16 by the image guide 18, and is imaged by the near-infrared video camera 28. The excitation light L1 reflected by the diagnostic region 30 and traveling toward the near infrared video camera 28 is cut by the excitation light cut filter 26. The near-infrared image signal S2 indicating the near-infrared image captured in this way is input to the calculating unit 24.

【0028】演算手段24は、そこに入射された蛍光画
像信号S1と近赤外画像信号S2との間で、共通の各画
素毎にS1/S2なる割算を行ない、それにより得られ
た規格化画像信号S=S1/S2を画像表示手段25に入
力する。画像表示手段25はこの規格化画像信号Sに基づ
いて蛍光像を表示する。
The calculating means 24 performs a division S1 / S2 for each common pixel between the fluorescence image signal S1 and the near-infrared image signal S2 incident thereon, and the standard obtained thereby is obtained. The converted image signal S = S1 / S2 is input to the image display means 25. The image display means 25 displays a fluorescent image based on the standardized image signal S.

【0029】蛍光画像信号S1をそのまま用いて画像表
示しても、基本的に腫瘍部分のみを蛍光像として表示す
ることができるが、その場合は診断部位30における励起
光L1の照度分布も蛍光像に反映されてしまい、誤診を
招く可能性がある。それに対して、上述のような規格化
画像信号Sに基づいて蛍光像を表示すれば、励起光L1
の照度分布による蛍光強度の変化分がキャンセルされ、
診断部位30の腫瘍の状態を正確に示す蛍光像が表示され
るようになる。
Even if an image is displayed using the fluorescence image signal S1 as it is, only the tumor portion can be basically displayed as a fluorescence image. In that case, the illuminance distribution of the excitation light L1 at the diagnostic site 30 is also a fluorescence image. It will be reflected in and may cause misdiagnosis. On the other hand, if a fluorescence image is displayed based on the standardized image signal S as described above, the excitation light L1
The change in fluorescence intensity due to the illuminance distribution of is canceled,
A fluorescent image accurately showing the state of the tumor at the diagnosis site 30 is displayed.

【0030】そして本例においては、照度分布を調べる
ために診断部位30に照射する光として、生体での吸収が
比較的小さい波長700〜950nmの近赤外光L2を
使用しているので、近赤外画像信号S2は上記吸収の影
響をほとんど受けないで、ほぼ近赤外光照度のみを反映
したものとなる。したがって、この近赤外画像信号S2
を用いて上記の規格化を行なえば、励起光照度の分布を
正確に補償して、診断性能の高い規格化画像信号Sが得
られることになる。
In this example, the near-infrared light L2 having a wavelength of 700 to 950 nm, which has a relatively small absorption in the living body, is used as the light with which the diagnostic region 30 is irradiated in order to check the illuminance distribution. The infrared image signal S2 is almost unaffected by the above-mentioned absorption, and almost reflects only the near-infrared light illuminance. Therefore, this near infrared image signal S2
If the above-mentioned standardization is performed by using, the distribution of the excitation light illuminance will be accurately compensated, and the standardized image signal S with high diagnostic performance will be obtained.

【0031】次に図2を参照して、本発明の第2の実施
の形態による蛍光内視鏡について説明する。なおこの図
2において、図1中のものと同等の要素には同番号を付
し、それらについての重複した説明は省略する。
Next, with reference to FIG. 2, a fluorescence endoscope according to a second embodiment of the present invention will be described. In FIG. 2, elements that are the same as those shown in FIG. 1 are given the same numbers, and duplicated description thereof is omitted.

【0032】この第2の実施形態の蛍光内視鏡は、励起
光照射系の他に、波長700〜950nmの直線偏光で
ある近赤外光L2を発する近赤外光源40と、プローブ17
内に収められて上記近赤外光L2を伝搬させる偏波面保
存ファイバー41とを有している。またこの偏波面保存フ
ァイバー41と近赤外光源40との間には、近赤外光源40
側から順に、近赤外光L2を平行光化するコリメーター
レンズ42、λ/2板43、偏光ビームスプリッタ44、蛍
光カットフィルター45、近赤外光L2を透過させる一方
蛍光L3は反射させるダイクロイックミラー46、近赤外
光L2を集束させて偏波面保存ファイバー41に入射させ
る集光レンズ47が配設されている。
In addition to the excitation light irradiation system, the fluorescence endoscope of the second embodiment has a near infrared light source 40 that emits near infrared light L2 that is linearly polarized light having a wavelength of 700 to 950 nm, and a probe 17.
It has a polarization-maintaining fiber 41 which is housed inside and propagates the near-infrared light L2. The near infrared light source 40 is provided between the polarization maintaining fiber 41 and the near infrared light source 40.
From the side in order, a collimator lens 42 for collimating the near-infrared light L2, a λ / 2 plate 43, a polarization beam splitter 44, a fluorescence cut filter 45, and a near-infrared light L2 that is transmitted while a fluorescence L3 is reflected. A mirror 46 and a condenser lens 47 that focuses the near-infrared light L2 and makes it enter the polarization-maintaining fiber 41 are provided.

【0033】さらに、偏波面保存ファイバー41の先端
(図2中の左端)と向き合う位置には、結像レンズ20が
設けられている。またこの結像レンズ20と偏波面保存フ
ァイバー41との間には、偏波面保存ファイバー41側から
順に集光レンズ48、λ/4板49、ダイクロイックミラー
50が配設されている。そしてこのダイクロイックミラー
50で反射した光を受ける位置には、CCD撮像素子等の
固体撮像素子51が設けられている。この固体撮像素子51
は画像表示手段25に接続されている。
Further, an imaging lens 20 is provided at a position facing the tip (left end in FIG. 2) of the polarization-maintaining fiber 41. Further, between the imaging lens 20 and the polarization-maintaining fiber 41, a condenser lens 48, a λ / 4 plate 49, and a dichroic mirror are arranged in this order from the polarization-maintaining fiber 41 side.
50 are arranged. And this dichroic mirror
A solid-state image pickup device 51 such as a CCD image pickup device is provided at a position where the light reflected by 50 is received. This solid-state image sensor 51
Is connected to the image display means 25.

【0034】前記ダイクロイックミラー46は、後述のよ
うにしてそこに入射して来るピーク波長約640nmの
蛍光L3を反射させ、波長700〜950nmの近赤外
光L2は透過させる。このダイクロイックミラー46で反
射した蛍光L3が入射する位置には、ダイクロイックミ
ラー46側から順に、励起光L1および近赤外光L2をカ
ットする光源光カットフィルター52、集光レンズ53、蛍
光検出器54が配されている。蛍光検出器54の出力は演算
手段24に入力される。
The dichroic mirror 46 reflects the fluorescent light L3 having a peak wavelength of about 640 nm which is incident thereon and transmits the near infrared light L2 having a wavelength of 700 to 950 nm as described later. At the position where the fluorescence L3 reflected by the dichroic mirror 46 enters, a light source light cut filter 52, a condenser lens 53, and a fluorescence detector 54 that cut the excitation light L1 and the near-infrared light L2 in order from the dichroic mirror 46 side. Are arranged. The output of the fluorescence detector 54 is input to the calculating means 24.

【0035】一方、偏光ビームスプリッタ44で反射した
光が入射する位置には、偏光ビームスプリッタ44側から
順に集光レンズ55、近赤外光検出器56が配設されてい
る。この近赤外光検出器56の出力も上記演算手段24に入
力される。
On the other hand, at the position where the light reflected by the polarization beam splitter 44 enters, a condenser lens 55 and a near infrared light detector 56 are arranged in order from the polarization beam splitter 44 side. The output of the near-infrared light detector 56 is also input to the calculating means 24.

【0036】以下、上記構成の蛍光内視鏡の作用につい
て説明する。この場合も生体16の内部の診断部位30に
は、腫瘍親和性を有し、光により励起されたとき蛍光を
発する光感受性物質が予め吸収されている。そして診断
部位30には、ライトガイド12から励起光L1が照射さ
れ、それと同時に偏波面保存ファイバー41を伝搬させた
近赤外光L2も照射される。これらの光は診断部位30で
反射し、また励起光L1の照射を受けて上記光感受性物
質から蛍光L3が発せられる。
The operation of the fluorescent endoscope having the above structure will be described below. Also in this case, the diagnostic site 30 inside the living body 16 has previously absorbed a photosensitizer having a tumor affinity and emitting fluorescence when excited by light. Then, the diagnostic region 30 is irradiated with the excitation light L1 from the light guide 12, and at the same time, the near-infrared light L2 propagated through the polarization-maintaining fiber 41 is also irradiated. These lights are reflected by the diagnostic site 30, and when the excitation light L1 is irradiated, fluorescence L3 is emitted from the photosensitizer.

【0037】なお、近赤外光源40から発せられた近赤外
光L2は、λ/2板43を回転させることにより直線偏光
の向きが調整されて、偏光ビームスプリッタ44を透過す
る。偏波面保存ファイバー41を伝搬した近赤外光L2
は、λ/4板49によって直線偏光から楕円偏光に変換さ
れ、結像レンズ20により絞られて診断部位30上の一点を
照射する。
The near-infrared light L2 emitted from the near-infrared light source 40 has its direction of linearly polarized light adjusted by rotating the λ / 2 plate 43, and passes through the polarization beam splitter 44. Near-infrared light L2 propagated through the polarization-maintaining fiber 41
Is converted from linearly polarized light to elliptically polarized light by the λ / 4 plate 49, is focused by the imaging lens 20, and illuminates one point on the diagnostic region 30.

【0038】診断部位30で反射した励起光L1はダイク
ロイックミラー50で反射し、同じく診断部位30で反射し
た近赤外光L2および蛍光L3はダイクロイックミラー
50を透過する。結像レンズ20は、上記反射した励起光L
1による診断部位30の像(通常像)を固体撮像素子51上
に結像させる。固体撮像素子25はこの通常像を撮像し、
該通常像を示す画像信号Smを画像表示手段25に入力す
る。
The excitation light L1 reflected by the diagnostic site 30 is reflected by the dichroic mirror 50, and the near infrared light L2 and the fluorescent light L3 also reflected by the diagnostic site 30 are dichroic mirrors.
Penetrate 50. The imaging lens 20 receives the reflected excitation light L.
An image (normal image) of the diagnosis region 30 according to 1 is formed on the solid-state image sensor 51. The solid-state image sensor 25 captures this normal image,
The image signal Sm representing the normal image is input to the image display means 25.

【0039】画像表示手段25はこの画像信号Smが示す
通常像を表示する。そこで術者や助手は、表示されたこ
の通常像を観察することにより、診断部位30の状態や、
プローブ17と診断部位30との位置関係を確認可能とな
る。なお、このような通常像を撮像するためには、上記
のように反射励起光L1を利用する他、白色光等の照明
光を診断部位30に照射する系を別個に設けてもよい。
The image display means 25 displays the normal image represented by the image signal Sm. Therefore, the surgeon or assistant observes this displayed normal image to determine the state of the diagnosis site 30,
The positional relationship between the probe 17 and the diagnostic site 30 can be confirmed. In order to capture such a normal image, in addition to using the reflected excitation light L1 as described above, a system for irradiating the diagnostic site 30 with illumination light such as white light may be separately provided.

【0040】上記ダイクロイックミラー50を透過した近
赤外光L2および蛍光L3は、集光レンズ48によって集
光されて偏波面保存ファイバー41に入射し、該偏波面保
存ファイバー41を伝搬して生体16外に導かれる。なお近
赤外光L2は、診断部位30で反射することによりその楕
円偏光の向きが反転し、その後λ/4板49を通過するこ
とにより、近赤外光源40から診断部位30側に進む場合と
比べて直線偏光の向きが90°回転する。
The near-infrared light L2 and the fluorescence L3 which have passed through the dichroic mirror 50 are condensed by the condenser lens 48 and enter the polarization plane preserving fiber 41. Guided outside. When the near-infrared light L2 is reflected by the diagnosis site 30, the direction of its elliptically polarized light is inverted, and then passes through the λ / 4 plate 49 to travel from the near-infrared light source 40 to the diagnosis site 30 side. The direction of linearly polarized light is rotated by 90 ° compared with.

【0041】偏波面保存ファイバー41から出射した蛍光
L3はダイクロイックミラー46で反射し、集光レンズ53
により集光されて蛍光検出器54に受光される。なお蛍光
検出器54に向かう励起光L1および近赤外光L2は、光
源光カットフィルター52によってカットされる。蛍光検
出器54は蛍光L3の強度を示す蛍光検出信号Sp1を出
力し、この蛍光検出信号Sp1は演算手段24に入力され
る。
The fluorescence L3 emitted from the polarization plane preserving fiber 41 is reflected by the dichroic mirror 46, and the condenser lens 53
The light is collected by and is received by the fluorescence detector 54. The excitation light L1 and the near-infrared light L2 directed to the fluorescence detector 54 are cut by the light source light cut filter 52. The fluorescence detector 54 outputs a fluorescence detection signal Sp1 indicating the intensity of the fluorescence L3, and this fluorescence detection signal Sp1 is input to the calculating means 24.

【0042】一方、偏波面保存ファイバー41から出射し
た近赤外光L2は、上述のように直線偏光の向きが90
°回転したことにより偏光ビームスプリッタ44で反射
し、集光レンズ55により集光されて、近赤外光検出器56
に受光される。なお偏光ビームスプリッタ44に向かう蛍
光L3は、蛍光カットフィルター45によってカットされ
る。近赤外光検出器56は近赤外光L2の強度を示す近赤
外光検出信号Sp2を出力し、この近赤外光検出信号S
p2は演算手段24に入力される。
On the other hand, the near-infrared light L2 emitted from the polarization-maintaining fiber 41 has a linear polarization direction of 90 as described above.
The light beam is reflected by the polarization beam splitter 44 by being rotated by ° and is condensed by the condenser lens 55.
Received. The fluorescent light L3 traveling toward the polarization beam splitter 44 is cut by the fluorescent light cut filter 45. The near infrared light detector 56 outputs a near infrared light detection signal Sp2 indicating the intensity of the near infrared light L2, and the near infrared light detection signal S
p2 is input to the calculating means 24.

【0043】演算手段24は、そこに入射された蛍光検出
信号Sp1と近赤外光検出信号Sp2との間で、Sp1
/Sp2なる割算を行ない、それにより得られた規格化
蛍光検出信号Sp=Sp1/Sp2を画像表示手段25に
入力する。
The calculating means 24 calculates the Sp1 between the fluorescence detection signal Sp1 and the near-infrared light detection signal Sp2 which are incident thereon.
/ Sp2 is divided, and the standardized fluorescence detection signal Sp = Sp1 / Sp2 obtained thereby is input to the image display means 25.

【0044】ここで、前記光感受性物質は腫瘍親和性を
有するので、この規格化蛍光検出信号Spが所定レベル
を上回った場合、基本的に蛍光L3は腫瘍部分から生じ
たと考えることができる。他方、診断部位30における蛍
光L3の検出箇所と固体撮像素子25による通常像撮像範
囲とは互いに対応が取れるので、例えば通常像撮像範囲
の中心点が蛍光L3の検出箇所となるようにし、また通
常像撮像範囲の中心点が画像表示手段25の画面中心と揃
うようにした上で、規格化蛍光検出信号Spが所定レベ
ルを上回ったとき画面中心にマークを表示させれば、通
常像においてそのマークと重なっている箇所は腫瘍部で
あると判断できることになる。
Since the photosensitizer has a tumor affinity, it can be considered that the fluorescence L3 basically originates from the tumor portion when the normalized fluorescence detection signal Sp exceeds a predetermined level. On the other hand, since the detection location of the fluorescence L3 in the diagnostic region 30 and the normal image capturing range of the solid-state image sensor 25 can be associated with each other, for example, the center point of the normal image capturing range is set as the detection location of the fluorescence L3. If the center point of the image pickup range is aligned with the screen center of the image display means 25 and a mark is displayed at the screen center when the normalized fluorescence detection signal Sp exceeds a predetermined level, the mark is displayed in the normal image. It is possible to determine that the part overlapping with is the tumorous part.

【0045】また、このような表示によらず、規格化蛍
光検出信号Spが所定レベルを上回ったときに警報音を
発するようにして、その警報音が発せられたとき画像表
示手段25の画面中心にある通常像の箇所が腫瘍部である
と判断することもできる。
Further, regardless of such a display, an alarm sound is emitted when the standardized fluorescence detection signal Sp exceeds a predetermined level, and when the alarm sound is emitted, the center of the screen of the image display means 25 is displayed. It is also possible to determine that the location of the normal image in is the tumorous part.

【0046】蛍光検出信号Sp1をそのまま用いても、
基本的に上述のようにして腫瘍の有無を判定できるが、
その場合は診断部位30における励起光L1の照度分布に
基づく蛍光強度の変化分が蛍光検出信号Sp1に反映さ
れてしまい、誤診を招く可能性がある。それに対して、
上述のような規格化蛍光検出信号Spに基づいて腫瘍の
有無を判定すれば、励起光L1の照度分布による蛍光強
度の変化分がキャンセルされ、腫瘍の有無を正確に判定
できるようになる。
Even if the fluorescence detection signal Sp1 is used as it is,
Basically, the presence or absence of a tumor can be determined as described above,
In that case, the amount of change in the fluorescence intensity based on the illuminance distribution of the excitation light L1 at the diagnosis site 30 is reflected in the fluorescence detection signal Sp1, which may lead to misdiagnosis. On the other hand,
If the presence / absence of a tumor is determined based on the standardized fluorescence detection signal Sp as described above, the change in fluorescence intensity due to the illuminance distribution of the excitation light L1 is canceled, and the presence / absence of a tumor can be accurately determined.

【0047】そして本例においても、照度分布を調べる
ために診断部位30に照射する光として、生体での吸収が
比較的小さい波長700〜950nmの近赤外光L2を
使用しているので、近赤外光検出信号Sp2は上記吸収
の影響をほとんど受けないで、ほぼ近赤外光照度のみを
反映したものとなる。したがって、この近赤外光検出信
号Sp2を用いて上記の規格化を行なえば、励起光照度
の分布を正確に補償して、診断性能の高い規格化蛍光検
出信号Spが得られることになる。
Also in this example, the near-infrared light L2 having a wavelength of 700 to 950 nm, which has a relatively small absorption in the living body, is used as the light for irradiating the diagnostic region 30 to check the illuminance distribution. The infrared light detection signal Sp2 is almost unaffected by the above-mentioned absorption, and substantially reflects only the near infrared light illuminance. Therefore, if the above-mentioned normalization is performed using this near-infrared light detection signal Sp2, the distribution of the excitation light illuminance can be accurately compensated, and the standardized fluorescence detection signal Sp with high diagnostic performance can be obtained.

【0048】なお、以上説明した2つの実施形態の蛍光
診断装置は、いずれも蛍光内視鏡として構成されたもの
であるが、本発明はこのような蛍光内視鏡に限らず、手
術用顕微鏡に組み込まれた蛍光診断装置等に対しても適
用可能であり、そして同様の効果を奏するものである。
Although the fluorescence diagnostic apparatus according to the two embodiments described above is configured as a fluorescence endoscope, the present invention is not limited to such a fluorescence endoscope, and a surgical microscope. The present invention can be applied to a fluorescence diagnostic device and the like incorporated in a computer and has the same effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施形態である蛍光内視鏡を示
す概略側面図
FIG. 1 is a schematic side view showing a fluorescent endoscope according to a first embodiment of the present invention.

【図2】本発明の第2の実施形態である蛍光内視鏡を示
す概略側面図
FIG. 2 is a schematic side view showing a fluorescence endoscope which is a second embodiment of the present invention.

【図3】生体の主な成分の吸収スペクトルを示すグラフFIG. 3 is a graph showing absorption spectra of main components of a living body.

【符号の説明】[Explanation of symbols]

10 励起光源 11 集光レンズ 12 ライトガイド 13 近赤外光源 14 ダイクロイックミラー 16 生体 17 プローブ 18 イメージガイド 19 ダイクロイックミラー 20 結像レンズ 21 励起光カットフィルター 22 集光レンズ 23 蛍光像撮像手段 24 規格化用演算手段 25 画像表示手段 26 励起光カットフィルター 27 集光レンズ 28 近赤外ビデオカメラ 30 診断部位 40 近赤外光源 41 偏波面保存ファイバー 42 コリメーターレンズ 43 λ/2板 44 偏光ビームスプリッタ 45 蛍光カットフィルター 46 ダイクロイックミラー 47 集光レンズ 48 集光レンズ 49 λ/4板 50 ダイクロイックミラー 51 固体撮像素子 52 光源光カットフィルター 53 集光レンズ 54 蛍光検出器 55 集光レンズ 56 近赤外光検出器 L1 励起光 L2 近赤外光 L3 蛍光 10 Excitation light source 11 Condenser lens 12 Light guide 13 Near-infrared light source 14 Dichroic mirror 16 Living body 17 Probe 18 Image guide 19 Dichroic mirror 20 Imaging lens 21 Excitation light cut filter 22 Condenser lens 23 Fluorescent image capturing means 24 Standardization Calculation means 25 Image display means 26 Excitation light cut filter 27 Condenser lens 28 Near infrared video camera 30 Diagnostic site 40 Near infrared light source 41 Polarization preserving fiber 42 Collimator lens 43 λ / 2 plate 44 Polarization beam splitter 45 Fluorescence cut Filter 46 Dichroic mirror 47 Condenser lens 48 Condenser lens 49 λ / 4 plate 50 Dichroic mirror 51 Solid-state image sensor 52 Light source light cut filter 53 Condenser lens 54 Fluorescence detector 55 Condenser lens 56 Near infrared detector L1 Excitation Light L2 Near infrared light L3 Fluorescence

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 蛍光を発する光感受性物質を吸収してい
る生体の部位に、該光感受性物質の励起波長領域にある
励起光を照射する励起光照射手段と、 前記光感受性物質が発する蛍光を検出して生体の蛍光像
を撮像する蛍光像撮像手段と、 前記生体の部位に波長650nm以上の近赤外光を照射
する近赤外光照射手段と、 前記部位で反射した前記近赤外光を検出して、生体の近
赤外像を撮像する近赤外像撮像手段と、 前記蛍光像撮像手段が出力した蛍光画像信号を、前記近
赤外像撮像手段が出力した近赤外画像信号に基づいて各
画素毎に規格化する演算手段とを備えたことを特徴とす
る蛍光診断装置。
1. Excitation light irradiating means for irradiating a site of a living body absorbing a photosensitizer that emits fluorescence with excitation light in the excitation wavelength region of the photosensitizer, and fluorescence emitted by the photosensitizer. Fluorescence image capturing means for detecting and capturing a fluorescence image of a living body, near-infrared light irradiating means for irradiating the site of the living body with near-infrared light having a wavelength of 650 nm or more, and the near-infrared light reflected by the site A near-infrared image capturing means for detecting a near-infrared image of a living body, and a fluorescence image signal output by the fluorescence image capturing means, and a near-infrared image signal output by the near-infrared image capturing means. And a calculation unit for normalizing each pixel based on the above.
【請求項2】 前記近赤外光照射手段が、近赤外光の強
度を変え得るように構成され、 前記近赤外光の強度が相異なる場合にそれぞれ前記近赤
外像撮像手段から出力された少なくとも2通りの画像信
号を、各画素毎に減算処理して差信号を得る手段が設け
られ、 前記演算手段が、前記規格化用の近赤外画像信号として
前記差信号を用いるように構成されたことを特徴とする
請求項1記載の蛍光診断装置。
2. The near-infrared light irradiation means is configured to change the intensity of the near-infrared light, and outputs from the near-infrared image pickup means when the intensities of the near-infrared light are different from each other. Means for obtaining a difference signal by subjecting each of the at least two types of image signals obtained by subtraction to each pixel is provided, and the arithmetic means uses the difference signal as the near-infrared image signal for standardization. The fluorescence diagnostic apparatus according to claim 1, wherein the fluorescence diagnostic apparatus is configured.
【請求項3】 蛍光を発する光感受性物質を吸収してい
る生体の部位に、該光感受性物質の励起波長領域にある
励起光を照射する励起光照射手段と、 前記光感受性物質が発する蛍光の強度を、前記部位上の
一点毎に検出する蛍光検出手段と、 前記生体の部位に波長650nm以上の近赤外光を照射
する近赤外光照射手段と、 前記部位で反射した前記近赤外光の強度を、前記部位上
の一点毎に検出する近赤外光検出手段と、 前記蛍光強度検出手段が出力した蛍光検出信号を、前記
近赤外光検出手段が出力した近赤外光検出信号に基づい
て規格化する演算手段とを備えたことを特徴とする蛍光
診断装置。
3. Excitation light irradiating means for irradiating a site of a living body absorbing a photosensitizer that emits fluorescence with excitation light in the excitation wavelength region of the photosensitizer; Fluorescence detection means for detecting intensity for each point on the site, near-infrared light irradiation means for irradiating the site of the living body with near-infrared light having a wavelength of 650 nm or more, and the near-infrared light reflected by the site Near-infrared light detection means for detecting the intensity of light for each point on the site, and a fluorescence detection signal output by the fluorescence intensity detection means, near-infrared light detection output by the near-infrared light detection means A fluorescent diagnostic device, comprising: an arithmetic means for normalizing based on a signal.
【請求項4】 前記近赤外光照射手段が、近赤外光の強
度を変え得るように構成され、 前記近赤外光の強度が相異なる場合にそれぞれ前記近赤
外光検出手段から出力された少なくとも2通りの近赤外
光検出信号を減算処理して、差信号を得る手段が設けら
れ、 前記演算手段が、前記規格化用の近赤外光検出信号とし
て前記差信号を用いるように構成されたことを特徴とす
る請求項3記載の蛍光診断装置。
4. The near-infrared light irradiation means is configured to change the intensity of the near-infrared light, and outputs the near-infrared light detection means when the intensities of the near-infrared light differ from each other. Means for obtaining a difference signal by subtracting at least two types of detected near-infrared light detection signals is provided, and the arithmetic means uses the difference signal as the near-infrared light detection signal for standardization. The fluorescence diagnostic apparatus according to claim 3, wherein the fluorescence diagnostic apparatus is configured as described above.
【請求項5】 前記近赤外光照射手段が、前記光感受性
物質の蛍光波長領域から外れた波長700〜950nm
の近赤外光を発するものであることを特徴とする請求項
1から4いずれか1項記載の蛍光診断装置。
5. The near-infrared light irradiation means has a wavelength of 700 to 950 nm outside the fluorescence wavelength region of the photosensitizer.
5. The fluorescence diagnostic apparatus according to claim 1, which emits near-infrared light.
JP10936996A 1996-04-30 1996-04-30 Fluorescence diagnostic equipment Expired - Fee Related JP3664541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10936996A JP3664541B2 (en) 1996-04-30 1996-04-30 Fluorescence diagnostic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10936996A JP3664541B2 (en) 1996-04-30 1996-04-30 Fluorescence diagnostic equipment

Publications (2)

Publication Number Publication Date
JPH09294706A true JPH09294706A (en) 1997-11-18
JP3664541B2 JP3664541B2 (en) 2005-06-29

Family

ID=14508500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10936996A Expired - Fee Related JP3664541B2 (en) 1996-04-30 1996-04-30 Fluorescence diagnostic equipment

Country Status (1)

Country Link
JP (1) JP3664541B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005046634A (en) * 2000-07-14 2005-02-24 Xillix Technologies Corp Compact fluorescence endoscopy video system
WO2008093746A1 (en) * 2007-01-31 2008-08-07 Olympus Corporation Fluorescence observation device and florescence observation method
WO2008093745A1 (en) * 2007-01-31 2008-08-07 Olympus Corporation Fluorescence observation device for organism tissue
JP2008261885A (en) * 2000-12-19 2008-10-30 Perceptronix Medical Inc Method and system for fluorescence, reflectance imaging and spectroscopy, method and system for simultaneous measurement of electromagnetic radiation by many measuring devices
WO2009028136A1 (en) * 2007-08-29 2009-03-05 Panasonic Corporation Fluorescence observation device
EP2100551A1 (en) * 2008-03-10 2009-09-16 Olympus Medical Systems Corporation Endoscope observation system
WO2009123670A1 (en) * 2008-03-31 2009-10-08 Immersion Corporation Locating blood vessels
JP2010068924A (en) * 2008-09-17 2010-04-02 Fujinon Corp Method and apparatus for image acquisition
JP2011224038A (en) * 2010-04-15 2011-11-10 Olympus Corp Image processing device and program
WO2012005151A1 (en) * 2010-07-06 2012-01-12 オリンパス株式会社 Fluorescence observation device
US8451328B2 (en) 2009-03-26 2013-05-28 Olympus Corporation Image processing device, imaging device, computer-readable device, and image processing method for processing a fluorescence image
JP2018175024A (en) * 2017-04-04 2018-11-15 株式会社住田光学ガラス Image guide device and endoscope
US20210251478A1 (en) * 2020-02-17 2021-08-19 OMEC Medical Inc Device for anti-fog endoscope system

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013150830A (en) * 2000-07-14 2013-08-08 Novadaq Technologies Inc Compact fluorescence endoscopy image system
JP2005046634A (en) * 2000-07-14 2005-02-24 Xillix Technologies Corp Compact fluorescence endoscopy video system
JP2008261885A (en) * 2000-12-19 2008-10-30 Perceptronix Medical Inc Method and system for fluorescence, reflectance imaging and spectroscopy, method and system for simultaneous measurement of electromagnetic radiation by many measuring devices
WO2008093746A1 (en) * 2007-01-31 2008-08-07 Olympus Corporation Fluorescence observation device and florescence observation method
WO2008093745A1 (en) * 2007-01-31 2008-08-07 Olympus Corporation Fluorescence observation device for organism tissue
JP2008183349A (en) * 2007-01-31 2008-08-14 Olympus Corp Fluorescent observation device and fluorescent observation method
US8547425B2 (en) 2007-01-31 2013-10-01 Olympus Corporation Fluorescence observation apparatus and fluorescence observation method
WO2009028136A1 (en) * 2007-08-29 2009-03-05 Panasonic Corporation Fluorescence observation device
EP2100551A1 (en) * 2008-03-10 2009-09-16 Olympus Medical Systems Corporation Endoscope observation system
JP2009213649A (en) * 2008-03-10 2009-09-24 Olympus Medical Systems Corp Endoscope observation system
US9746662B2 (en) 2008-03-10 2017-08-29 Olympus Corporation Endoscope observation system
US7792334B2 (en) 2008-03-31 2010-09-07 Immersion Corporation Locating blood vessels
WO2009123670A1 (en) * 2008-03-31 2009-10-08 Immersion Corporation Locating blood vessels
JP2010068924A (en) * 2008-09-17 2010-04-02 Fujinon Corp Method and apparatus for image acquisition
US8451328B2 (en) 2009-03-26 2013-05-28 Olympus Corporation Image processing device, imaging device, computer-readable device, and image processing method for processing a fluorescence image
JP2011224038A (en) * 2010-04-15 2011-11-10 Olympus Corp Image processing device and program
WO2012005151A1 (en) * 2010-07-06 2012-01-12 オリンパス株式会社 Fluorescence observation device
JP2012016385A (en) * 2010-07-06 2012-01-26 Olympus Corp Fluorescence observation apparatus
CN102958417A (en) * 2010-07-06 2013-03-06 奥林巴斯株式会社 Fluorescence observation device
US8654185B2 (en) 2010-07-06 2014-02-18 Olympus Corporation Fluorescence observation apparatus
CN102958417B (en) * 2010-07-06 2015-04-22 奥林巴斯株式会社 Fluorescence observation device
JP2018175024A (en) * 2017-04-04 2018-11-15 株式会社住田光学ガラス Image guide device and endoscope
US20210251478A1 (en) * 2020-02-17 2021-08-19 OMEC Medical Inc Device for anti-fog endoscope system

Also Published As

Publication number Publication date
JP3664541B2 (en) 2005-06-29

Similar Documents

Publication Publication Date Title
JP3694667B2 (en) Apparatus and method for projecting diseased tissue images using integrated autofluorescence
US10376148B2 (en) System and method for laser imaging and ablation of cancer cells using fluorescence
US7583380B2 (en) Spectroscopic analysis apparatus and method with excitation system and focus monitoring system
JP5461753B2 (en) Endoscope device
US5833617A (en) Fluorescence detecting apparatus
JP3394447B2 (en) Fluorescent endoscope
JP3236085B2 (en) Endoscope device
JPS62247232A (en) Fluorescence measuring apparatus
US7224468B2 (en) En-face functional imaging using multiple wavelengths
JPH0654792A (en) Image pickup device
JP3664541B2 (en) Fluorescence diagnostic equipment
JPH10165365A (en) Endoscope
JPH09505407A (en) Optical tissue inspection device
JPS60246733A (en) Optical photographing apparatus of organism tissue
JP3662336B2 (en) Endoscope capable of measuring distance
JPH10225436A (en) Fluorescence detector
JP2001128927A (en) Method and device for producing fluorescent image
KR100749299B1 (en) Fluorescence video system for the diagnosis of skin
JP3552844B2 (en) Endoscope
JP2021519438A (en) Multimode imaging system and method for non-invasive examination of subjects
JPH1014869A (en) Fluorescent endoscope
JP3819083B2 (en) Fluorescence diagnostic equipment
JPH10118004A (en) Fluorescent imaging device
WO2016194101A1 (en) Infrared fluorescence observation device
JP3823096B2 (en) Imaging device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080408

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees