JPH09294390A - Step-out detecting device in centerless synchronous motor - Google Patents

Step-out detecting device in centerless synchronous motor

Info

Publication number
JPH09294390A
JPH09294390A JP8105908A JP10590896A JPH09294390A JP H09294390 A JPH09294390 A JP H09294390A JP 8105908 A JP8105908 A JP 8105908A JP 10590896 A JP10590896 A JP 10590896A JP H09294390 A JPH09294390 A JP H09294390A
Authority
JP
Japan
Prior art keywords
current
stator winding
value
synchronous motor
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8105908A
Other languages
Japanese (ja)
Other versions
JP3741291B2 (en
Inventor
Hidefumi Ueda
英史 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP10590896A priority Critical patent/JP3741291B2/en
Publication of JPH09294390A publication Critical patent/JPH09294390A/en
Application granted granted Critical
Publication of JP3741291B2 publication Critical patent/JP3741291B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect step-out in any states such as high speed, large current, regenerative mode or stop condition by performing step-out detection when the effective value of current of a stator winding exceeds a judging level, and a power factor angle between the stator winding and a voltage applied to a stator winding has reached a particular value. SOLUTION: An effective value of a current of a stator winding can be determined by detecting an instantaneous current value flowing the stator windings of V-phase and W-phase from current detectors 3 and 4. Also, based on the detected values detected from a DC power supply voltage detector, an arithmetic device 1 controls ON/OFF time to six power transistors, the arithmetic device 1 controls and detects the effective value of voltage applied to the stator windings, and the power actor angle between the voltage applied to stator windings and stator winding current can be determined. Therefore, when the effective value of current of stator winding exceeds the preset judging level and the power factor angle has a value close to 90 deg., the step-out detection can be performed for any state of step-out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、センサレス3相交
流同期モータの駆動装置におけるセンサレス同期モータ
の脱調検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a step-out detection device for a sensorless synchronous motor in a drive device for a sensorless three-phase AC synchronous motor.

【0002】[0002]

【従来の技術】従来、センサレス同期モータにおける脱
調検出方法としては、駆動装置を矩形波駆動方式とし、
無通電相の巻線端子に表れる同期モータの誘起電圧と同
期モータの中性点電圧との比較から生成される通電切替
信号の発生時間間隔において、前もって設定している時
間間隔と実測した時間間隔とを比較し、実測した時間間
隔が短い場合に脱調を検出する、図8に示すような方法
(特開平3−207290号公報)や直流電圧回路とス
イッチング回路との間に流れる電流が通常と逆方向に流
れた場合に脱調を検出する図10に示すような方法(特
開平7−87782号公報)が提案されている。図8に
おいて、41はインバータを構成するスイッチング素子
群、42はブラシレスモータ、43は位置検出回路制御
装置、44は通電切替信号発生時間検出器、45はマイ
クロコンピュータである。通電切替信号発生時間検出器
44は、位置検出回路制御装置43からのスイッチング
素子群41の回転信号の一部を入力とし、ある回転信号
の出力時からその次の回転信号の出力までの時間を計測
してマイクロコンピュータ45にそのデータを送る。マ
イクロコンピュータ45は通電切替信号発生時間検出器
44よりある回転信号の出力時からその次の回転信号の
出力までの時間を受け取り、内部に記憶している時間設
定データと比較して検出時間が短いと、脱調と判断す
る。その後、脱調の再起動の制御をする。図10におい
て、51は直流ブラシレスモータ、52はインバータ回
路、53は整流回路、54は平滑コンデンサ、55はシ
ャント抵抗である。56はモータ51のロータの位置を
検出するための位置検出回路であり、3相の比較器を有
している。比較器の出力が制御部57に出力され、制御
部57はモータ51の相巻線にそれぞれ誘起する電圧を
ロータ位置検出部の比較器を通して監視し、その誘起電
圧の変化を基にロータの位置を検出しながらインバータ
回路52の各トランジスタに対する駆動信号を作成す
る。インバータ回路52におけるシャント抵抗55の両
端に、順方向電流検知回路59及び逆方向電流検知回路
60からなる電流検知回路58が接続される。順方向電
流検知回路59及び逆方向電流検知回路60は、それぞ
れ、シャント抵抗55に流れる順方向及び逆方向の電流
を検知し、それぞれ、設定値を超えているか否かを判定
する。
2. Description of the Related Art Conventionally, as a step-out detection method in a sensorless synchronous motor, a drive device is a rectangular wave drive system,
In the time interval of the energization switching signal generated by comparing the induced voltage of the synchronous motor appearing at the winding terminal of the non-energized phase and the neutral point voltage of the synchronous motor, the preset time interval and the measured time interval And a method as shown in FIG. 8 (Japanese Patent Laid-Open No. 3-207290) for detecting out-of-step when the measured time interval is short, or the current flowing between the DC voltage circuit and the switching circuit is usually There is proposed a method (Japanese Patent Laid-Open No. 7-87782) for detecting out-of-step when flowing in the opposite direction. In FIG. 8, 41 is a switching element group forming an inverter, 42 is a brushless motor, 43 is a position detection circuit control device, 44 is an energization switching signal generation time detector, and 45 is a microcomputer. The energization switching signal generation time detector 44 receives a part of the rotation signal of the switching element group 41 from the position detection circuit control device 43 as an input, and determines the time from the output of a certain rotation signal to the output of the next rotation signal. It measures and sends the data to the microcomputer 45. The microcomputer 45 receives the time from the output of one rotation signal to the output of the next rotation signal from the energization switching signal generation time detector 44, and the detection time is shorter than the time setting data stored inside. And judge that it is out of sync. After that, the step-out restart is controlled. In FIG. 10, 51 is a DC brushless motor, 52 is an inverter circuit, 53 is a rectifier circuit, 54 is a smoothing capacitor, and 55 is a shunt resistor. Reference numeral 56 denotes a position detection circuit for detecting the position of the rotor of the motor 51, which has a three-phase comparator. The output of the comparator is output to the control unit 57, and the control unit 57 monitors the voltage induced in each phase winding of the motor 51 through the comparator of the rotor position detection unit, and based on the change in the induced voltage, the rotor position is detected. The drive signal for each transistor of the inverter circuit 52 is created while detecting A current detection circuit 58 including a forward current detection circuit 59 and a reverse current detection circuit 60 is connected to both ends of the shunt resistor 55 in the inverter circuit 52. The forward current detection circuit 59 and the reverse current detection circuit 60 respectively detect the forward and reverse currents flowing through the shunt resistor 55, and determine whether or not they exceed the set values.

【0003】[0003]

【発明が解決しようとする課題】図8に示す従来の方法
においては、無通電用の端子に表れる誘起電圧から通電
切替信号を得ているが、この誘起電圧はインバータ回路
部52の上アーム、下アーム両トランジスタOFF後、
転流ダイオードを流れる転流電流が存在する間は検出で
きず、この転流電流が消滅して初めて検出可能となる。
この動作を図9に示す説明図により説明すると、例えば
w相を流れる通常電流は、図9(a)に示すように上ア
ームのトランジスタPwと下アームのトランジスタNv
オンのときに流れ、図9(b)に示すように、w相の上
下両トランジスタオフ後、w相の転流ダイオードを流れ
るw相の転流電流が消滅すると、w相端子に誘起電圧が
表れる。ところが、同期モータが高速で回転する場合
や、固定子巻線に流れる電流が大きい場合には、上アー
ム、下アーム両トランジスタOFFの全期間中、転流電
流が存在し、従って誘起電圧を検出できず通電切替信号
も得られず脱調も検出できないという問題があった。ま
た、後者の方法においては、図10に示す電流の流れる
方向の変化から脱調の検出を行うため、同期モータの回
転方向と逆方向のトルクを発生する回生モードとなる運
転状態がある時、この場合も電流の流れる方向が通常と
逆になるので脱調検出との区別ができず、また脱調停止
状態では検出できないという問題があった。そこで本発
明が解決すべき課題は、高速・大電流・回生モード・停
止状態のいずれの状態においても脱調を検出できる装置
を提供することにある。
In the conventional method shown in FIG. 8, the energization switching signal is obtained from the induced voltage appearing at the non-energized terminal. This induced voltage is generated by the upper arm of the inverter circuit section 52. After turning off both transistors in the lower arm,
It cannot be detected while the commutation current flowing through the commutation diode is present, and can be detected only when this commutation current disappears.
This operation will be described with reference to the explanatory diagram shown in FIG. 9. For example, a normal current flowing in the w phase flows when the upper arm transistor P w and the lower arm transistor N v are on, as shown in FIG. 9A. As shown in FIG. 9B, when the w-phase commutation current flowing through the w-phase commutation diode disappears after both the w-phase upper and lower transistors are turned off, an induced voltage appears at the w-phase terminal. However, when the synchronous motor rotates at a high speed or when the current flowing through the stator winding is large, commutation current exists during the entire OFF period of both the upper arm transistor and the lower arm transistor, and therefore the induced voltage is detected. However, there is a problem in that the energization switching signal cannot be obtained and the step-out cannot be detected. Further, in the latter method, step-out is detected from the change in the direction of current flow shown in FIG. 10, so that when there is an operating state in which a regenerative mode that generates torque in a direction opposite to the rotation direction of the synchronous motor is present, Also in this case, there is a problem that the direction of current flow is opposite to the normal direction, so that it cannot be distinguished from out-of-step detection and cannot be detected in the step-out stopped state. Therefore, the problem to be solved by the present invention is to provide a device capable of detecting a step-out in any of the high speed, large current, regenerative mode, and stopped state.

【0004】[0004]

【課題を解決するための手段】前記課題を解決するた
め、本発明のセンサレス同期モータにおける脱調検出装
置は、3相交流電圧を固定子側巻線に印加し固定子巻線
を流れる電流と回転子側の永久磁石による磁界との相互
作用によりトルクを発生し回転するセンサレス同期モー
タの駆動装置において、 前記固定子巻線の電流実効値について判別レベルを設定
し、前記固定子巻線の電流実効値が前記判別レベルを越
え、かつ前記固定子巻線に印加されている電圧と固定子
巻線電流との間の力率角が90°に近い値となった場合
に脱調検出をする手段を備えたものである。力率角の検
出においては、各固定子巻線への印加電圧瞬時値として
各端子部から端子電圧検出器により直接検出した値を使
用することができる。力率角φを φ=cos-1{vPN・idc/(3・E・i)} ここでvPN:直流電圧検出値、idc:直流分、E:固定
子巻線に印加している電圧の実効値、i:固定子巻線の
電流実効値から検出することができる。電流実効値を検
出する手段は、センサレス同期モータを駆動するインバ
ータを構成する上下段のトランジスタのうち一方の段の
トランジスタがオンしている瞬間に、そのオンしている
相の固定子巻線を流れる瞬時電流値を検出することがで
きる。
In order to solve the above-mentioned problems, a step-out detection device for a sensorless synchronous motor according to the present invention applies a three-phase AC voltage to a stator side winding and a current flowing through the stator winding. In a sensorless synchronous motor drive device that generates torque by interaction with a magnetic field of a permanent magnet on the rotor side and rotates, a discrimination level is set for the effective current value of the stator winding, and the current of the stator winding is set. Step-out detection is performed when the effective value exceeds the discrimination level and the power factor angle between the voltage applied to the stator winding and the stator winding current is close to 90 °. It is equipped with means. In detecting the power factor angle, the value directly detected by the terminal voltage detector from each terminal portion can be used as the instantaneous value of the voltage applied to each stator winding. The power factor angle φ is φ = cos −1 {v PN · i dc / (3 · E · i)} where v PN : DC voltage detection value, i dc : DC component, E: applied to the stator winding The effective value of the applied voltage, i: the effective value of the current in the stator winding can be detected. The means for detecting the effective current value is that at the moment when one of the upper and lower transistors forming the inverter that drives the sensorless synchronous motor is on, the stator winding of the on phase is turned on. The instantaneous current value that flows can be detected.

【0005】[0005]

【発明の実施の形態】以下、本発明の第1実施例を図1
に基づいて説明する。図1において、1は演算装置、2
はセンサレス同期モータ、3、4、5は第1の検出手段
である電流検出器、6はインバータ部、7はコンバータ
部、8は直流電源の平滑コンデンサ、9は第2の検出手
段である直流電源電圧検出器、10はインバータ部6に
おける6個のパワートランジスタそれぞれへのオン/オ
フ用ドライブ信号である。次に動作について説明する。
まず電流検出器3、4よりv相とw相の固定子巻線を流
れる瞬時電流値iv,iwを検出する。なお、説明のため
v相とw相としたが、いずれの2相の組合せでも、ある
いはまた3相全てを使用した場合でも同様である。ここ
で固定子巻線電流実効値iは例えば i={(iw2/2+(iw+2・iv2/6}1/2 から検出できる。また直流電源電圧検出器より検出した
検出値に基づき、演算装置1が6個のパワートランジス
タへのオン/オフ時間を制御することで、演算装置1
は、固定子巻線に印加している電圧の実効値Eを制御・
検出でき、さらに瞬時値iv,iwを検出した瞬間の各固
定子巻線への印加電圧Eu,Ev,Ewをも制御・検出で
きる。このEu,Ev,Ew,iv,iwから、固定子巻線
に印加している電圧と固定子巻線電流との間の力率角φ
は例えば cosφ={Ev・iv+Ew・iw+Eu・(−iv−iw)}/(3・E
・i) φ=cos-1[{Ev・iv+Ew・iw+Eu・(−iv−iw)}/(3
・E・i)] から検出できる。
FIG. 1 shows a first embodiment of the present invention.
It will be described based on. In FIG. 1, 1 is an arithmetic unit, 2
Is a sensorless synchronous motor, 3, 4 and 5 are current detectors which are first detecting means, 6 is an inverter section, 7 is a converter section, 8 is a smoothing capacitor of a DC power supply, and 9 is DC which is a second detecting means. The power supply voltage detector 10 is an on / off drive signal for each of the six power transistors in the inverter unit 6. Next, the operation will be described.
Instantaneous current value i v first through the stator windings of the v-phase and w-phase from the current detector 3, 4, detects the i w. Although the v-phase and the w-phase are used for the sake of explanation, the same applies to any combination of two phases or the use of all three phases. Here the stator winding current effective value i can be detected, for example, from i = {(i w) 2 /2 + (i w +2 · i v) 2/6} 1/2. In addition, the arithmetic unit 1 controls the on / off time to the six power transistors based on the detection value detected by the DC power source voltage detector, and thus the arithmetic unit 1
Controls the effective value E of the voltage applied to the stator winding.
Detection can be further instantaneous value i v, applied voltage E u to each stator winding of the moment of detecting the i w, E v, also controls and detection of E w. From these E u , E v , E w , iv , and i w , the power factor angle φ between the voltage applied to the stator winding and the stator winding current
Is, for example, cosφ = {E v · i v + E w · i w + E u · (−i v −i w )} / (3 · E
・ I) φ = cos -1 [{E v · i v + E w · i w + E u · (−i v −i w )} / (3
・ E ・ i)].

【0006】センサレス同期モータが図2(a)に示す
ようにピークをトルクポイントを越えて脱調状態へと移
行する際、図2(a)に示すように、必ず同期モータの
出力トルクがゼロとなるポイントを通過する。この出力
トルクがゼロとなるポイント付近では、図2(c)に示
すように力率角は90°に近い値となり、かつ固定子巻
線電流の実効値iは大きな値となる。一方、同期状態で
出力トルクがゼロに近い場合、図2(b)に示すように
固定子巻線電流実効値iは通常小さな値となるが、図2
(c)に示すように力率角は90°に近い値となるの
で、力率角だけでは脱調検出の判別ができない。そこで
固定子巻線の電流実効値iについて判別レベルを設定
し、固定子巻線の電流実効値iがこの判別レベルを越え
かつ力率角φが90°に近い値となった場合に脱調検出
をする。停止状態でも同様に検出できる。
When the sensorless synchronous motor shifts from the peak to the out-of-step state by exceeding the torque point as shown in FIG. 2 (a), as shown in FIG. 2 (a), the output torque of the synchronous motor is always zero. To pass the point. In the vicinity of the point where the output torque becomes zero, the power factor angle becomes a value close to 90 °, and the effective value i of the stator winding current becomes a large value, as shown in FIG. 2 (c). On the other hand, when the output torque is close to zero in the synchronized state, the stator winding current effective value i usually becomes a small value as shown in FIG.
As shown in (c), the power factor angle has a value close to 90 °, and therefore it is not possible to determine the out-of-step detection only by the power factor angle. Therefore, a discrimination level is set for the effective current value i of the stator winding, and when the effective current value i of the stator winding exceeds this determination level and the power factor angle φ becomes a value close to 90 °, step out occurs. To detect. The same can be detected in the stopped state.

【0007】次に本発明の第2の実施例を図3に基づい
て説明する。図3において1〜10の各部は図1と同様
であり、11は第2の検出手段である各固定子巻線への
印加電圧を直接検出する電圧検出器である。次に第2の
実施例の動作について説明する。固定子巻線電流の実効
値iの検出は第1の実施例と同様であるが、力率角φの
検出において、各固定子巻線への印加電圧瞬時値が各端
子部から端子電圧検出器11により直接検出した値を使
用するところが第1の実施例と異なる。前記力率角φの
検出手段を除くその他の内容は全て第1の実施例と同様
となる。
Next, a second embodiment of the present invention will be described with reference to FIG. In FIG. 3, parts 1 to 10 are the same as those in FIG. 1, and 11 is a voltage detector that directly detects the voltage applied to each stator winding, which is the second detecting means. Next, the operation of the second embodiment will be described. The detection of the effective value i of the stator winding current is the same as that of the first embodiment, but in the detection of the power factor angle φ, the instantaneous value of the voltage applied to each stator winding is detected by the terminal voltage from each terminal. The difference from the first embodiment is that the value directly detected by the instrument 11 is used. The contents other than the means for detecting the power factor angle φ are the same as those in the first embodiment.

【0008】次に本発明の第3の実施例を図4に基づい
て説明する。図4において、21は第1の検出手段であ
る電流検出器、22はローパスフィルタ部、23はピー
クホールド部である。その他の構成は第1の実施例と同
様である。次に第3の実施例の動作について説明する。
まず電流検出器21より図5(a),(b)に示すよう
な検出電流波形が得られる。この波形からローパスフィ
ルタ部22により直流分idcを抽出し、一方ピークホー
ルド23からはピーク電流値ipを抽出する。ここでip
について、インバータ部6のPWM出力の1キャリア周
期後とのipをつなぎ合わせると図6に示すような電流
波形が得られる。この図6の電流波形のピーク値を抽出
する場合には抽出したピーク電流値ip( peak)について
固定子巻線電流実効値iとip(peak)=√2・i よっ
てi=ip(peak)/√2の関係にある。また例えば図6
の電流波形の平均値を抽出する場合には、抽出した電流
値ip( AVG)についてip(AVG)={(3√2)/π}・i
よってi={π/(3√2)}・ip(AVG)の関係にある。
従って上記のいずれでipを抽出しても固定子巻線電流
実効値iを検出できる。また直流電源電圧検出器9より
検出した直流電圧検出値vPNと、電流検出器21からロ
ーパスフィルタ部22より抽出した直流分idcと、固定
子巻線電流実効値iと、固定子巻線への印加電圧実効値
Eおよび力率角φについて vPN・idc=3・E・i・cosφ の関係がある。ここで固定子巻線への印加電圧実効値E
は演算装置1が直流電源電圧検出器9の検出値によりイ
ンバータ部6へのオン/オフドライブ信号10を直接制
御することで制御できる。従って、演算装置1は、Eの
値を検出できる。従って力率角φは cosφ={vPN・idc/(3・E・i)} よってφ=cos-1{vPN・idc/(3・E・i)}か
ら検出できる。以上検出した固定子巻線電流実効値iと
力率角φから脱調検出を行う手段は第1の実施例と同様
である。また電流検出器21の位置については、例えば
図4において直流電源の平滑コンデンサ8の正側(図4
のP点)とインバータ部6との間に挿入しても同様の効
果がある。
Next, a third embodiment of the present invention will be described with reference to FIG. In FIG. 4, 21 is a current detector which is a first detecting means, 22 is a low pass filter section, and 23 is a peak hold section. Other configurations are the same as those of the first embodiment. Next, the operation of the third embodiment will be described.
First, the detected current waveform as shown in FIGS. 5A and 5B is obtained from the current detector 21. The low pass filter section 22 from the waveform to extract a DC component i dc, whereas extracts the peak current value i p from the peak hold 23. Where i p
For, the current waveform shown in FIG. 6 is obtained when joining the i p and after 1 carrier period of the PWM output of the inverter unit 6. Peak current value i stator winding current effective value for p (peak) i and i p extracted in the case of extracting the peak value of the current waveform of FIG. 6 (peak) = √2 · i Thus i = i p (peak) / √2. Also, for example, in FIG.
When extracting the average value of the current waveform, the extracted current value i p for (AVG) i p (AVG) = {(3√2) / π} · i
Therefore, there is a relationship of i = {π / (3√2)} · ip (AVG) .
Therefore be extracted i p in any of the above can detect stator winding current effective value i. Further, the DC voltage detection value v PN detected by the DC power supply voltage detector 9, the DC component i dc extracted from the current detector 21 by the low-pass filter unit 22, the stator winding current effective value i, and the stator winding There is a relationship of v PN · i dc = 3 · E · i · cos φ with respect to the effective value E of the applied voltage and the power factor angle φ. Here, the effective voltage E applied to the stator winding is
Can be controlled by the arithmetic unit 1 by directly controlling the on / off drive signal 10 to the inverter unit 6 according to the detection value of the DC power supply voltage detector 9. Therefore, the arithmetic unit 1 can detect the value of E. Therefore, the power factor angle φ can be detected from cos φ = {v PN · i dc / (3 · E · i)} and φ = cos −1 {v PN · i dc / (3 · E · i)}. The means for detecting a step-out from the stator winding current effective value i and the power factor angle φ detected above is the same as in the first embodiment. Regarding the position of the current detector 21, for example, in FIG. 4, the positive side of the smoothing capacitor 8 of the DC power source (see FIG.
The same effect can be obtained by inserting it between the point P) and the inverter unit 6.

【0009】次に本発明の第4の実施例を図7に基づい
て説明する。図7において、1〜10の各部は図1と同
様であり31は電流検出器32、33、34からの検出
値のサンプル・ホールド部である。次に第4の実施例の
動作について説明する。電流検出器32、33、34の
出力はインバータ部6の下段のトランジスタがオンして
いる間のみ検出器32、33、34に電流が流れるた
め、検出可能である。従って下段のトランジスタが2つ
オンしている瞬間、例えばv相とw相がオンしていると
して、v相とw相の固定子巻線を流れる瞬時電流値
v,iwを検出する。この検出値に基づいて、固定子巻
線電流実効値i及び力率角φの検出、さらに脱調検出手
段については第1の実施例の場合と同様になる。また第
3の実施例で固定子巻線への印加電圧検出手段のみ第2
の実施例と同様にした装置、第4の実施例で固定子巻線
への印加電圧検出手段のみ第2の実施例と同様にした装
置も考えられる。
Next, a fourth embodiment of the present invention will be described with reference to FIG. In FIG. 7, each unit of 1 to 10 is the same as that of FIG. 1, and 31 is a sample and hold unit of the detected values from the current detectors 32, 33 and 34. Next, the operation of the fourth embodiment will be described. The outputs of the current detectors 32, 33, 34 can be detected because the current flows through the detectors 32, 33, 34 only while the lower transistors of the inverter unit 6 are on. Accordingly moment the lower transistor is two-one, for example a v-phase and w-phase are turned on, v-phase and instantaneous current flowing in the stator windings of the w-phase value i v, detecting a i w. Based on this detected value, the detection of the stator winding current effective value i and the power factor angle φ, and the step-out detection means are the same as in the case of the first embodiment. Further, in the third embodiment, only the means for detecting the voltage applied to the stator winding is the second one.
A device similar to that of the second embodiment, or a device similar to that of the second embodiment only in the means for detecting the voltage applied to the stator winding in the fourth embodiment can be considered.

【0010】[0010]

【発明の効果】以上述べたように、本発明によれば、固
定子巻線電流実効値、及びこれと固定子巻線への印加電
圧との力率角とから脱調検出を行うため、センサレス同
期モータが高速、大電流、回生モード、停止状態のいず
れの状態で脱調しても脱調検出できる。
As described above, according to the present invention, step-out detection is performed from the effective value of the stator winding current and the power factor angle between the effective value and the voltage applied to the stator winding. Step-out can be detected even if the sensorless synchronous motor goes out of step at any of high speed, large current, regenerative mode, and stop state.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例のセンサレス同期モータ駆動
装置のブロック図である。
FIG. 1 is a block diagram of a sensorless synchronous motor drive device according to an embodiment of the present invention.

【図2】 センサレス同期モータの出力トルク、固定子
巻線電流実効値、力率角の関係図である。
FIG. 2 is a relationship diagram of an output torque of a sensorless synchronous motor, a stator winding current effective value, and a power factor angle.

【図3】 本発明の第2実施例のセンサレス同期モータ
駆動装置のブロック図である。
FIG. 3 is a block diagram of a sensorless synchronous motor drive device according to a second embodiment of the present invention.

【図4】 本発明の第3実施例のセンサレス同期モータ
駆動装置のブロック図である。
FIG. 4 is a block diagram of a sensorless synchronous motor drive device according to a third embodiment of the present invention.

【図5】 同実施例における電流検出器の検出波形図で
ある。
FIG. 5 is a detection waveform diagram of the current detector in the example.

【図6】 同実施例における電流検出器の検出波形から
ピークホールド部により抽出できる電圧波形図である。
FIG. 6 is a voltage waveform diagram that can be extracted by the peak hold unit from the detection waveform of the current detector in the example.

【図7】 本発明の第4の実施例のセンサレス同期モー
タ駆動装置のブロック図である。
FIG. 7 is a block diagram of a sensorless synchronous motor drive device according to a fourth embodiment of the present invention.

【図8】 従来のセンサレスブラシレスモータの脱調検
出機能付き駆動装置のブロック図である。
FIG. 8 is a block diagram of a conventional drive device with a step-out detection function for a sensorless brushless motor.

【図9】 上下両トランジスタのオン/オフ後の転流ダ
イオードを流れる電流の説明図である。
FIG. 9 is an explanatory diagram of a current flowing through a commutation diode after turning on / off both upper and lower transistors.

【図10】 従来のセンサレス同期モータの脱調検出機
能付駆動装置のブロック図である。
FIG. 10 is a block diagram of a conventional drive device with a step-out detection function for a sensorless synchronous motor.

【符号の説明】[Explanation of symbols]

1 演算装置、2 センサレス同期モータ、3,4,5
電流検出器、6 インバータ部、7 コンバータ部、
8 直流電源の平滑コンデンサ、9 直流電源電圧検出
器、10 オン/オフ用ドライブ信号、11 端子電圧
検出器、21 電流検出器、22 ローパスフィルタ
部、23 ピークホールド部、31 サンプルホールド
部、32,33,34 電流検出器
1 arithmetic unit, 2 sensorless synchronous motors, 3, 4, 5
Current detector, 6 inverter section, 7 converter section,
8 DC power supply smoothing capacitor, 9 DC power supply voltage detector, 10 ON / OFF drive signal, 11 terminal voltage detector, 21 current detector, 22 low pass filter section, 23 peak hold section, 31 sample hold section, 32, 33,34 Current detector

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 3相交流電圧を固定子側巻線に印加し固
定子巻線を流れる電流と回転子側の永久磁石による磁界
との相互作用によりトルクを発生し回転するセンサレス
同期モータの駆動装置において、 前記固定子巻線の電流実効値について判別レベルを設定
し、前記固定子巻線の電流実効値が前記判別レベルを越
え、かつ前記固定子巻線に印加されている電圧と固定子
巻線電流との間の力率角が90°に近い値となった場合
に脱調検出をする手段を備えたことを特徴とするセンサ
レス同期モータにおける脱調検出装置。
1. A drive of a sensorless synchronous motor which applies a three-phase AC voltage to a winding on a stator side and generates torque by interaction between a current flowing through the stator winding and a magnetic field generated by a permanent magnet on the rotor side to rotate. In the device, a determination level is set for the effective current value of the stator winding, the effective current value of the stator winding exceeds the determination level, and the voltage applied to the stator winding and the stator A step-out detection device for a sensorless synchronous motor, which is provided with means for detecting step-out when the power factor angle between the winding current and the winding current is close to 90 °.
【請求項2】 力率角の検出において、各固定子巻線へ
の印加電圧瞬時値として各端子部から端子電圧検出器に
より直接検出した値を使用することを特徴とする請求項
1記載のセンサレス同期モータにおける脱調検出装置。
2. The power factor angle is detected by using a value directly detected by a terminal voltage detector from each terminal portion as an instantaneous value of a voltage applied to each stator winding. Step-out detection device for sensorless synchronous motor.
【請求項3】 力率角φを φ=cos-1{vPN・idc/(3・E・i)} ここでvPN:直流電圧検出値、idc:直流分、E:固定
子巻線に印加している電圧の実効値、i:固定子巻線の
電流実効値から検出することを特徴とする請求項1また
は2記載のセンサレス同期モータにおける脱調検出装
置。
3. The power factor angle φ is φ = cos −1 {v PN · i dc / (3 · E · i)}, where v PN : DC voltage detection value, i dc : DC component, E: stator 3. The step-out detection device for a sensorless synchronous motor according to claim 1, wherein the step-out detection device detects the effective value of the voltage applied to the winding, i: the effective value of the current of the stator winding.
【請求項4】 電流実効値を検出する手段は、センサレ
ス同期モータを駆動するインバータを構成する上下段の
トランジスタのうち一方の段のトランジスタがオンして
いる瞬間に、そのオンしている相の固定子巻線を流れる
瞬時電流値を検出することを特徴とする請求項1〜3項
のいずれかの項に記載のセンサレス同期モータにおける
脱調検出装置。
4. The means for detecting the effective current value is configured such that at the moment when one of the upper and lower transistors forming the inverter for driving the sensorless synchronous motor is turned on, The step-out detection device for a sensorless synchronous motor according to claim 1, wherein an instantaneous current value flowing through the stator winding is detected.
JP10590896A 1996-04-25 1996-04-25 Sensorless synchronous motor drive device Expired - Fee Related JP3741291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10590896A JP3741291B2 (en) 1996-04-25 1996-04-25 Sensorless synchronous motor drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10590896A JP3741291B2 (en) 1996-04-25 1996-04-25 Sensorless synchronous motor drive device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005223175A Division JP3807507B2 (en) 2005-08-01 2005-08-01 Sensorless synchronous motor drive device

Publications (2)

Publication Number Publication Date
JPH09294390A true JPH09294390A (en) 1997-11-11
JP3741291B2 JP3741291B2 (en) 2006-02-01

Family

ID=14419975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10590896A Expired - Fee Related JP3741291B2 (en) 1996-04-25 1996-04-25 Sensorless synchronous motor drive device

Country Status (1)

Country Link
JP (1) JP3741291B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6914408B2 (en) 2001-02-27 2005-07-05 Hitachi, Ltd. Motor control apparatus and electric vehicle using same
JP2006304412A (en) * 2005-04-18 2006-11-02 Fuji Electric Fa Components & Systems Co Ltd Driver for permanent magnet type synchronous motor
WO2007013291A1 (en) * 2005-07-27 2007-02-01 Kabushiki Kaisha Yaskawa Denki Inverter device
JP2009124812A (en) * 2007-11-13 2009-06-04 Panasonic Corp Motor driving device
JP2009232569A (en) * 2008-03-21 2009-10-08 Nsk Ltd Motor drive control device and electric power steering arrangement using the same
JP2011050202A (en) * 2009-08-28 2011-03-10 Mitsubishi Electric Corp Drive device of electric motor and air conditioner
JP2011069551A (en) * 2009-09-25 2011-04-07 Mitsubishi Electric Corp Air conditioner
JP2011147306A (en) * 2010-01-18 2011-07-28 Mitsubishi Electric Corp Electric motor control circuit, and air conditioner using the same
WO2012010087A1 (en) * 2010-07-22 2012-01-26 荣信电力电子股份有限公司 Current-control method for use in high voltage inverter
JP2012107859A (en) * 2012-02-14 2012-06-07 Mitsubishi Electric Corp Air conditioner
WO2015097734A1 (en) * 2013-12-24 2015-07-02 株式会社日立産機システム Power conversion device
JP2015133791A (en) * 2014-01-10 2015-07-23 ダイキン工業株式会社 Step-out detector and motor drive system
WO2018159274A1 (en) 2017-02-28 2018-09-07 株式会社日立産機システム Ac electric motor control device
US11635712B2 (en) 2020-10-06 2023-04-25 Canon Kabushiki Kaisha Motor control apparatus and image forming apparatus

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6914408B2 (en) 2001-02-27 2005-07-05 Hitachi, Ltd. Motor control apparatus and electric vehicle using same
JP2006304412A (en) * 2005-04-18 2006-11-02 Fuji Electric Fa Components & Systems Co Ltd Driver for permanent magnet type synchronous motor
WO2007013291A1 (en) * 2005-07-27 2007-02-01 Kabushiki Kaisha Yaskawa Denki Inverter device
US7843161B2 (en) 2005-07-27 2010-11-30 Kabushiki Kaisha Yaskawa Denki Inverter device
JP2009124812A (en) * 2007-11-13 2009-06-04 Panasonic Corp Motor driving device
JP2009232569A (en) * 2008-03-21 2009-10-08 Nsk Ltd Motor drive control device and electric power steering arrangement using the same
JP2011050202A (en) * 2009-08-28 2011-03-10 Mitsubishi Electric Corp Drive device of electric motor and air conditioner
JP2011069551A (en) * 2009-09-25 2011-04-07 Mitsubishi Electric Corp Air conditioner
JP2011147306A (en) * 2010-01-18 2011-07-28 Mitsubishi Electric Corp Electric motor control circuit, and air conditioner using the same
WO2012010087A1 (en) * 2010-07-22 2012-01-26 荣信电力电子股份有限公司 Current-control method for use in high voltage inverter
JP2012107859A (en) * 2012-02-14 2012-06-07 Mitsubishi Electric Corp Air conditioner
WO2015097734A1 (en) * 2013-12-24 2015-07-02 株式会社日立産機システム Power conversion device
JP2015133791A (en) * 2014-01-10 2015-07-23 ダイキン工業株式会社 Step-out detector and motor drive system
WO2018159274A1 (en) 2017-02-28 2018-09-07 株式会社日立産機システム Ac electric motor control device
US11273712B2 (en) 2017-02-28 2022-03-15 Hitachi Industrial Equipment Systems Co., Ltd. AC electric motor control device
US11635712B2 (en) 2020-10-06 2023-04-25 Canon Kabushiki Kaisha Motor control apparatus and image forming apparatus

Also Published As

Publication number Publication date
JP3741291B2 (en) 2006-02-01

Similar Documents

Publication Publication Date Title
JP3636340B2 (en) Power converter for AC rotating machine
JP4465129B2 (en) Brushless motor driving apparatus and driving method
EP0820140B1 (en) Single phase permanent magnet motor
JP4406552B2 (en) Electric motor control device
JP2007166695A (en) Control device of motor
JP3741291B2 (en) Sensorless synchronous motor drive device
TWI469499B (en) A method of detecting a rotation direction of an AC motor and a power conversion device using an AC motor
KR100774006B1 (en) Three phase bldc motor controller and control method thereof
JP2009077503A (en) Motor controller and controller for air conditioner
JP2004343862A (en) Motor controller
JP3731105B2 (en) Motor system, air conditioner equipped with the motor system, and motor starting method
US20230387838A1 (en) Method of controlling a brushless permanent-magnet motor
JP4590761B2 (en) Control device for permanent magnet type synchronous motor
JP5339164B2 (en) Electric motor drive system
JP4788603B2 (en) Inverter device
KR100218437B1 (en) Driving method of senseless blds motor
JP3807507B2 (en) Sensorless synchronous motor drive device
JP5055835B2 (en) Synchronous motor drive
JP4369500B2 (en) Rotating electrical machine equipment
JP2004328850A (en) Method of starting compressor motor of inverter refrigerator
JPH07308092A (en) Synchronous starting device for d.c. motor
JP3815584B2 (en) Sensorless synchronous motor drive device
WO2021200123A1 (en) Motor control device, motor system, and motor control method
JP2007174745A (en) Sensorless control method for brushless motor, and sensorless controller for brushless motor
JP4265395B2 (en) Inverter device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051103

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees