JPH09293609A - Extrusion technique of magnet roller in magnetic field and magnet roller - Google Patents

Extrusion technique of magnet roller in magnetic field and magnet roller

Info

Publication number
JPH09293609A
JPH09293609A JP10592896A JP10592896A JPH09293609A JP H09293609 A JPH09293609 A JP H09293609A JP 10592896 A JP10592896 A JP 10592896A JP 10592896 A JP10592896 A JP 10592896A JP H09293609 A JPH09293609 A JP H09293609A
Authority
JP
Japan
Prior art keywords
magnetic field
ferrite
molding
molded
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10592896A
Other languages
Japanese (ja)
Inventor
Taisuke Tokuwaki
泰輔 徳脇
Takeshi Imamura
剛 今村
Kyoichi Ashikawa
恭一 芦川
Makoto Nakamura
誠 中村
Kyota Hizuka
恭太 肥塚
Kenji Narita
研二 成田
Kenichi Ishiguro
顕一 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP10592896A priority Critical patent/JPH09293609A/en
Publication of JPH09293609A publication Critical patent/JPH09293609A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Brush Developing In Electrophotography (AREA)
  • Dry Development In Electrophotography (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the high magnetic force of a premolded item even if the manufacturing time of the molded item is shortened while the extrusion speed of an extruder is increased by a method wherein a resin material with a ferrite mixed therein is further molded on the outer periphery of the molded item, which is molded with a material with a ferrite mixed therein on a core axis and is orientated, making the position in the magnetic field orientation of the molded item coincide with the position in the magnetic field orientation of the outer peripheral layer of the molded item. SOLUTION: A core axis 10 is extruded from a crosshead metal mold, a resin material containing a ferrite is made to melt and is extruded by an extrucler and in an extrusion metal mold, the core axis 10 is put in a state that the molten material is applied on the periphery of the core axis 10 and the extrusion speed of the extruder and the core axis extrusion speed from the crosshead metal mold are adjusted to each other to extrude the core axis. Thereby, a molded item in a molten state is cooled and is formed into a press molded item 125. Then, a resin material mixed in with the same ferrire as the above ferrite is again applied and molded on the outer periphery of the molded item 125. In this case, for making the position in the magnetic field orientation of the molded item 125 coincide with the position in the magnetic field orientation of an outer peripheral layer 101, the shape of the molded item 125 is formed into a square and a triangular notch 121 for positioning the molded item 125 is provided in the square shape.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は押出し成形及び磁場配向
着磁によるプラスチックマグネットの磁場中押出し工
法、及びそのマグネットロ−ラに関する技術分野であ
り、特に複写機内現像装置中の現像ロ−ラ、トナ−補給
ロ−ラや感光体上の残トナ−を回収するクリ−ニングロ
−ラに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic field extrusion method of a plastic magnet by extrusion molding and magnetic field orientation and magnetization, and a technical field relating to the magnet roller, and particularly to a developing roller in a developing device in a copying machine, The present invention relates to a toner replenishing roller and a cleaning roller for collecting toner remaining on the photoconductor.

【0002】[0002]

【従来の技術】従来よりプラスチックマグネットローラ
の製造方法には、押出成形が広く用いられている。その
中でも、芯軸にプラスチックマグネット材料を被覆した
状態で押出す一体型成形工法が主に用いられている。
2. Description of the Related Art Conventionally, extrusion molding has been widely used as a method for manufacturing a plastic magnet roller. Among them, the integral molding method in which the core shaft is extruded with the plastic magnet material coated is mainly used.

【0003】成形方法としては、図1、2に示すような
押出し機1において、材料投入ホッパ−2からプラスチ
ックマグネットの材料となる樹脂と磁性材料であるフェ
ライトとの混合材料5を加熱、溶融してスクリュで成形
形状の型となる押出し金型7へ押し出す。
As a molding method, in an extruder 1 as shown in FIGS. 1 and 2, a mixed material 5 of resin as a material of a plastic magnet and ferrite as a magnetic material is heated and melted from a material feeding hopper-2. The screw is pushed out to the extrusion die 7 which becomes the mold of the shape.

【0004】また、芯軸10は、後方から芯軸を挿入す
る入口11を持ち、芯軸の位置が中心となるように位置
合わせされたガイド12、更には押出し機1で溶融した
混合材料5が押出し金型7から逆流しないように芯軸と
の隙間寸法を規定した出口13を持つクロスヘッド金型
14を用いて押出し金型7内に芯軸10を挿入し、図3
のように芯軸10に混合材料5を被覆した状態にする。
Further, the core shaft 10 has an inlet 11 for inserting the core shaft from the rear, a guide 12 aligned so that the position of the core shaft is the center, and further, a mixed material 5 melted by the extruder 1. The core shaft 10 is inserted into the extrusion mold 7 by using a crosshead mold 14 having an outlet 13 in which the clearance dimension with the core shaft is regulated so as not to flow backward from the extrusion mold 7.
As described above, the mixed material 5 is coated on the core shaft 10.

【0005】混合材料5の押し出す速度と芯軸10を押
し込む速度は一致させ、図3に示すように押出し金型7
内で徐々に溶融された状態で混合材料5が芯軸10に被
覆し、溶融状態の成形品20が作られていく。
The pushing speed of the mixed material 5 and the pushing speed of the core shaft 10 are made to coincide with each other, and as shown in FIG.
The mixed material 5 covers the core shaft 10 in a gradually melted state, and a molded product 20 in a molten state is produced.

【0006】次に、溶融状態の成形品20を、図2中押
出し装置の磁場配向コイル25で発生させた磁力を磁性
体であるヨ−ク26を用いて配向金型27に流れ込む溶
融状態の成形品中に図4のように磁場33を作用させ
る。
Next, in the molten state, the magnetic force generated by the magnetic field orientation coil 25 of the extruder in FIG. 2 is used to flow the molten magnetic product 20 into the orientation mold 27 using the yoke 26 which is a magnetic material. A magnetic field 33 is applied to the molded product as shown in FIG.

【0007】配向金型27には、図5に示すように磁場
を発生させる磁場コイル25がN極、S極がそれぞれ2
極づつに4極配向で90°ごと、配向金型27を囲むよ
うに構成されており、隣合う磁場コイル25は対の磁極
になるように配置されている。
In the orienting mold 27, as shown in FIG. 5, a magnetic field coil 25 for generating a magnetic field has two north poles and two south poles.
The magnetic field coils 25 are arranged so as to surround the orienting die 27 by 90 ° in quadrupole orientation for each pole, and adjacent magnetic field coils 25 are arranged so as to form a pair of magnetic poles.

【0008】磁場配向コイルで発生した磁場は、図5に
示すように配向金型27に組み込まれた磁性材料のヨ−
ク26を伝播してN極30から隣に位置するS極31へ
と流れるような磁力線ル−プ33をそれぞれ描いてお
り、金型成形部34にその磁場ル−プ33が作用してい
る。配向金型27は磁性体であるヨ−ク26と非磁性体
35との組合せになっており、配向コイル25で発生し
た磁場33はヨ−ク部のみを伝播するためヨ−クは、位
置や大きさを変えることにより、磁場の大きさ、方向を
変えることができることから、磁場の制御として用いら
れている。
The magnetic field generated by the magnetic field orientation coil is generated by the magnetic material of the magnetic material incorporated in the orientation die 27 as shown in FIG.
The magnetic field loops 33 that propagate through the magnet 26 and flow from the N pole 30 to the adjacent S pole 31 are drawn, and the magnetic field loops 33 act on the mold forming portion 34. . The orientation die 27 is a combination of the yoke 26, which is a magnetic material, and the non-magnetic material 35. Since the magnetic field 33 generated by the orientation coil 25 propagates only in the yoke portion, the yoke is positioned. It is used as a magnetic field control because the size and direction of the magnetic field can be changed by changing the size of the magnetic field.

【0009】これより、図6に示される溶融された混合
材料中で特に磁力制御されないで存在していたフェライ
トが図7に示されるように磁場を受け、磁場中の磁力線
33に対して、フェライトは垂直面を形成してN極に対
してはS極を、S極に対してはN極面を向けて配列する
ことになる。このフェライト面の配列を配向といい、こ
の配向状態により溶融状態の成形品20が初めて磁力を
持つこととなる。
As a result, the ferrite, which was present in the molten mixed material shown in FIG. 6 without controlling the magnetic force, was subjected to a magnetic field as shown in FIG. Forms a vertical surface and is arranged with the south pole facing the north pole and the north pole surface facing the south pole. This arrangement of ferrite surfaces is called orientation, and the molten state of the molded article 20 has the magnetic force for the first time due to this orientation.

【0010】そして、配向された溶融状態の成形品は、
図8に示される様に配向金型27から押し出され、端部
の切り出しを行い、冷却されることにより混合材料5が
固化し、図9,10に示すようなマグネットロ−ラ成形
品が完成する。
Then, the oriented molten product is
As shown in FIG. 8, the mixed material 5 is extruded from the orientation mold 27, the end portion is cut out, and the mixture material 5 is solidified by cooling to complete the magnet roller molded product as shown in FIGS. To do.

【0011】[0011]

【発明が解決しようとする課題】一般的な押出成形で
は、金型内の流路の長手方向に対する垂直断面内、すな
わち流路断面での流れの様子は、初期では、図11
(a)に示すように流路断面内において流速差がなく、
流路断面内において一様に流れていても、徐々に図11
(b)に示すように押し出された混合材料5の流速が中
心部分50(流路の長手方向に対する垂直断面の中心部
分)が速く、流路壁面51に向かうほど遅くなるという
ように流路断面で流速に差が生じる、という現象が生じ
る。
In general extrusion molding, the initial state of the flow in a cross section perpendicular to the longitudinal direction of the flow path in the mold, that is, in the flow path cross section is as shown in FIG.
As shown in (a), there is no difference in flow velocity in the flow path cross section,
Even if it uniformly flows in the cross section of the flow path, the
As shown in (b), the flow velocity of the extruded mixed material 5 is high in the central portion 50 (the central portion of the vertical cross section with respect to the longitudinal direction of the flow channel), and becomes slower toward the flow channel wall surface 51. There is a phenomenon that there is a difference in the flow velocity.

【0012】これは溶融状態の樹脂材料20と流路壁面
51との間に摩擦が生じ、その摩擦によって、流路壁面
51近傍では流速が遅くなり、中央部部分50では流路
壁面との摩擦の影響が最も少なくなるので、流速の減少
が生じない為である。
This is because friction is generated between the molten resin material 20 and the flow passage wall surface 51, and the flow velocity becomes slow in the vicinity of the flow passage wall surface 51 due to the friction, and friction with the flow passage wall surface in the central portion 50. This is because the influence of is minimized and the flow velocity does not decrease.

【0013】この現象は、材料の粘性が低い程、押出速
度が速い程、金型温度と材料温度の差が大きい程顕著に
現れる。
This phenomenon becomes more remarkable as the viscosity of the material is lower, the extrusion speed is faster, and the difference between the mold temperature and the material temperature is larger.

【0014】このような場合、図11(c)のように金
型から押し出されるときに流速差で内側の中心部分50
の溶融材料が早く押し出され、外側の流路壁管部分の溶
融材料と長手方向に見て2分割された状態になる可能性
がある。
In such a case, as shown in FIG. 11 (c), the inner central portion 50 due to the flow velocity difference when extruded from the mold.
There is a possibility that the molten material of (3) will be extruded quickly and will be divided into two parts in the longitudinal direction with the molten material of the outer flow path wall tube portion.

【0015】このように、流路断面内においても流れの
中心部分50が速く、流路壁面部分51が遅く流れるの
で、その流速の差により圧力は中心部分50が低く、流
路壁面部分51が高くなるような変動が生じ、図11
(b)のように流れが傾斜して乱れることになる。
As described above, the center portion 50 of the flow is fast and the flow passage wall surface portion 51 is slow even in the cross section of the flow passage, so that the pressure is low in the center portion 50 and the flow passage wall surface portion 51 is As a result, a higher fluctuation occurs and
As shown in (b), the flow is inclined and disturbed.

【0016】これにより、溶融材料20の流れは、今ま
で進行方向への力を押出し力により受けて直進していた
のに加え、流路断面の中心方向への力も受けることによ
り流れが傾斜したり、渦が発生したりして流れが乱れる
ことになる。
As a result, the flow of the molten material 20 has been straightened by receiving the force in the traveling direction by the pushing force until now, and the flow is inclined by receiving the force in the central direction of the flow passage cross section. Or, a vortex is generated and the flow is disturbed.

【0017】磁場配向金型27で配向されるフェライト
は、溶融材料20が進行方向のみ、つまり磁場に対して
垂直な力のみ作用している場合には、流れの影響を受け
ずに配向が整うが、流路断面内の力も作用し、流れが曲
がったり、渦を発生することにより、その流れの傾斜に
沿って配向が傾いた状態になるフェライトや、その流れ
の乱れによって配向が乱れた状態になるフェライトが見
られるようになる。
The ferrite oriented by the magnetic field orientation mold 27 is oriented without being affected by the flow when the molten material 20 acts only in the traveling direction, that is, only in the force perpendicular to the magnetic field. However, the force in the cross section of the flow channel also acts to bend the flow or generate vortices, which causes the orientation to be inclined along the inclination of the flow, and the state where the orientation is disturbed by the turbulence of the flow. You can see the ferrite.

【0018】これにより、溶融状態の成形品の磁力波形
が変化、特に磁力の低下が生じることとなる。
As a result, the magnetic force waveform of the molten molded product changes, and in particular, the magnetic force is reduced.

【0019】このように押出し成形部で作成されたマグ
ネットロ−ラでは流速の乱れが磁場配向金型で配向され
たフェライト面を乱す為に、必要な磁力が得られなくな
ってしまう。
In the magnet roller thus formed in the extrusion molding section, the disturbance of the flow velocity disturbs the ferrite surface oriented by the magnetic field orientation die, so that the necessary magnetic force cannot be obtained.

【0020】また、流速の乱れを生じさせないように成
形部の肉厚を薄くすれば、流れの中心部分50も壁面部
分51も溶融材料20と流路壁面との摩擦の影響を強く
受ける為、流速差は小さくなりフェライト面の乱れは少
なくなり、配向が整う。しかし、必要なフェライトの絶
対量のが少なくなる為、必要な磁力、特に高磁力が必要
な場合、磁力が得られなくなり適用できない事もある。
Further, if the wall thickness of the molding portion is made thin so as not to disturb the flow velocity, both the central portion 50 and the wall portion 51 of the flow are strongly affected by the friction between the molten material 20 and the wall surface of the flow path. The flow velocity difference is small, the disorder of the ferrite surface is small, and the orientation is aligned. However, since the absolute amount of necessary ferrite is reduced, when a necessary magnetic force, especially a high magnetic force, is required, the magnetic force cannot be obtained and it may not be applicable.

【0021】これらより、特に厚肉パイプのプラスチッ
クマグネットローラの成形は困難であり、これらの問題
点を解決するためにしばしば押出速度を遅くする必要が
生じ、製造タクトが長くなる不具合が生じてしまう。
From the above, it is difficult to form a plastic magnet roller of a thick pipe in particular, and it is often necessary to slow down the extrusion speed in order to solve these problems, which causes a problem that the manufacturing tact becomes long. .

【0022】そこで、本発明の解決する課題は、プラス
チックマグネットローラ成形時における成形層の外側す
なわち流路壁面と中心部分の樹脂の流速差を小さくし、
配向の乱れを減少させ、高磁力化を実現することのでき
る押出金型構造を提供する事であり、これにより、押出
し速度を速くしつつ、製造タクトを短くしても適正な配
向が得られ、かつ高磁力が得られる、特に厚肉のプラス
チックマグネットロ−ラの磁場中押出し工法を提供する
ことであり、更にその製造方法によって、得られる適正
な配向で、高磁力なプラスチックマグネットロ−ラをも
提供することである。
Therefore, the problem to be solved by the present invention is to reduce the flow velocity difference between the resin on the outer side of the molding layer, that is, the flow path wall surface and the central portion at the time of molding the plastic magnet roller,
It is to provide an extrusion mold structure that can reduce the disorder of the orientation and realize a high magnetic force, which makes it possible to obtain an appropriate orientation even if the manufacturing tact is shortened while increasing the extrusion speed. And a magnetic field extrusion method for a particularly thick plastic magnet roller capable of obtaining a high magnetic force, and a plastic magnet roller having a high magnetic force with a proper orientation obtained by the manufacturing method. Is also to be provided.

【0023】[0023]

【課題を解決するための手段】本発明は、芯軸周辺にフ
ェライトが混入された樹脂材料を成形し、磁場配向ヨ−
ク、磁場配向金型を用いて材料中のフェライトを配向さ
せて作成するプラスチックマグネットローラの磁場中押
出し成形工法において、第一段階では、プレ成形品とし
て、押出し成形により、芯軸上にフェライトを混入した
材料を成形、配向させることによりプラスチックマグネ
ットロ−ラを作成し、第二段階として、そのプレ成形品
の外周に更に、押出し成形によりフェライトを混入した
樹脂材料を成形し、その際にプレ成形品の磁場配向と外
周層の磁場配向の位置を一致させるように磁場配向を行
うことを特徴とするマグネットロ−ラの磁場中押出し成
形工法を行うことにより、上記課題を達成することがで
きる。
According to the present invention, a magnetic field orientation yaw is formed by molding a resin material in which ferrite is mixed around a core shaft.
In the magnetic field extrusion molding method of a plastic magnet roller that is created by orienting ferrite in the material using a magnetic field orientation mold, in the first step, as a pre-formed product, ferrite is placed on the core shaft by extrusion molding. A plastic magnet roller is created by molding and orienting the mixed material, and as the second step, a resin material mixed with ferrite is molded by extrusion molding on the outer periphery of the pre-molded product. The above-mentioned problems can be achieved by performing the magnetic field extrusion molding method of the magnet roller characterized by performing the magnetic field orientation so that the magnetic field orientation of the molded product and the magnetic field orientation of the outer peripheral layer are aligned. .

【0024】また、ロ−ラの磁力は、表面つまり外周部
分のフェライト配向が大きく影響することより、外周層
に飽和磁束密度の高いフェライト粉を使用する。また、
外周層をプレ成形層より薄くして、より外周層の流速差
をなくす方法が挙げられる。
Further, since the magnetic force of the roller is largely influenced by the ferrite orientation on the surface, that is, the outer peripheral portion, ferrite powder having a high saturation magnetic flux density is used for the outer peripheral layer. Also,
There is a method of making the outer peripheral layer thinner than the pre-molded layer so as to eliminate the difference in the flow velocity of the outer peripheral layer.

【0025】[0025]

【作用】まず流路断面内の流速は中心部分で速く、流路
壁面部分になるに従い遅くなることについて、図12に
示すように流路壁面部分から中心部分へと微小要素70
〜75に分割した管内を流れる流体により説明する。
First, the flow velocity in the cross section of the flow channel is high in the central portion and becomes slower toward the wall surface portion of the flow channel. As shown in FIG.
A description will be given with the fluid flowing in the pipe divided into ~ 75.

【0026】流体に粘性がなく、流路壁面と流体との接
触部分にも摩擦が生じない場合、図12のように流体
は、流路断面内において速度差がなく、各流体要素は、
押出し方向に進む。
When the fluid has no viscosity and friction does not occur in the contact portion between the wall surface of the flow path and the fluid, the fluid has no velocity difference in the cross section of the flow path, and each fluid element is
Proceed in the extrusion direction.

【0027】粘性のある流体が管内を流れる時、図13
に示すように、その管壁面79と1つ内側の流体微小要
素70の接触部で速度差により摩擦が生じ、その接触部
層間で流体の進行方向と逆方向の力、すなわち摩擦力8
0が働く。
When a viscous fluid flows in the pipe, FIG.
As shown in FIG. 7, friction is generated at the contact portion between the pipe wall surface 79 and the fluid microelement 70 located inside by one due to the speed difference, and the force in the direction opposite to the fluid traveling direction between the contact portion layers, that is, the friction force 8
0 works.

【0028】この摩擦力80により、流体要素70の速
度は減少する。次に流路壁面に接している流体微小要素
70の速度が減速することによって、その内側に位置す
る流体微小要素71との層間においても速度差が生じ、
同じように摩擦力81が働き、この流体要素71も減速
する。ただし、流路壁面とその内側の流体微小要素70
との間の速度差よりも流体微小要素70と71の速度差
の方が小さいため、摩擦力81は摩擦力80より小さく
なり、内側を流れる流体要素の方が外側を流れる流体微
小要素よりも速度が速くなる。
The frictional force 80 reduces the velocity of the fluid element 70. Next, the speed of the fluid microelement 70 in contact with the wall surface of the flow path is reduced, so that a speed difference is generated between the fluid microelement 71 and the fluid microelement 71 located inside thereof.
In the same way, the frictional force 81 acts and the fluid element 71 also decelerates. However, the flow path wall surface and the fluid microelement 70 inside thereof
Since the speed difference between the fluid microelements 70 and 71 is smaller than the speed difference between and, the frictional force 81 is smaller than the frictional force 80, and the fluid element flowing inside is smaller than the fluid microelement flowing outside. Speed up.

【0029】このような現象が流路壁面部分から中心部
分に向かって連続的に生じており、なおかつ中心に向か
うほど隣合う流体要素間での摩擦力84が小さくなる
為、速度の減少は小さくなる。よって、中心を流れる流
体要素74と流路壁面近傍を流れる流体要素70では、
流速の差が生じることになる。また、このような流速の
差は、流路断面が大きくなるに従い、増大するようにな
る。
Such a phenomenon continuously occurs from the wall surface portion of the flow passage toward the central portion, and the frictional force 84 between the adjacent fluid elements becomes smaller toward the center, so that the decrease in velocity is small. Become. Therefore, in the fluid element 74 flowing in the center and the fluid element 70 flowing in the vicinity of the flow path wall surface,
There will be a difference in flow velocity. In addition, such a difference in flow velocity increases as the cross section of the flow path increases.

【0030】次に同じ初期流速で、流管の径を半分にし
て流速差を見てみる。図14に示すように流れの中心部
分の流体要素94も壁管に近くなり、隣合う流体要素9
3,94との摩擦の影響を強く受け、流速がより減少す
るため、流管壁近傍の流体要素90との流速差が少なく
なることがわかる。
Next, with the same initial flow velocity, the diameter of the flow tube is halved and the flow velocity difference is examined. As shown in FIG. 14, the fluid element 94 in the central portion of the flow is also close to the wall pipe, and the adjacent fluid element 9
It can be seen that the flow velocity is further affected by the friction with 3, 94 and the flow velocity is further reduced, and thus the flow velocity difference with the fluid element 90 near the flow tube wall is reduced.

【0031】よって、成形層を薄くして、プレ成形とそ
の外周成形の2回に分けて成形した方が流速差がなくな
り、フェライトの配向も乱れずにロ−ラの磁力を得るこ
とができると考えられる。
Therefore, it is possible to obtain the magnetic force of the roller without disturbing the orientation of the ferrite when the forming layer is thinned and the forming is performed twice, that is, the preforming and the outer peripheral forming are divided. it is conceivable that.

【0032】次にプレ成形品と外周層との配向位置を一
致させることについて説明する。プレ成形品は、材料中
のフェライトが図5に示すように4極の磁場コイル25
より発生する磁力線33により配向され、磁化される。
図15にプレ成形層99の磁力線100を示す。
Next, description will be made on matching the orientation positions of the pre-molded product and the outer peripheral layer. In the pre-molded product, the ferrite in the material is a 4-pole magnetic field coil 25 as shown in FIG.
It is oriented and magnetized by the magnetic field lines 33 that are generated.
FIG. 15 shows the magnetic force lines 100 of the pre-molded layer 99.

【0033】外周層101を成形する際に、図16に示
すようにプレ成形品の磁力線100と外周層を配向させ
る磁場配向コイル25の磁力線33の位置を一致させず
に成形、磁場配向を行うと外周層のフェライトの配向が
乱れ、磁力線の乱れや磁力がNとSで打消合ったりし
て、磁力の低下が生じることになる。
When the outer peripheral layer 101 is molded, the magnetic field lines 100 of the pre-molded product and the magnetic field lines 33 of the magnetic field orientation coil 25 for orienting the outer layer are not aligned with each other as shown in FIG. As a result, the orientation of the ferrite in the outer peripheral layer is disturbed, the magnetic field lines are disturbed, and the magnetic forces cancel each other out between N and S, resulting in a decrease in magnetic force.

【0034】よって、本請求項に示すように、図17に
示すようにプレ成形99の磁力線100と外周層を配向
させる磁場配向コイル25の磁力線33の位置を一致さ
せることにより、配向コイル25からの磁力33とプレ
成形層99からの磁力100が相互作用してロ−ラに発
生する磁力102は効果的に高磁力に着磁させることが
でき、また、ロ−ラの内部まで配向、着磁することがで
きるのでより安定した磁力波形を得ることができる。
Therefore, as shown in FIG. 17, by aligning the magnetic force lines 100 of the pre-molding 99 with the magnetic force lines 33 of the magnetic field orientation coil 25 for orienting the outer peripheral layer as shown in FIG. The magnetic force 33 generated in the roller due to the interaction between the magnetic force 33 and the magnetic force 100 from the pre-molding layer 99 can be effectively magnetized to a high magnetic force. Since it can be magnetized, a more stable magnetic force waveform can be obtained.

【0035】以上により、本発明の請求項1に記載され
るマグネットロ−ラの磁場中押出し工法は、フェライト
の配向が乱れないように、成形層を複数に分割してこれ
を防ぎ、なおかつ各成形層の配向位置を一致させること
により課題を達成することができる。
As described above, according to the method of extruding the magnet roller in the magnetic field described in claim 1 of the present invention, the forming layer is divided into a plurality of layers so as to prevent the orientation of the ferrite from being disturbed. The object can be achieved by matching the orientation positions of the molding layers.

【0036】更に、内側のプレ成形品の外周に配向位置
を一致させて再びフェライトの混入した樹脂材料を被覆
して押し出すマグネットロ−ラ成形において、ロ−ラの
磁力は外周層101のフェライトの配向がプレ成形層9
9のフェライト配向よりも影響する。
Further, in the magnet roller molding in which the orientation position is aligned with the outer periphery of the inner pre-molded product and the ferrite-containing resin material is coated again and extruded, the magnetic force of the roller is the magnetic force of the ferrite of the outer peripheral layer 101. Pre-molded layer 9 orientation
It is more affected than the ferrite orientation of No. 9.

【0037】これは、1つはマグネットロ−ラの磁力性
能は、ロ−ラ表面の磁力の大きさで判断することにより
表面に近い部分のフェライトの配向の方が、より影響を
与えること、2つ目はプレ成形層とその外周層の厚さを
同じにした場合、フェライトを含む材料の容量が外周層
の方が多くなるため、内側のプレ成形に比べて磁力が高
くなる為である。
One of the reasons for this is that the magnetic performance of the magnet roller is judged by the magnitude of the magnetic force on the roller surface, and the orientation of the ferrite near the surface has a greater effect. The second reason is that if the thickness of the pre-molded layer and that of its outer peripheral layer are the same, the capacity of the material containing ferrite will be larger in the outer peripheral layer, and the magnetic force will be higher than in the inner pre-molded layer. .

【0038】これより、外周層とプレ成形層の層の厚さ
を同一にした場合、請求項2に示されるように外周層1
01のフェライトの飽和磁束密度を内側のプレ成形層9
9の飽和磁束密度より大きくすることにより、より効果
的に高磁力が得られる。
Therefore, when the outer peripheral layer and the pre-molding layer have the same thickness, the outer peripheral layer 1 has the same thickness.
01 of the saturation magnetic flux density of the inner pre-molding layer 9
By setting the saturation magnetic flux density higher than 9, the high magnetic force can be obtained more effectively.

【0039】更に、外周層の厚さをプレ成形層の厚さよ
りも薄くすることにより、外周層断面内でえの断面内の
流速差を少なくして、フェライトの配向の乱れを抑え、
より効率的に高磁力を得ることができる。また、効率的
に高磁力を得ることができれば、所望の磁力や磁力波形
になるようにマグネットロ−ラ内のフェライト配向を制
御することが容易になる。
Further, by making the thickness of the outer peripheral layer smaller than the thickness of the pre-molding layer, the flow velocity difference in the cross section of the outer peripheral layer is reduced, and the disorder of ferrite orientation is suppressed.
High magnetic force can be obtained more efficiently. Further, if a high magnetic force can be obtained efficiently, it becomes easy to control the ferrite orientation in the magnet roller so as to obtain a desired magnetic force or a magnetic force waveform.

【0040】[0040]

【実施例】プレ成形において、押出し装置の構成は図
1,2に示す通りであり、本発明や従来で使用されてい
る部材で、既に説明されているものは説明を割合する。
プレ成形の断面形状120を図18に示すように一辺1
8mmの正方形の一角に三角形の切欠き121が入った
形とする為、押出し金型7、磁場配向金型27もその形
状に習うようになっている。なお、プレ成形層と外周層
との厚みの比は、約1:1となっている。
EXAMPLE In the pre-molding, the structure of the extruder is as shown in FIGS. 1 and 2, and the members already used in the present invention and those which have been already explained will be explained in proportion.
As shown in FIG. 18, the cross-sectional shape 120 of the pre-molding is one side 1
Since the triangular notch 121 is formed in one corner of the 8 mm square, the extrusion die 7 and the magnetic field orientation die 27 are adapted to the shape. The thickness ratio between the pre-molded layer and the outer peripheral layer is about 1: 1.

【0041】また、芯軸10は直径6mmのものを用
い、クロスヘッド金型14の入り口11、出口ガイド1
2の寸法もそれに従っている。また、材料は、樹脂材料
にポリプロピレン、フェライトにストロンチウムフェラ
イトを用い、添加剤に滑剤が処方されている。また、金
型は材料の溶融温度近くに加熱されており、金型内で材
料が冷却されて固化しないようにしている。まず、芯軸
10をクロスヘッド金型14より、材料を押出し機1で
溶融させて押出し、押出し金型7において、芯軸の周囲
に溶融した材料20を被覆した状態にして、押出し機1
の押出し速度とクロスヘッド金型14からの芯軸の押出
し速度を調整して押し出していく。
The core shaft 10 having a diameter of 6 mm is used, and the inlet 11 and the outlet guide 1 of the crosshead mold 14 are used.
The size of 2 follows it. As the material, polypropylene is used as the resin material, strontium ferrite is used as the ferrite, and a lubricant is prescribed as the additive. Further, the mold is heated to near the melting temperature of the material, and the material is cooled in the mold so as not to solidify. First, the core shaft 10 is melted and extruded by the extruder 1 from the crosshead mold 14, and the melted material 20 is coated around the core shaft in the extrusion mold 7, and the extruder 1
The extrusion speed and the extrusion speed of the core shaft from the crosshead mold 14 are adjusted and extruded.

【0042】次に、図3に示すように押出し金型7にお
いて溶融材料が外形寸法に成形されて、磁場配向金型2
7に進んでいく。磁場配向金型27では、外側に磁場を
発生させる配向コイル25を、その磁場を成形部材料に
作用させる磁性材料であるヨ−ク26が図5のように配
置されている。配向位置の詳細や配向の仕方については
前述した通りである。
Next, as shown in FIG. 3, the molten material is molded into the external dimensions in the extrusion die 7, and the magnetic field orientation die 2 is formed.
Go to 7. In the magnetic field orientation mold 27, an orientation coil 25 for generating a magnetic field on the outside and a yoke 26, which is a magnetic material for causing the magnetic field to act on the molding material, are arranged as shown in FIG. The details of the alignment position and the alignment method are as described above.

【0043】そこに、フェライトを含有した樹脂材料が
流れることにより、フェライトの面が、磁力線33に対
して垂直に配向される。その様子を図4、6、7に示
す。最後に溶融状態の成形品20は、図5のように金型
から押し出されることにより冷却されて、図19のよう
なプレ成形品125が完成する。
By flowing the resin material containing ferrite therein, the surface of the ferrite is oriented perpendicular to the magnetic force lines 33. This is shown in FIGS. Finally, the melted molded product 20 is cooled by being extruded from the mold as shown in FIG. 5, and the pre-molded product 125 as shown in FIG. 19 is completed.

【0044】第2段階として、プレ成形品125の外周
に再び同一のフェライトが混入した樹脂材料5を被覆、
成形する。押出し装置としては、プレ成形と同じである
が、外周層101は、直径30mmのものとする為に、
押出し金型7、磁場配向金型27の内径寸法は、直径3
0mmの円径とする。クロスヘッド金型14の入り口1
1、出口ガイド12の内径は、プレ成形品が挿入される
ため、プレ成形品の断面寸法120とする。
In the second step, the resin material 5 containing the same ferrite is again coated on the outer periphery of the pre-molded product 125,
Molding. The extrusion apparatus is the same as the pre-molding, but the outer peripheral layer 101 has a diameter of 30 mm.
The inner diameter of the extrusion die 7 and the magnetic field orientation die 27 is 3
The diameter of the circle is 0 mm. Crosshead mold 14 entrance 1
1. The inner diameter of the outlet guide 12 is set to the cross-sectional dimension 120 of the pre-molded product because the pre-molded product is inserted.

【0045】また、外周層101を成形する際、図17
のようにプレ成形品の磁場配向位置100と外周層10
1の磁場配向位置102を一致させる必要があるため、
プレ成形品125の形状を正方形にして、更に位置決め
のために三角形の切り欠け121を設けた。
Further, when molding the outer peripheral layer 101, as shown in FIG.
As shown in FIG.
Since it is necessary to match the magnetic field orientation positions 102 of 1,
The shape of the pre-molded product 125 was square, and triangular notches 121 were provided for positioning.

【0046】このように外周層101の成形は、プレ成
形品125を芯軸にして、プレ成形と同じ手順で成形を
行う。磁場配向金型では、図17,20のように磁場配
向され、金型から押し出されることにより、冷却されて
図21に示す完成品となる。図22に一括成形した場合
の磁場配向金型内での流速差130を示す。また、図2
3にプレ成形と外周層成形による流速差131を示す。
これより、材料層を2回に分けて成形することにより、
中心部分と管壁近傍部分で流速差131が良くなり、流
れの乱れがなくなり、流れが整ったことによりフェライ
トの磁場配向も整ったまま押し出され、また、成形品の
外側から内側まで配向がされているため、結果的に磁力
も高く、安定した磁力波形を持つ成形品ができる。
As described above, the outer peripheral layer 101 is molded by the same procedure as the pre-molding with the pre-molded product 125 as the core. The magnetic field orientation mold is magnetically oriented as shown in FIGS. 17 and 20, and is extruded from the mold to be cooled to be a finished product shown in FIG. FIG. 22 shows a flow velocity difference 130 in the magnetic field orientation mold in the case of collective molding. FIG.
3 shows a flow velocity difference 131 due to preforming and outer peripheral layer forming.
From this, by molding the material layer in two steps,
The difference in flow velocity 131 between the central part and the part near the tube wall is improved, the flow is turbulent, and the magnetic field orientation of ferrite is extruded with the flow being adjusted, and it is also oriented from the outside to the inside of the molded product. As a result, the magnetic force is high and a molded product having a stable magnetic force waveform can be obtained.

【0047】(実施例2)図24に示すようにプレ成形
品125の断面を直径18mmの円形にして、外周成形
の際に配向の位置決めとなるように左片側に平面切り欠
け135を施した。プレ成形層と外周層の厚みの比率は
1:1の関係になっている。その他、成形の装置、手順
は、実施例1と同じであるが、実施例2ではプレ成形1
25と外周成形の形状が相似形であるために、溶融材料
の樹脂の流れが断面内すべてにおいて一様となり、流速
差132も良くなり、より効果的に、容易に配向するこ
とができる。
(Embodiment 2) As shown in FIG. 24, a cross section of a pre-molded product 125 was formed into a circle having a diameter of 18 mm, and a flat surface notch 135 was formed on one left side so as to be oriented during outer peripheral molding. . The thickness ratio between the pre-molded layer and the outer peripheral layer is 1: 1. Other than that, the molding apparatus and procedure are the same as in Example 1, but in Example 2, pre-molding 1
Since the shape of the outer peripheral molding is similar to that of No. 25, the resin flow of the molten material is uniform in the entire cross section, the flow velocity difference 132 is improved, and the orientation can be performed more effectively and easily.

【0048】(実施例3)マグネットロ−ラで必要とな
る磁力、または磁力波形は、ロ−ラ表面に発生する磁力
であるため、ロ−ラ内部のフェライトの配向より、外側
のフェライトの配向による磁力の方が影響するため重要
である。
(Embodiment 3) Since the magnetic force or the magnetic force waveform required for the magnet roller is the magnetic force generated on the surface of the roller, the orientation of the ferrite on the outside of the orientation of the ferrite on the inside of the roller It is important because the magnetic force due to influences.

【0049】よって、本実施例では、外周層の磁力を向
上させるために、外周層101に混入させるフェライト
を飽和磁束密度の高い、希土類磁石にして成形する。プ
レ成形層のストロンチウムフェライトの飽和磁束密度
4.5Kガウスであり、希土類磁石の飽和磁束密度が1
0Kガウスであることより、ロ−ラも高磁力が得られ、
また、小さい磁場で効率的に配向を行うことが可能にな
る。
Therefore, in this embodiment, in order to improve the magnetic force of the outer peripheral layer, the ferrite mixed in the outer peripheral layer 101 is formed into a rare earth magnet having a high saturation magnetic flux density. The strontium ferrite of the pre-molded layer has a saturation magnetic flux density of 4.5 K gauss and the rare earth magnet has a saturation magnetic flux density of 1
Since it is 0K gauss, the roller also has high magnetic force,
Further, it becomes possible to perform the alignment efficiently with a small magnetic field.

【0050】(実施例4)外周層のフェライトの磁場配
向を向上させるために、外周層101の厚さをプレ成形
層99の厚さよりも薄くして、より外周層101の流速
差を小さくした例である。
(Embodiment 4) In order to improve the magnetic field orientation of ferrite in the outer peripheral layer, the thickness of the outer peripheral layer 101 is made smaller than that of the pre-molding layer 99 to further reduce the flow velocity difference in the outer peripheral layer 101. Here is an example.

【0051】外周層の厚みをとプレ成形層の厚みの比を
1:3とするため、図22に示すプレ成形品125の直
径を24mmとしてプレ成形層99の厚みを9mmと
し、外周層101の厚みを3mmとし、押出し金型7、
磁場配向金型27の内径も同じように設定した。
Since the ratio of the thickness of the outer peripheral layer to the thickness of the pre-molded layer is 1: 3, the diameter of the pre-molded article 125 shown in FIG. 22 is 24 mm, the thickness of the pre-molded layer 99 is 9 mm, and the outer peripheral layer 101 is Thickness of 3 mm, extrusion mold 7,
The inner diameter of the magnetic field orientation mold 27 was set in the same manner.

【0052】これにより、プレ成形層99の流速差14
0は大きくなるが、外周層101の流速差141がより
向上し、ロ−ラ表面のフェライトの配向状態がより良く
なる為、ロ−ラの表面磁力の向上が見られる。
As a result, the flow velocity difference of the pre-molding layer 99 is 14
Although 0 becomes large, the flow velocity difference 141 of the outer peripheral layer 101 is further improved, and the orientation state of the ferrite on the roller surface is improved, so that the surface magnetic force of the roller is improved.

【0053】[0053]

【発明の効果】請求項1に記載のプラスチックマグネッ
トの磁場中押出成形工法を行えば、成形部壁面部分と中
央部分における材料の流速差を減少することができ、ロ
−ラの磁場配向を乱すこと無く、ロ−ラ内部まで安定し
た配向をすることができるため、ロ−ラの高磁力化に対
して効果があり、また、ロ−ラの磁力波形制御が容易に
なる。
According to the first aspect of the present invention, by performing the plastic magnet extrusion molding method in a magnetic field, it is possible to reduce the flow velocity difference of the material between the wall surface portion and the central portion of the molding portion, and disturb the magnetic field orientation of the roller. Since the stable orientation can be achieved even inside the roller, it is effective for increasing the magnetic force of the roller, and the magnetic force waveform control of the roller becomes easy.

【0054】また請求項2に記載のプラスチックマグネ
ットの磁場中押出成形を行えば、成形部壁面部分と中央
部分における材料の流速差を減少することができ、ロ−
ラの磁場配向を乱すこと無く、ロ−ラ層内部まで安定し
た配向をすることができるため、ロ−ラの高磁力化に対
して効果があり、より効率的にロ−ラの磁力波形を制御
することができる。
When the plastic magnet according to the second aspect is extruded in a magnetic field, the difference in the flow velocity of the material between the wall surface portion and the central portion of the molding portion can be reduced.
Since the stable orientation can be achieved inside the roller layer without disturbing the magnetic field orientation of the roller, it is effective for increasing the magnetic force of the roller, and the magnetic force waveform of the roller can be more efficiently obtained. Can be controlled.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明で使用される押出し磁場配向装置の側
面図
FIG. 1 is a side view of an extrusion magnetic field orientation apparatus used in the present invention.

【図2】 本発明で使用される押出し磁場配向装置の正
面図
FIG. 2 is a front view of an extrusion magnetic field orientation apparatus used in the present invention.

【図3】 芯軸に溶融状態の材料が被覆している状態図FIG. 3 is a state diagram in which a molten material is coated on the core shaft.

【図4】 磁場配向金型において溶融状態の材料が磁場
配向されている状態図
FIG. 4 is a state diagram in which a molten material is magnetically oriented in a magnetic field orientation mold.

【図5】 磁場配向コイルから発生する磁力線ル−プの
状態図
FIG. 5 is a state diagram of a magnetic field line loop generated from a magnetic field orientation coil.

【図6】 磁場配向されていない時点の材料中のフェラ
イトの状態図
FIG. 6 is a phase diagram of ferrite in the material when it is not magnetically oriented.

【図7】 磁場配向された材料中のフェライトの状態図FIG. 7: Phase diagram of ferrite in magnetic field oriented material

【図8】 磁場配向された成形ロ−ラが金型から押し出
され、冷却され、ロ−ラの完成を示す図
FIG. 8 is a view showing the completion of the roller, in which the magnetic field-oriented molding roller is extruded from the mold and cooled.

【図9】 ロ−ラ完成品断面図[Figure 9] Roller finished product cross section

【図10】 ロ−ラ完成品正面図[Figure 10] Front view of the finished roller

【図11】 流速差によりフェライトの配向が乱れて押
し出されるまでの状態図
FIG. 11 is a state diagram until the ferrite orientation is disturbed by the flow velocity difference and the ferrite is extruded.

【図12】 流管内の流体に流速差がない場合の流れの
モデル図
FIG. 12 is a model diagram of the flow when there is no flow velocity difference between the fluids in the flow tube.

【図13】 流管内の各流体要素間に摩擦が生じ、流速
差が生じているモデル図
FIG. 13 is a model diagram in which friction is generated between each fluid element in the flow tube and a difference in flow velocity is generated.

【図14】 流速差が小さくなることを表したモデル図FIG. 14 is a model diagram showing that the difference in flow velocity is small.

【図15】 プレ成形層のフェライトを配向させている
状態図
FIG. 15 is a state diagram in which the ferrite of the pre-molding layer is oriented.

【図16】 プレ成形層の配向位置と外周層の配向位置
を一致させずに外周層を磁場配向したことを表した状態
FIG. 16 is a state diagram showing that the outer peripheral layer is magnetically oriented without the alignment position of the pre-molding layer and the outer peripheral layer being aligned.

【図17】 プレ成形層の配向位置と外周層の配向位置
を一致させて外周層を磁場配向したことを表した状態図
FIG. 17 is a state diagram showing that the peripheral layer is magnetically oriented by aligning the alignment position of the pre-molding layer with the alignment position of the outer peripheral layer.

【図18】 本発明における実施例1のプレ成形の断面
FIG. 18 is a cross-sectional view of preforming in Example 1 of the present invention.

【図19】 本発明における実施例1におけるプレ成形
FIG. 19: Pre-molded product in Example 1 of the present invention

【図20】 プレ成形品に外周層の押出し成形を行って
いる状態図
FIG. 20 is a state diagram showing the extrusion molding of the outer peripheral layer on the pre-molded product.

【図21】 本発明における実施例1におけるロ−ラの
完成品図
FIG. 21 is a finished product diagram of the roller in the first embodiment of the present invention.

【図22】 (a)本発明における一括成形の金型内断
面図 (b)本発明における一括成形の金型内の流速差を表し
た状態図
22 (a) is a sectional view of a die for batch molding in the present invention. FIG. 22 (b) is a state diagram showing a flow velocity difference in a die for batch molding in the present invention.

【図23】 (a)本発明における実施例1の金型内断
面図 (b)本発明における実施例1の金型内の流速差を表し
た状態図
23A is a sectional view of the inside of the mold according to the first embodiment of the present invention. FIG. 23B is a state diagram showing the flow velocity difference in the mold of the first embodiment according to the present invention.

【図24】 (a)本発明における実施例2の金型内断
面図 (b)本発明における実施例2の金型内の流速差を表し
た状態図
FIG. 24A is a sectional view of the inside of a mold according to the second embodiment of the present invention. FIG. 24B is a state diagram showing a flow velocity difference inside the mold of the second embodiment according to the present invention.

【符号の説明】[Explanation of symbols]

7 押出し金型、10 芯軸、14 クロスヘッド金
型、20 溶融状態の成形層25 磁場配向コイル、2
6 ヨ−ク、27 磁場配向金型、30 磁場配向コイ
ルN極、31 磁場配向コイルS極、33 磁場配向金
型内の磁力線、99プレ成形層、100 プレ成形層の
磁力線、101 外周層
7 Extrusion Die, 10 Core Shaft, 14 Cross Head Die, 20 Molded Layer 25 in Melt State Magnetic Field Orientation Coil, 2
6 yokes, 27 magnetic field orientation mold, 30 magnetic field orientation coil N pole, 31 magnetic field orientation coil S pole, 33 magnetic field lines in magnetic field orientation mold, 99 pre-molding layer, 100 magnetic field lines of pre-molding layer, 101 outer peripheral layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 誠 東京都大田区中馬込一丁目3番6号株式会 社リコー内 (72)発明者 肥塚 恭太 東京都大田区中馬込一丁目3番6号株式会 社リコー内 (72)発明者 成田 研二 東京都大田区中馬込一丁目3番6号株式会 社リコー内 (72)発明者 石黒 顕一 東京都大田区中馬込一丁目3番6号株式会 社リコー内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Makoto Nakamura 1-3-6 Nakamagome, Ota-ku, Tokyo Ricoh Co., Ltd. (72) Kyota Hizuka 1-3-6 Nakamagome, Ota-ku, Tokyo In stock company Ricoh (72) Inventor Kenji Narita 1-3-6 Nakamagome, Ota-ku, Tokyo Stock company Ricoh (72) Inventor Kenichi Ishiguro 1-3-6 Nakamagome, Tokyo Ota-ku Inside Ricoh

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 芯軸周辺にフェライトが混入された樹脂
材料を成形し、磁場配向ヨ−ク、磁場配向金型を用いて
材料中のフェライトを配向させて作成するプラスチック
マグネットローラの磁場中押出し成形工法において、第
一段階では、プレ成形品として、押出し成形により、芯
軸上にフェライトを混入した材料を成形、配向させるこ
とによりプラスチックマグネットロ−ラを作成し、第二
段階として、そのプレ成形品の外周に更に、押出し成形
によりフェライトを混入した樹脂材料を成形し、その際
にプレ成形品の磁場配向と外周層の磁場配向の位置を一
致させるように磁場配向を行うことを特徴とするマグネ
ットロ−ラの磁場中押出し成形工法。
1. A plastic magnet roller is extruded in a magnetic field by molding a resin material in which ferrite is mixed around a core shaft and orienting the ferrite in the material using a magnetic field orientation yoke and a magnetic field orientation die. In the molding method, in the first step, as a pre-molded product, a plastic magnet roller is created by molding and orienting a material mixed with ferrite on the core shaft by extrusion molding, and as a second step, the pre-molded product is prepared. Further, a resin material mixed with ferrite is molded by extrusion molding on the outer periphery of the molded product, and magnetic field orientation is performed so that the magnetic field orientation of the pre-molded product and the magnetic field orientation of the outer peripheral layer are matched at that time. Extrusion molding method in a magnetic field of a magnet roller.
【請求項2】 請求項1において、プレ成形の外周層の
材料に混入されるフェライトの飽和磁束密度は、プレ成
形層のフェライトの飽和磁束密度以上であることを特徴
とするマグネットロ−ラの磁場中押出し成形工法。
2. A magnet roller according to claim 1, wherein the saturation magnetic flux density of the ferrite mixed in the material of the outer peripheral layer of the pre-molding is equal to or higher than the saturation magnetic flux density of the ferrite of the pre-molding layer. Extrusion molding method in magnetic field.
【請求項3】 フェライトが混入した樹脂混合材料を芯
軸上に押し出し磁場成形にてプレ成形マグネットロ−ラ
を成形させ、その外周に同様にフェライトが混入した樹
脂混合材料を押出し磁場成形で成形させ、その際にプレ
成形層と外周層の磁場配向を同一方向に配置させて成形
することを特徴とするマグネットロ−ラ。
3. A resin mixture material in which ferrite is mixed is extruded on a core shaft to form a pre-molding magnet roller by magnetic field molding, and a resin mixture material in which ferrite is similarly mixed is extruded on the outer periphery thereof by magnetic field molding. The magnet roller is characterized in that the magnetic field orientations of the pre-molding layer and the outer peripheral layer are arranged in the same direction at that time for molding.
【請求項4】 請求項3において、混合材料の飽和磁束
密度がプレ成形層よりも外周層の方が高いことを特徴と
するマグネットロ−ラ。
4. The magnet roller according to claim 3, wherein the saturation magnetic flux density of the mixed material is higher in the outer peripheral layer than in the preforming layer.
JP10592896A 1996-04-25 1996-04-25 Extrusion technique of magnet roller in magnetic field and magnet roller Pending JPH09293609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10592896A JPH09293609A (en) 1996-04-25 1996-04-25 Extrusion technique of magnet roller in magnetic field and magnet roller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10592896A JPH09293609A (en) 1996-04-25 1996-04-25 Extrusion technique of magnet roller in magnetic field and magnet roller

Publications (1)

Publication Number Publication Date
JPH09293609A true JPH09293609A (en) 1997-11-11

Family

ID=14420528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10592896A Pending JPH09293609A (en) 1996-04-25 1996-04-25 Extrusion technique of magnet roller in magnetic field and magnet roller

Country Status (1)

Country Link
JP (1) JPH09293609A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006019573A (en) * 2004-07-02 2006-01-19 Mitsubishi Electric Corp Composite bonded magnet and manufacturing method thereof, and rotor of dc brushless motor having composite bonded magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006019573A (en) * 2004-07-02 2006-01-19 Mitsubishi Electric Corp Composite bonded magnet and manufacturing method thereof, and rotor of dc brushless motor having composite bonded magnet
JP4701641B2 (en) * 2004-07-02 2011-06-15 三菱電機株式会社 Composite bond magnet, method for producing composite bond magnet, rotor of DC brushless motor equipped with composite bond magnet.

Similar Documents

Publication Publication Date Title
JPH1145409A (en) Method for providing improved overwrite, minimum nonlinear transition shift and minimum read back pulse width and magnetic recording head
JP6870356B2 (en) Molds for forming anisotropic bond magnets and manufacturing methods using them
US5145614A (en) Process for preparing magnet made of resin
JPH09293609A (en) Extrusion technique of magnet roller in magnetic field and magnet roller
US4954800A (en) Magnet and method of manufacturing the same
JP6390719B2 (en) Forming apparatus, mold and method for manufacturing magnet roll
JPH0220129B2 (en)
JP2003109835A (en) Molding method of plastic magnet and magnetized yoke using the same
JP5870523B2 (en) Bond magnet, manufacturing method thereof, and bonded magnet manufacturing apparatus
JPH09275028A (en) Magnet roller and its manufacturing apparatus
JP3736061B2 (en) Method for manufacturing bonded magnet
JPH0338673A (en) Manufacture of magnet roller
JP2903603B2 (en) Extrusion mold and method of manufacturing resin-bonded magnet
WO2003011558A1 (en) Method for molding plastic magnet and magnetizing yoke used for it, and method for manufacturing magnet roller
JPH0828292B2 (en) Anisotropic resin magnet
JPS60100413A (en) Mold for magnetically oriented extrusion molding
JP2000192104A (en) Manufacture of magnet molding, and its device
JP2001331031A (en) Cylindrical member for electrophotography, magnet roller, developing roller, developing device and image forming device
JPH04250013A (en) Mold for anisotropic resin magnet
JPS61119017A (en) Manufacture of anisotropic composite magnet
JPS60218813A (en) Manufacture of anisotropic composite magnet
JP4706803B1 (en) Method for producing magnetic resin molded body
JPS60229321A (en) Manufacture of anisotropic magnet roll
JPS60202913A (en) Manufacture of anisotropic magnet roll
JPH04157712A (en) Apparatus for orientation and shaping of magnetic field of bonded magnet; method for orientation and shaping of bonded magnet using same apparatus