JPH09293414A - Anisotropic conductive film - Google Patents

Anisotropic conductive film

Info

Publication number
JPH09293414A
JPH09293414A JP8130833A JP13083396A JPH09293414A JP H09293414 A JPH09293414 A JP H09293414A JP 8130833 A JP8130833 A JP 8130833A JP 13083396 A JP13083396 A JP 13083396A JP H09293414 A JPH09293414 A JP H09293414A
Authority
JP
Japan
Prior art keywords
conductive film
anisotropic conductive
conductive material
insulating resin
wiring patterns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8130833A
Other languages
Japanese (ja)
Inventor
Taiichi Kishimoto
泰一 岸本
Fumiko Hashimoto
史子 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Chemical Corp
Original Assignee
Toshiba Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Chemical Corp filed Critical Toshiba Chemical Corp
Priority to JP8130833A priority Critical patent/JPH09293414A/en
Publication of JPH09293414A publication Critical patent/JPH09293414A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Landscapes

  • Liquid Crystal (AREA)
  • Multi-Conductor Connections (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)
  • Non-Insulated Conductors (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an anisotropic conductive film suited for wide use with high connection reliability by suppressing a conductive particle of contributing no conduction between wiring patterns, to a minimum limit and, ensuring insulation between electrodes adjacent to each other of the same wiring pattern. SOLUTION: This conductive film, like an ITO electrode formed in a liquid crystal panel substrate and a TAB electrode in a drive external circuit, connecting two wiring patterns respectively supported to the substrate, is used in electrical connection of these two wiring patterns. The film comprises an insulating resin binder 1 and a conductive substance 2, so as to make density different by a thickness direction of a layer in the conductive substance 2 dispersed in the insulating resin binder 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、液晶表示素子のパ
ネル基板に形成した透明電極端子と駆動外部回路の配線
端子等の接続に使用される異方性導電膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anisotropic conductive film used for connecting a transparent electrode terminal formed on a panel substrate of a liquid crystal display device and a wiring terminal of a driving external circuit.

【0002】[0002]

【従来の技術】従来、液晶表示素子における透明電極端
子を駆動外部回路の配線端子と接続するに際して、異方
性導電膜が使用されている。その異方性導電膜の構造
は、図3に示したように絶縁性樹脂バインダー10中
に、半田やニッケルなどの金属粒子もしくは樹脂粒子表
面にニッケル鍍金等施した導電粒子11を、一定の濃度
で分散させてシート状に成膜したものである。この異方
性導電膜は、図4に示すように、液晶表示素子の前記2
つの端子13,12間に配置され、透明電極端子13を
支持するパネル基板および配線端子12を支持する駆動
外部回路基板を加熱、加圧することにより、加圧方向に
間隔が狭められて2 つの端子12,13に接触した金属
粒子が端子間のみに導通するとともに絶縁性樹脂バイン
ダー10が溶けて、該端子間の異方性導通が固定された
状態で接合を行っている。
2. Description of the Related Art Conventionally, an anisotropic conductive film has been used to connect a transparent electrode terminal of a liquid crystal display element to a wiring terminal of a driving external circuit. As shown in FIG. 3, the structure of the anisotropic conductive film is such that metal particles of solder, nickel, or the like, or conductive particles 11 obtained by plating the surface of the resin particles with nickel or the like in an insulating resin binder 10 at a constant concentration. The film is formed into a sheet by dispersing with. This anisotropic conductive film, as shown in FIG.
Between the two terminals 13 and 12, the panel substrate that supports the transparent electrode terminal 13 and the driving external circuit substrate that supports the wiring terminal 12 are heated and pressed to narrow the gap in the pressing direction. The metal particles contacting 12 and 13 are conducted only between the terminals, and the insulating resin binder 10 is melted so that the anisotropic conduction between the terminals is fixed to perform the joining.

【0003】[0003]

【発明が解決しようとする課題】異方性導電膜中に分散
された導電物質の粒子は、その際、一部は2 つの対向す
る電極間に挟まり2 つの配線パターン間の導通を与える
が、他の大部分は非電極部と非電極部との間の空間に埋
められ、配線パターン間の導通に寄与しない。それらは
同一配線パターンの隣合う電極間の絶縁を阻害するおそ
れがある。
The particles of the conductive material dispersed in the anisotropic conductive film are partially sandwiched between two electrodes facing each other to provide conduction between the two wiring patterns. Most of the other part is filled in the space between the non-electrode parts and does not contribute to conduction between the wiring patterns. They may hinder the insulation between adjacent electrodes of the same wiring pattern.

【0004】本発明は、上記の事情に鑑みてなされたも
ので、配線パターン間の導通に寄与しない導電物質を最
小限に抑え、同一配線パターンの隣合う電極間の絶縁性
を確保し、広い用途に適する接続信頼性の高い異方性導
電膜を提供しようとするものである。
The present invention has been made in view of the above circumstances, and minimizes a conductive material that does not contribute to conduction between wiring patterns, ensures insulation between adjacent electrodes of the same wiring pattern, and achieves a wide area. It is intended to provide an anisotropic conductive film having high connection reliability and suitable for use.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記の目
的を達成しようと鋭意研究を重ねた結果、絶縁性樹脂バ
インダー中の導電物質の分布を有効な層部分に偏在させ
ることによって上記の目的が達成されることを見いだ
し、本発明を完成したものである。
DISCLOSURE OF THE INVENTION As a result of intensive studies aimed at achieving the above object, the present inventors have found that the distribution of the conductive material in the insulating resin binder is unevenly distributed in the effective layer portion. The present invention has been completed by finding out that the above object is achieved.

【0006】即ち、本発明は、それぞれ基板に支持され
る2 つの配線パターン間を接合し、該2 つの配線パター
ンの電気的接続に使用される異方性導電膜であって、絶
縁性樹脂バインダーと導電物質とからなり、絶縁性樹脂
バインダーに分散させた導電物質が、層の厚さ方向で密
度が異なることを特徴とする異方性導電膜であり、また
液晶表示素子のパネル基板に形成した透明電極端子と駆
動外部回路の配線端子の電気的接続に使用される異方性
導電膜であって、接合時に液晶側に対向する面近傍の導
電物質の密度が、背面近傍の導電物質の密度より高い請
求項1記載の異方性導電膜であり、そしてまた導電物質
が強磁性体を含む導電物質である請求項1記載又は請求
項2記載の異方性導電膜である。
That is, the present invention relates to an anisotropic conductive film which is used for electrically connecting two wiring patterns supported by a substrate and electrically connecting the two wiring patterns. Is an anisotropic conductive film characterized in that the conductive material dispersed in an insulating resin binder has a different density in the thickness direction of the layer, and is formed on the panel substrate of the liquid crystal display element. In the anisotropic conductive film used for electrical connection between the transparent electrode terminal and the wiring terminal of the driving external circuit, the density of the conductive material near the surface facing the liquid crystal side at the time of bonding is The anisotropic conductive film according to claim 1, which is higher in density, and also the anisotropic conductive film according to claim 1 or 2, wherein the conductive material is a conductive material containing a ferromagnetic material.

【0007】以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0008】本発明の絶縁性樹脂としては、溶剤に溶か
して固形分を調整でき、塗膜形成が可能なものであれば
特に制限はなく、本発明に使用できる。具体的な樹脂と
しては、例えば、アクリルゴム、アクリロニトリルブタ
ジエンゴム、ポリスチレン、ポリメチルメタクリレー
ト、ポリウレタン、ポリ塩化ビニル、ポリブタジエン、
ナイロン或いはこれらの共重合体、ポリカーボネート、
カプロラクトン系ポリエステル、エーテル系ポリエステ
ル、アジペート系ポリエステル、エポキシ樹脂等を挙げ
ることができる。絶縁性樹脂の圧着接合は、加熱溶着、
熱硬化圧着、光硬化圧着等、種々の機構を利用すること
ができる。
The insulating resin of the present invention is not particularly limited as long as it can be dissolved in a solvent to adjust the solid content and can form a coating film, and can be used in the present invention. Specific resins include, for example, acrylic rubber, acrylonitrile butadiene rubber, polystyrene, polymethylmethacrylate, polyurethane, polyvinyl chloride, polybutadiene,
Nylon or copolymers of these, polycarbonate,
Examples thereof include caprolactone-based polyester, ether-based polyester, adipate-based polyester, and epoxy resin. Insulation resin pressure bonding is performed by heat welding,
Various mechanisms such as thermosetting pressure bonding and photo-curing pressure bonding can be used.

【0009】本発明に用いる導電物質としては、粒状の
金属粒子や、粒状の樹脂、無機又は有機粒子の表面に金
属層を有する粒子等、導電性のあるものであればよく、
特に制限されるものではない。これらの導電物質とし
て、たとえば、銅、銀、ニッケル等の粒子や、樹脂、無
機又は有機質の表面に銅、銀、ニッケル層を有する粒子
等が挙げられ、これら粒子は単独又は 2種以上混合して
使用することができる。導電物質の粒径は二つの導電パ
ターンの接続電極の高さに対応して選択するのがよく、
例えば1 〜18μmのものがよく、この範囲を外れると良
好な接続が得られず好ましくない。導電物質には強磁性
体又は強度の磁場において磁性体となり得る強磁性体を
含有させることができる。この強磁性体によって、導電
物質の密度状態を制御することができ効果的である。
The conductive substance used in the present invention may be any conductive substance such as granular metal particles, granular resin, particles having a metal layer on the surface of inorganic or organic particles,
There is no particular limitation. Examples of these conductive materials include particles of copper, silver, nickel, etc., particles having a resin, inorganic or organic surface having copper, silver, nickel layers, etc., and these particles may be used alone or in combination of two or more. Can be used. The particle size of the conductive material is preferably selected according to the height of the connecting electrodes of the two conductive patterns,
For example, the thickness is preferably 1 to 18 μm, and if it is out of this range, good connection cannot be obtained, which is not preferable. The conductive material can contain a ferromagnetic material or a ferromagnetic material that can become a magnetic material in a strong magnetic field. This ferromagnetic substance is effective because it can control the density state of the conductive material.

【0010】導電物質の配合割合としては、絶縁性樹脂
に対して2 重量%以上含有することが望ましい。2 重量
%未満では良好な接続が得られず好ましくない。
It is desirable that the conductive material is contained in an amount of 2% by weight or more based on the insulating resin. If it is less than 2% by weight, good connection cannot be obtained, which is not preferable.

【0011】絶縁性樹脂中に導電物質を分散させた層を
形成させる方法には特に限定されるものではないが、通
常、絶縁性樹脂を溶剤に溶かして固形分を調整し、所望
の粒径の所定量の導電物質を混合して一定厚さの塗膜を
つくる。従って、要求される特性等に応じて所望の粒径
の所望量の導電物質を混合した一定厚さの塗膜が可能で
ある。
The method of forming a layer in which a conductive material is dispersed in an insulating resin is not particularly limited, but usually, the insulating resin is dissolved in a solvent to adjust the solid content to obtain a desired particle size. A predetermined amount of the conductive material is mixed to form a coating film having a constant thickness. Therefore, it is possible to form a coating film having a constant thickness in which a desired amount of a conductive material having a desired particle size is mixed according to required characteristics and the like.

【0012】本発明の構成によって、絶縁性樹脂中に導
電物質の粒子を分散させた層の導電物質の粒子は、加え
られた圧力によって対向する二つの配線パターンの電極
間に挟まり導通を確保するが、高さの低い電極側、例え
ば液晶パネル基板に形成した透明電極端子側に導電物質
の粒子の密度を高め、高さの高い電極側、例えば駆動外
部回路の配線端子側に導電物質の粒子の密度を小さくす
ることで導電物質の対向する電極間接合に用いられる効
率を高め、同時に隣合った同一配線パターンの電極間の
絶縁性を確保することができる。なおまた両電極の高さ
がほぼ等しければ、導電膜の厚さ方向の中央に導電物質
の密度を高くした層を形成することが望ましい。
According to the structure of the present invention, the particles of the conductive material in the layer in which the particles of the conductive material are dispersed in the insulating resin are sandwiched between the electrodes of the two wiring patterns facing each other by the applied pressure to ensure the conduction. However, the density of conductive material particles is increased on the electrode side having a low height, for example, on the transparent electrode terminal side formed on the liquid crystal panel substrate, and the conductive material particle is on the electrode side having a high height, for example, the wiring terminal side of the driving external circuit. By reducing the density of the electrodes, it is possible to enhance the efficiency of the conductive material used for bonding between the electrodes facing each other, and at the same time, it is possible to secure the insulation between the electrodes of the same wiring pattern adjacent to each other. If the heights of both electrodes are substantially equal to each other, it is desirable to form a layer in which the density of the conductive material is increased in the center of the conductive film in the thickness direction.

【0013】[0013]

【発明の実施の形態】次に本発明の実施例を説明する
が、本発明はこれらの実施例によって限定されるもので
はない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below, but the present invention is not limited to these embodiments.

【0014】実施例 絶縁性樹脂をトルエンに溶解して固形分を調整し得られ
た塗料にニッケル粒子(粒径10μm、 3.5重量%)を混
合し、グラビア方式でポリエステル基体上に塗布後、基
体側から永久磁石でもって磁場を加えながら乾燥し、厚
さ30μmの塗膜を得た。この塗膜の状態を図1に示し
た。絶縁性樹脂バインダー1の厚さ方向に導電物質2の
密度が異なるように分散している。
EXAMPLE Nickel particles (particle size: 10 μm, 3.5% by weight) were mixed with the coating material obtained by dissolving an insulating resin in toluene to adjust the solid content, and coated on a polyester substrate by a gravure method, and then the substrate was coated. From the side, it was dried while applying a magnetic field with a permanent magnet to obtain a coating film having a thickness of 30 μm. The state of this coating film is shown in FIG. The conductive resin 2 is dispersed in the insulating resin binder 1 in the thickness direction so as to have different densities.

【0015】そのようにして得られた塗膜における導電
物質の密度の高い側をガラス基板上のITO電極(ピッ
チ 0.2mm)上に貼り、さらに導電物質の密度の低い側
にTABを重ねた上でこの端子間を、180 ℃、15kg/
cm2 で20秒間加圧圧着して接合し、異方性導電膜をつ
くった。この状態を図2に示した。導電物質2の粒子は
TAB電極3側には少く分散しており、隣り合うTAB
電極3の絶縁性を確保している。また、導電物質2は、
TAB電極3とITO電極4の間に挟まり、必要な導通
を確保している。
In the coating film thus obtained, the side with the higher density of the conductive material was pasted on the ITO electrode (pitch 0.2 mm) on the glass substrate, and the side with the lower density of the conductive material was overlaid with TAB. Between these terminals at 180 ° C, 15kg /
Anisotropic conductive film was prepared by press-bonding with cm 2 for 20 seconds. This state is shown in FIG. The particles of the conductive material 2 are slightly dispersed on the TAB electrode 3 side, and
The insulation of the electrode 3 is secured. In addition, the conductive material 2 is
It is sandwiched between the TAB electrode 3 and the ITO electrode 4 to ensure necessary conduction.

【0016】比較例 絶縁性樹脂をトルエンに溶かして固形分を調整して得ら
れた塗料に、ニッケル粒子(粒径10μm、 3.5重量%)
を混合し、グラビア方式でポリエステル基体上に塗布
後、乾燥し厚さ30μmの塗膜を得た。図3に示すよう
に、絶縁性樹脂バインダー10に分散した導電物質11
の密度は、厚さ方向にほぼ均一であった。
Comparative Example A paint obtained by dissolving an insulating resin in toluene to adjust the solid content was added with nickel particles (particle size: 10 μm, 3.5% by weight).
Was mixed and applied on a polyester substrate by a gravure method and then dried to obtain a coating film having a thickness of 30 μm. As shown in FIG. 3, the conductive material 11 dispersed in the insulating resin binder 10 is used.
Was almost uniform in the thickness direction.

【0017】こうして得られた塗膜をガラス基板上のI
TO電極(ピッチ 0.2mm)上に貼り、さらにTABを
重ねた上でこの端子間を、180 ℃、15kg/cm2 で20
秒間加圧圧着して接合し、異方性導電膜をつくった。こ
の状態を図4に示した。導電物質11は、TAB電極1
2とITO電極13の間に挟まり、必要な導通が得られ
るものの、導電物質11の粒子が隣り合うTAB電極1
2間に不必要に存在し、隣合うTAB電極12の絶縁性
を確保することが難しい場合がある。
The coating film thus obtained was applied to I on a glass substrate.
Stick it on the TO electrode (pitch 0.2 mm), stack the TAB on it, and then connect it between these terminals at 180 ° C and 15 kg / cm 2 for 20 minutes.
Anisotropic conductive films were formed by pressing and bonding for seconds. This state is shown in FIG. The conductive material 11 is the TAB electrode 1
The TAB electrode 1 which is sandwiched between the ITO electrode 13 and the ITO electrode 13 and has the necessary conductivity, but in which the particles of the conductive material 11 are adjacent to each other.
It may be unnecessarily present between the two TAB electrodes, and it may be difficult to ensure the insulating properties of the adjacent TAB electrodes 12.

【0018】こうしてつくった実施例及び比較例におけ
る異方性導電膜の対向する配線パターン間の抵抗および
同一配線パターンの隣合う電極間の抵抗を測定したの
で、その結果を表1に示した。
The resistance between the opposing wiring patterns of the anisotropic conductive film and the resistance between the adjacent electrodes of the same wiring pattern in the thus-prepared Examples and Comparative Examples were measured, and the results are shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】以上の説明および表1から明らかなよう
に、本発明の異方性導電膜は、接合に寄与しない導電物
質を最小限に抑え、同一配線パターンの隣合う電極間の
絶縁を確保することができ、また、含有する導電物質の
内対向電極間接合に寄与する粒子の比率が大きくなるた
め、塗膜全体中の導電物質含有率を小さくすることがで
き、コスト低減可能なものである。
As is apparent from the above description and Table 1, the anisotropic conductive film of the present invention minimizes the conductive material that does not contribute to the bonding and prevents the insulation between the adjacent electrodes of the same wiring pattern. In addition, since the ratio of the particles that contribute to the bonding between the counter electrodes of the conductive material contained therein can be increased, the content ratio of the conductive material in the entire coating film can be reduced, and the cost can be reduced. Is.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の異方性導電膜の概略断面図である。FIG. 1 is a schematic sectional view of an anisotropic conductive film of the present invention.

【図2】本発明の異方性導電膜の接合状態を示す概略断
面図である。
FIG. 2 is a schematic cross-sectional view showing a bonded state of the anisotropic conductive film of the present invention.

【図3】従来の異方性導電膜の概略断面図である。FIG. 3 is a schematic sectional view of a conventional anisotropic conductive film.

【図4】従来の異方性導電膜の接合状態を示す概略断面
図である。
FIG. 4 is a schematic cross-sectional view showing a joined state of a conventional anisotropic conductive film.

【符号の説明】[Explanation of symbols]

1,10 絶縁性樹脂バインダー 2,11 導電物質 3,12 TAB電極 4,13 ITO電極 1,10 Insulating resin binder 2,11 Conductive material 3,12 TAB electrode 4,13 ITO electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01R 11/01 H01R 11/01 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01R 11/01 H01R 11/01 A

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 それぞれ基板に支持される2 つの配線パ
ターン間を接合し、該2 つの配線パターンの電気的接続
に使用される異方性導電膜であって、絶縁性樹脂バイン
ダーと導電物質とからなり、絶縁性樹脂バインダーに分
散させた導電物質が、層の厚さ方向で密度が異なること
を特徴とする異方性導電膜。
1. An anisotropic conductive film, which is used for electrically connecting two wiring patterns supported by a substrate and electrically connecting the two wiring patterns, comprising an insulating resin binder and a conductive material. An anisotropic conductive film comprising a conductive substance dispersed in an insulating resin binder and having different densities in the layer thickness direction.
【請求項2】 液晶表示素子のパネル基板に形成した透
明電極端子と駆動外部回路の配線端子の電気的接続に使
用される異方性導電膜であって、接合時に液晶側に対向
する面近傍の導電物質の密度が、背面近傍の導電物質の
密度より高い請求項1記載の異方性導電膜。
2. An anisotropic conductive film used for electrical connection between a transparent electrode terminal formed on a panel substrate of a liquid crystal display element and a wiring terminal of a driving external circuit, near a surface facing the liquid crystal side at the time of bonding. The anisotropic conductive film according to claim 1, wherein the density of the conductive material is higher than the density of the conductive material near the back surface.
【請求項3】 導電物質が強磁性体を含む導電物質であ
る請求項1記載又は請求項2記載の異方性導電膜。
3. The anisotropic conductive film according to claim 1, wherein the conductive substance is a conductive substance containing a ferromagnetic material.
JP8130833A 1996-04-26 1996-04-26 Anisotropic conductive film Pending JPH09293414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8130833A JPH09293414A (en) 1996-04-26 1996-04-26 Anisotropic conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8130833A JPH09293414A (en) 1996-04-26 1996-04-26 Anisotropic conductive film

Publications (1)

Publication Number Publication Date
JPH09293414A true JPH09293414A (en) 1997-11-11

Family

ID=15043773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8130833A Pending JPH09293414A (en) 1996-04-26 1996-04-26 Anisotropic conductive film

Country Status (1)

Country Link
JP (1) JPH09293414A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990065491A (en) * 1998-01-14 1999-08-05 윤종용 Anisotropic conductive film structure
CN102290127A (en) * 2010-06-17 2011-12-21 鑫河电材股份有限公司 Anisotropic conductive film and manufacturing method thereof
KR20160114054A (en) * 2014-01-28 2016-10-04 데쿠세리아루즈 가부시키가이샤 Connection body and connection body production method
US11685137B2 (en) 2015-10-07 2023-06-27 Dexerials Corporation Anisotropic conductive film and connection structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990065491A (en) * 1998-01-14 1999-08-05 윤종용 Anisotropic conductive film structure
CN102290127A (en) * 2010-06-17 2011-12-21 鑫河电材股份有限公司 Anisotropic conductive film and manufacturing method thereof
KR20160114054A (en) * 2014-01-28 2016-10-04 데쿠세리아루즈 가부시키가이샤 Connection body and connection body production method
US11685137B2 (en) 2015-10-07 2023-06-27 Dexerials Corporation Anisotropic conductive film and connection structure

Similar Documents

Publication Publication Date Title
US4588456A (en) Method of making adhesive electrical interconnecting means
US4642421A (en) Adhesive electrical interconnecting means
JP3530980B2 (en) Adhesive structure, liquid crystal device, and electronic equipment
JP2007510268A (en) Insulating conductive fine particles and anisotropic conductive film containing the same
EP0662256A1 (en) An electrical connecting structure and a method for electrically connecting terminals to each other
JPH07157720A (en) Film having anisotropic electrical conductivity
JPS61231066A (en) Anisotropically conductive hot-melt adhesive
JPH09293414A (en) Anisotropic conductive film
JP4214416B2 (en) Adhesion method and liquid crystal device manufacturing method
KR950004369B1 (en) Heat-melt adhesive interconnector
JP3150054B2 (en) Anisotropic conductive film
JPH02877B2 (en)
JP3876993B2 (en) Adhesive structure, liquid crystal device, and electronic device
JPH09161543A (en) Anisotropic conductive film and its using method
JP3114162B2 (en) Electrical connection method
JPH05174890A (en) Joining structure
JPH11148058A (en) Anisotropically conductive adhesive, liquid crystal display device and electronic instrument using the same
JPS61287974A (en) Anisotropically conductive adhesive
JPH0210316A (en) Liquid crystal display device
JPS6279281A (en) Anisotropic electrically conductive adhesive
JP2003100367A (en) Conductive bond, and connection method and connection structure between circuit boards using bond
JP2979151B2 (en) How to connect electronic components
JPH0332237B2 (en)
JPS6135593A (en) Method of bonding printed circuit board
JP2805948B2 (en) Connection structure of IC chip