JPH09292505A - Reflection mirror for high energy beam - Google Patents

Reflection mirror for high energy beam

Info

Publication number
JPH09292505A
JPH09292505A JP8102112A JP10211296A JPH09292505A JP H09292505 A JPH09292505 A JP H09292505A JP 8102112 A JP8102112 A JP 8102112A JP 10211296 A JP10211296 A JP 10211296A JP H09292505 A JPH09292505 A JP H09292505A
Authority
JP
Japan
Prior art keywords
refractive index
substrate
glass layer
low refractive
index layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8102112A
Other languages
Japanese (ja)
Inventor
Yoshio Kuromitsu
祥郎 黒光
Seiji Toyoda
誠司 豊田
Kunio Sugamura
邦夫 菅村
Hitofumi Taniguchi
人文 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Tokuyama Corp
Original Assignee
Mitsubishi Materials Corp
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Tokuyama Corp filed Critical Mitsubishi Materials Corp
Priority to JP8102112A priority Critical patent/JPH09292505A/en
Publication of JPH09292505A publication Critical patent/JPH09292505A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a reflection mirror for high energy beams having high reflectance characteristics and high heat resistance and mechanical strength by forming a laminated body comprising high reflective index layers and low refractive index layers alternately laminated on a glass layer. SOLUTION: A glass layer 12 is formed on a substrate 11, and high refractive index layers 13 and low refractive index layers 14 are alternately deposited in plural layers to form a laminated body 15 on the glass layer 12. The substrate 11 is preferably made of a ceramic material such as Al2 O3 , AIN and SiC or a metal or its alloy such as W, Mo, Fe, Cu. The glass component to constitute the glass layer 12 is, for example, PbO-SiO2 -B2 O3 with addition of Al2 O3 , alkaline earth metals or alkali metals. As for the high refractive index layers 13, ZnS, TiO2 , CeO2 , etc., be used. As for the low refractive index layers 14, MgF2 , ThF2 , etc., can be used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は光線の反射に用いら
れる反射鏡に関する。更に詳しくはレーザ光線のような
高エネルギ光線を反射するための反射鏡に関するもので
ある。
The present invention relates to a reflector used for reflecting light rays. More specifically, the present invention relates to a reflecting mirror for reflecting a high energy beam such as a laser beam.

【0002】[0002]

【従来の技術】近年レーザ光線のような高エネルギ光線
の利用分野が増加している。特に、孔あけ、切断、溶接
などの超精密加工にレーザ加工機の活動分野が拡大して
いる。このようなレーザはレーザ光線発生源から発生し
たレーザを反射鏡やプリズムなどにより折り曲げてレー
ザ光線を操作している。従来、このような高エネルギ光
線を反射する反射鏡として、アルミニウム、石英ガラス
などの金属又は合金などの適宜な材料で形成された基板
上に誘電体を多層に形成したものが知られている。基板
表面は鏡面研磨され、誘電体は基板上に蒸着法、スパッ
タリング法等の手段により形成される。誘電体層を多層
に形成することにより境界面を複数設けることができ、
境界面における光線の反射を増加させて反射効率を高め
ることができる。
2. Description of the Related Art In recent years, the fields of application of high energy beams such as laser beams have been increasing. In particular, the field of activity of laser processing machines is expanding to ultra-precision processing such as drilling, cutting, and welding. Such a laser operates a laser beam by bending a laser beam generated from a laser beam source by a reflector or a prism. Conventionally, as a reflecting mirror that reflects such a high-energy light beam, a mirror in which a dielectric is formed in multiple layers on a substrate formed of an appropriate material such as a metal or an alloy such as aluminum or quartz glass is known. The surface of the substrate is mirror-polished, and the dielectric is formed on the substrate by a method such as an evaporation method or a sputtering method. By forming multiple dielectric layers, multiple boundary surfaces can be provided,
The reflection efficiency of light can be increased by increasing the reflection of light rays on the boundary surface.

【0003】しかし、アルミニウム等の金属材料では酸
化反応を起こす性質を有しているために、高エネルギ光
線用に使用した場合にはこの光線を反射することに起因
する温度上昇により酸化反応が促進され、誘電体層が剥
離して反射率を低下させる不具合があった。また、石英
ガラスは加工性がよく、耐酸化性はアルミニウムより優
れているが、石英ガラス自体の熱伝導率が低いため、同
様に、高エネルギ光線を反射することに起因する温度上
昇により誘電体層が剥離又は基板の熱変形に起因して反
射率を低下させる不具合があった。これらの点を解消す
るために比較的熱伝導性の高いSi又はSiC等のセラ
ミックスを基板に用いた反射鏡が知られている。このよ
うな基板を用いることにより耐酸化性が高く、耐熱性の
良好な反射鏡を製作することができる。
However, since a metal material such as aluminum has a property of causing an oxidation reaction, when used for a high energy light beam, the oxidation reaction is promoted by the temperature rise caused by the reflection of this light beam. Therefore, there is a problem that the dielectric layer is peeled off to lower the reflectance. Further, although quartz glass has good workability and is superior in oxidation resistance to aluminum, the thermal conductivity of quartz glass itself is low, and similarly, due to the temperature rise caused by reflection of high-energy rays, the dielectric material is There was a problem that the reflectance was lowered due to peeling of the layer or thermal deformation of the substrate. In order to solve these problems, there is known a reflecting mirror using a ceramic such as Si or SiC having a relatively high thermal conductivity as a substrate. By using such a substrate, a reflection mirror having high oxidation resistance and good heat resistance can be manufactured.

【0004】[0004]

【発明が解決しようとする課題】しかし、Siは熱伝導
性に優れるが機械的強度がアルミニウム又は石英ガラス
より弱く、その表面を鏡面研磨する際の取扱い及び誘電
体層の形成の際の取扱いに困難を生じ、機械的強度が要
求される箇所への使用ができない不具合がある。また、
SiCはSiに比較して機械的強度が優れ、Siにおけ
る不具合は生じないが、機械的強度の上昇から鏡面研磨
する際の加工性に劣る問題点がある。即ち、鏡面研磨加
工の困難性からSi等を加工する通常の加工時間に比較
して過剰な時間を必要とし、また焼結体であることに起
因して研磨加工における粒子の脱粒を起こし、高精度の
平面度に仕上げることが困難である問題点があった。本
発明の目的は、高い反射率特性と高い耐熱性及び機械的
強度を有する高エネルギ光線用反射鏡を提供することに
ある。
However, Si is excellent in thermal conductivity, but mechanical strength is weaker than aluminum or quartz glass, so it can be used for mirror-polishing the surface and handling for forming the dielectric layer. There is a problem that it causes difficulty and cannot be used in a place where mechanical strength is required. Also,
SiC has a higher mechanical strength than Si and does not cause any trouble in Si, but has a problem that the workability in mirror polishing is inferior due to the increase in mechanical strength. That is, due to the difficulty of mirror-polishing, an excessive time is required as compared with the normal processing time for processing Si and the like, and because of the fact that it is a sintered body, it causes grain shedding during polishing and There is a problem that it is difficult to finish the flatness of accuracy. An object of the present invention is to provide a reflecting mirror for high energy rays having high reflectance characteristics, high heat resistance and mechanical strength.

【0005】[0005]

【課題を解決するための手段】請求項1に係る発明は、
図1の拡大図に示すように基体11上にガラス層12が
形成され、このガラス層12上に高屈折率層13と低屈
折率層14とが交互に複数回積層された積層体15が形
成された高エネルギ光線用反射鏡10である。基体11
の表面が粗くても、ガラス層12がこれを平滑化し、ガ
ラス層上に形成された積層体15の表面を歪みのない鏡
面とし、高い反射率特性を有するようにする。
The invention according to claim 1 is
As shown in the enlarged view of FIG. 1, a glass layer 12 is formed on a substrate 11, and a laminated body 15 in which a high refractive index layer 13 and a low refractive index layer 14 are alternately laminated a plurality of times on the glass layer 12 is formed. It is the formed high-energy light ray reflection mirror 10. Base 11
Even if the surface is rough, the glass layer 12 smoothes it, and the surface of the laminate 15 formed on the glass layer becomes a mirror surface without distortion and has a high reflectance characteristic.

【0006】請求項2又は請求項3に係る発明は、請求
項1に係る発明であって、基体11がAl23(アルミ
ナ)、AlN(窒化アルミニウム)、SiC(炭化珪
素)等のセラミックス、又はW(タングステン)、Mo
(モリブデン)、Fe(鉄)、Cu(銅)等の金属又は
その合金からなることを特徴とする。基体11をセラミ
ックスや高融点の金属で構成することにより、高い耐熱
性を有するようにする。
The invention according to claim 2 or 3 is the invention according to claim 1, wherein the substrate 11 is a ceramic such as Al 2 O 3 (alumina), AlN (aluminum nitride), or SiC (silicon carbide). , Or W (tungsten), Mo
It is characterized by being made of a metal such as (molybdenum), Fe (iron), Cu (copper) or an alloy thereof. The base 11 is made of ceramics or a high melting point metal so as to have high heat resistance.

【0007】請求項4に係る発明は、請求項1ないし3
いずれかに係る発明であって、ガラス層12が0.5μ
m〜50μmの厚さに形成され、高屈折率層13が30
nm〜150nmの厚さに形成され、低屈折率層14が
60nm〜300nmの厚さに形成されたことを特徴と
する。ガラス層12は2μm〜40μmの厚さに形成さ
れることが好ましい。ガラス層12の厚さが0.5μm
未満では基体の表面平滑性が十分でなく、結果として高
い反射率を得ることが困難になり、50μmを越えると
基体全体の熱伝導性を極端に低下させる不具合がある。
また高屈折率層13及び低屈折率層14は高エネルギ光
線用反射鏡の用途に応じて30nm〜150nm及び6
0nm〜300nmの厚さにそれぞれ形成されることが
好ましい。高屈折率層13及び低屈折率層14の厚さが
上記範囲を外れると十分な反射率が得られない。
The invention according to claim 4 is the invention according to claims 1 to 3
It is the invention which concerns on either, The glass layer 12 is 0.5 micrometer.
The high refractive index layer 13 is formed to have a thickness of 30 μm to 50 μm.
The low refractive index layer 14 is formed to a thickness of 60 nm to 300 nm, and the low refractive index layer 14 is formed to a thickness of 60 nm to 300 nm. The glass layer 12 is preferably formed with a thickness of 2 μm to 40 μm. The thickness of the glass layer 12 is 0.5 μm
If it is less than 50 μm, the surface smoothness of the substrate is not sufficient, and as a result, it becomes difficult to obtain a high reflectance, and if it exceeds 50 μm, the thermal conductivity of the entire substrate is extremely lowered.
Further, the high refractive index layer 13 and the low refractive index layer 14 are 30 nm to 150 nm and 6 nm depending on the use of the reflecting mirror for high energy rays.
It is preferable that each layer is formed to a thickness of 0 nm to 300 nm. If the thicknesses of the high refractive index layer 13 and the low refractive index layer 14 are out of the above ranges, sufficient reflectance cannot be obtained.

【0008】[0008]

【発明の実施の形態】本発明の基体11は図1に示すよ
うに板状の基板である。本発明のガラス層12を構成す
るガラス成分は、例えばPbO−SiO2−B23系に
Al23、アルカリ土類金属、アルカリ金属等が添加さ
れた系である。このガラス層12は、熱膨張係数が基体
の熱膨張係数に近いことが、ガラス層形成時にクラック
等の欠陥を生じないため、好ましい。例えば基体がAl
23からなる場合、ガラス層の熱膨張係数はこの基体の
熱膨張係数に近い(6.8±1.0)×10-6/℃であ
ることが好ましく、基体がAlNからなる場合、ガラス
層の熱膨張係数はこの基体の熱膨張係数に近い(4.4
±1.0)×10-6/℃であることが好ましい。。ガラ
ス層12は、上記ガラス粉末を溶剤と混合してガラスペ
ーストとし、このガラスペーストを基体の表面にスクリ
ーン印刷、スプレーコーティング、ディップコーティン
グ、スピンコーティング等の方法により塗布して乾燥し
た後、焼成しガラスを軟化させることにより形成され
る。
BEST MODE FOR CARRYING OUT THE INVENTION The substrate 11 of the present invention is a plate-shaped substrate as shown in FIG. The glass component constituting the glass layer 12 of the present invention is, for example, a PbO—SiO 2 —B 2 O 3 system to which Al 2 O 3 , an alkaline earth metal, an alkali metal or the like is added. It is preferable that the glass layer 12 has a coefficient of thermal expansion close to that of the substrate, because defects such as cracks do not occur during the formation of the glass layer. For example, if the substrate is Al
When it is made of 2 O 3 , the thermal expansion coefficient of the glass layer is preferably close to that of this substrate (6.8 ± 1.0) × 10 −6 / ° C., and when the substrate is made of AlN, The coefficient of thermal expansion of the glass layer is close to that of this substrate (4.4.
It is preferably ± 1.0) × 10 −6 / ° C. . The glass layer 12 is formed by mixing the above glass powder with a solvent to form a glass paste, coating the glass paste on the surface of a substrate by a method such as screen printing, spray coating, dip coating, spin coating, etc., drying, and then firing. It is formed by softening the glass.

【0009】高屈折率層13及び低屈折率層14は、ス
パッタリング法、蒸着法等によりガラス層12上に形成
される。高屈折率層13としてはZnS(硫化亜鉛)、
TiO2(二酸化チタン)、CeO2(二酸化セリウム)
等が例示される。ZnS及びTiO2は可視スペクトル
の範囲内において光線の吸収がなく相当に堅く相当に耐
久力のある膜を形成し、CeO2は更に化学的に安定な
膜を形成する。また、低屈折率層14としてはMgF2
(弗化マグネシウム)、ThF2(弗化トリウム)等が
例示される。MgF2、ThF2も同様に、可視スペクト
ルの範囲内において光線の吸収がなく極めて堅くて耐久
力のある膜を形成する。
The high refractive index layer 13 and the low refractive index layer 14 are formed on the glass layer 12 by a sputtering method, a vapor deposition method or the like. As the high refractive index layer 13, ZnS (zinc sulfide),
TiO 2 (titanium dioxide), CeO 2 (cerium dioxide)
Etc. are illustrated. ZnS and TiO 2 form a fairly stiff and fairly durable film without absorption of light in the visible spectrum, while CeO 2 forms a more chemically stable film. Further, as the low refractive index layer 14, MgF 2
(Magnesium fluoride), ThF 2 (thorium fluoride) and the like are exemplified. Similarly, MgF 2 and ThF 2 do not absorb light in the visible spectrum range and form an extremely hard and durable film.

【0010】光線の反射は主として屈折率の境界面で起
こるために互いに異なった境界面で起こる反射には吸収
による反射ロスはほとんどなく非常に良好な反射面とな
り得る。従って通常では光の吸収がなく、化学的に安定
でかつ屈折率の低い低屈折率層14の上に、光の吸収が
比較的少なく、化学的に安定な高屈折率層13を形成す
ることによりその境界面ででの反射特性を良好にするこ
とができ、このような層13,14を複数設けることに
より反射効率を向上させることができる。ただしこれら
の層13,14の膜厚は使用される用途を考慮して選定
することが必要である。即ち、各層13,14の境界面
からの反射光は互いに重なり合って反射されて行くた
め、光の位相が重なり合ったところでは光は互いに強め
あい、逆に位相が反転したところでは光は打ち消し合う
ことになる。従って、反射させる光線の波長及び入射角
により膜厚を調整し、複数回積層することにより順次境
界面を増加させることに反射率を増加させることができ
る。この積層体15は高屈折率層13及び低屈折率層1
4を少なくともそれぞれ2層形成することが好ましい。
2層未満であると十分な反射率を得ることが困難とな
る。
Since the reflection of light rays mainly occurs at the boundary surface having the refractive index, the reflection loss due to absorption is hardly present in the reflection occurring at the boundary surfaces different from each other, and a very good reflecting surface can be obtained. Therefore, normally, the high refractive index layer 13 having relatively little light absorption and being chemically stable is formed on the low refractive index layer 14 which does not normally absorb light and is chemically stable and has a low refractive index. As a result, the reflection characteristic at the boundary surface can be improved, and the reflection efficiency can be improved by providing a plurality of such layers 13 and 14. However, it is necessary to select the film thickness of these layers 13 and 14 in consideration of the intended use. That is, the light reflected from the boundary surface between the layers 13 and 14 is reflected while overlapping each other, so that when the phases of the light overlap each other, the lights strengthen each other, and when the phases are reversed, the light cancels each other out. become. Therefore, the reflectivity can be increased by adjusting the film thickness according to the wavelength and the incident angle of the light beam to be reflected, and sequentially increasing the number of boundary surfaces by laminating a plurality of times. The laminated body 15 includes a high refractive index layer 13 and a low refractive index layer 1
It is preferable that at least two layers of 4 are formed.
If it is less than two layers, it will be difficult to obtain a sufficient reflectance.

【0011】[0011]

【実施例】次に本発明の実施例を説明する。 <実施例1〜7>図1に示すように、高エネルギ光線用
反射鏡10の基板11は厚さが10mmであって、この
基板11の反射面は表面粗さが中心線平均粗さで0.5
〜0.6μmに研磨される。基板11の材質は表1に示
される。この基板11の反射面上のガラス層12は、反
射面全体に軟化点が750℃のPbO−SiO2−B2
3系ガラス粒子を含むペーストをスプレーコーティング
法により塗布し、このペーストを塗布した基板を150
℃で10分間乾燥した後、大気中で1000℃で10分
間焼成することにより約4μmの厚さで形成された。こ
の基板11のガラス層12上に厚さ60nmの高屈折率
層であるZnS薄膜と厚さ100nmの低屈折率層であ
るMgF2薄膜とを真空蒸着法により5回交互に積層し
て積層体15を形成した。
Next, embodiments of the present invention will be described. <Examples 1 to 7> As shown in FIG. 1, the substrate 11 of the high-energy ray reflecting mirror 10 has a thickness of 10 mm, and the reflecting surface of the substrate 11 has a surface roughness of the center line average roughness. 0.5
It is ground to ˜0.6 μm. The material of the substrate 11 is shown in Table 1. The glass layer 12 on the reflecting surface of the substrate 11 has a softening point of 750 ° C. over the entire reflecting surface of PbO—SiO 2 —B 2 O.
A paste containing 3 type glass particles is applied by a spray coating method, and the substrate coated with this paste is applied to 150
It was dried at 10 ° C. for 10 minutes and then baked at 1000 ° C. for 10 minutes in the atmosphere to form a film having a thickness of about 4 μm. On the glass layer 12 of the substrate 11, a ZnS thin film having a high refractive index layer having a thickness of 60 nm and a MgF 2 thin film having a low refractive index layer having a thickness of 100 nm are alternately laminated five times by a vacuum deposition method to form a laminate. Formed 15.

【0012】<比較例1〜7>比較のため、ガラス層を
形成しない以外は実施例1〜7と同様にして比較例1〜
7の高エネルギ光線用反射鏡を作製した。 <比較試験と評価>実施例1〜7及び比較例1〜7の高
エネルギ光線用反射鏡について、それぞれ反射面に対し
て波長550nmの光を照射したときの反射率を分光光
度計を用いて測定した。その結果を表1に示す。
<Comparative Examples 1 to 7> For comparison, Comparative Examples 1 to 7 are the same as Examples 1 to 7 except that the glass layer is not formed.
The reflection mirror for high energy light of No. 7 was produced. <Comparative Test and Evaluation> With respect to the high-energy light ray reflecting mirrors of Examples 1 to 7 and Comparative Examples 1 to 7, the reflectance when the light having a wavelength of 550 nm was irradiated to the reflecting surface was measured using a spectrophotometer. It was measured. Table 1 shows the results.

【0013】[0013]

【表1】 [Table 1]

【0014】表1から明らかなように、ガラス層のない
比較例1〜7では反射率が65〜75%と低かったのに
対して、ガラス層を有する実施例1〜7では反射率が9
7〜98%と高い値を示した。
As is clear from Table 1, the reflectances of Comparative Examples 1 to 7 having no glass layer were as low as 65 to 75%, whereas the reflectances of Examples 1 to 7 having the glass layer were 9%.
The value was as high as 7 to 98%.

【0015】[0015]

【発明の効果】以上述べたように、本発明の高エネルギ
光線用反射鏡では、基体の表面が粗くても、ガラス層が
これを平滑化する。この結果、セラミックスのような燒
結体を基体に使用しても脱粒箇所がガラス層により補わ
れ、ガラス層上に形成された積層体の表面を歪みのない
鏡面とすることができ、高い反射率特性を得ることがで
きる。また積層体をガラス層を介して基体に形成するた
めに、基体の材料選定に自由度が増し、基体をセラミッ
クスや高融点の金属で構成することにより、高い耐熱性
及び機械的強度を有するという優れた効果を奏する。
As described above, in the high-energy ray reflecting mirror of the present invention, even if the surface of the substrate is rough, the glass layer smoothes it. As a result, even if a sintered body such as ceramics is used for the substrate, the shedding points are compensated by the glass layer, and the surface of the laminated body formed on the glass layer can be a mirror surface without distortion, and the high reflectance can be obtained. The characteristics can be obtained. Further, since the laminated body is formed on the substrate through the glass layer, the degree of freedom in selecting the material of the substrate is increased, and the substrate is made of ceramics or a metal having a high melting point, so that it has high heat resistance and mechanical strength. It has an excellent effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の高エネルギ光線用反射鏡の斜視図及び
その断面図。
FIG. 1 is a perspective view and a cross-sectional view of a high-energy ray reflecting mirror of the present invention.

【符号の説明】[Explanation of symbols]

10 高エネルギ光線用反射鏡 11 基板(基体) 12 ガラス層 13 高屈折率層 14 低屈折率層 15 積層体 10 Reflection Mirror for High Energy Rays 11 Substrate (Base) 12 Glass Layer 13 High Refractive Index Layer 14 Low Refractive Index Layer 15 Laminate

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年5月24日[Submission date] May 24, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0007】請求項4に係る発明は、請求項1ないし3
いずれかに係る発明であって、ガラス層12が0.5μ
m〜20μmの厚さに形成され、高屈折率層13が30
nm〜150nmの厚さに形成され、低屈折率層14が
60nm〜300nmの厚さに形成されたことを特徴と
する。ガラス層12は2μm〜10μmの厚さに形成さ
れることが好ましい。ガラス層12の厚さが0.5μm
未満では基体の表面平滑性が十分でなく、結果として高
い反射率を得ることが困難になり、20μmを越えると
基体全体の熱伝導性を極端に低下させる不具合がある。
また高屈折率層13及び低屈折率層14は高エネルギ光
線用反射鏡の用途に応じて30nm〜150nm及び6
0nm〜300nmの厚さにそれぞれ形成されることが
好ましい。高屈折率層13及び低屈折率層14の厚さが
上記範囲を外れると十分な反射率が得られない。
The invention according to claim 4 is the invention according to claims 1 to 3
It is the invention which concerns on either, The glass layer 12 is 0.5 micrometer.
The high refractive index layer 13 is formed to have a thickness of m to 20 μm.
The low refractive index layer 14 is formed to a thickness of 60 nm to 300 nm, and the low refractive index layer 14 is formed to a thickness of 60 nm to 300 nm. The glass layer 12 is preferably formed with a thickness of 2 μm to 10 μm. The thickness of the glass layer 12 is 0.5 μm
If it is less than 20 μm, the surface smoothness of the substrate is not sufficient, and as a result, it becomes difficult to obtain a high reflectance, and if it exceeds 20 μm, there is a problem that the thermal conductivity of the entire substrate is extremely lowered.
Further, the high refractive index layer 13 and the low refractive index layer 14 are 30 nm to 150 nm and 6 nm depending on the use of the reflecting mirror for high energy rays.
It is preferable that each layer is formed to a thickness of 0 nm to 300 nm. If the thicknesses of the high refractive index layer 13 and the low refractive index layer 14 are out of the above ranges, sufficient reflectance cannot be obtained.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G02B 5/26 G02B 5/26 (72)発明者 菅村 邦夫 埼玉県大宮市北袋町1丁目297番地 三菱 マテリアル株式会社総合研究所内 (72)発明者 谷口 人文 山口県徳山市御影町1番1号 株式会社ト クヤマ内Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location G02B 5/26 G02B 5/26 (72) Inventor Kunio Sugamura 1-297 Kitabukurocho, Omiya-shi, Saitama Mitsubishi Materials Corporation Corporate Research Institute (72) Inventor Hitomi Taniguchi 1-1, Mikagecho, Tokuyama City, Yamaguchi Prefecture Tokuyama Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基体(11)上にガラス層(12)が形成され、
前記ガラス層(12)上に高屈折率層(13)と低屈折率層(14)
とが交互に複数回積層された積層体(15)が形成された高
エネルギ光線用反射鏡。
1. A glass layer (12) is formed on a substrate (11),
High refractive index layer (13) and low refractive index layer (14) on the glass layer (12)
A high-energy ray reflecting mirror having a laminate (15) in which and are alternately laminated a plurality of times.
【請求項2】 基体(11)がAl23、AlN又はSiC
のセラミックスからなる請求項1記載の高エネルギ光線
用反射鏡。
2. The substrate (11) is Al 2 O 3 , AlN or SiC.
The high-energy ray reflecting mirror according to claim 1, which is made of the above ceramics.
【請求項3】 基体(11)がW、Mo、Fe又はCu或い
はその合金からなる請求項1記載の高エネルギ光線用反
射鏡。
3. A high-energy ray reflecting mirror according to claim 1, wherein the substrate (11) is made of W, Mo, Fe or Cu or an alloy thereof.
【請求項4】 ガラス層(12)が0.5μm〜20μmの
厚さに形成され、高屈折率層(13)が30nm〜150n
mの厚さに形成され、低屈折率層(14)が60nm〜30
0nmの厚さに形成された請求項1ないし3いずれか記
載の高エネルギ光線用反射鏡。
4. The glass layer (12) is formed to a thickness of 0.5 μm to 20 μm, and the high refractive index layer (13) is 30 nm to 150 n.
and a low refractive index layer (14) having a thickness of 60 nm to 30 nm.
The reflector for high-energy rays according to any one of claims 1 to 3, which is formed to have a thickness of 0 nm.
JP8102112A 1996-04-24 1996-04-24 Reflection mirror for high energy beam Withdrawn JPH09292505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8102112A JPH09292505A (en) 1996-04-24 1996-04-24 Reflection mirror for high energy beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8102112A JPH09292505A (en) 1996-04-24 1996-04-24 Reflection mirror for high energy beam

Publications (1)

Publication Number Publication Date
JPH09292505A true JPH09292505A (en) 1997-11-11

Family

ID=14318728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8102112A Withdrawn JPH09292505A (en) 1996-04-24 1996-04-24 Reflection mirror for high energy beam

Country Status (1)

Country Link
JP (1) JPH09292505A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005026792A1 (en) * 2003-09-09 2005-03-24 Seiko Epson Corporation Reflector, auxiliary mirror, light source device and projector
JP2006308836A (en) * 2005-04-28 2006-11-09 Mitsubishi Electric Corp Scanning mirror, method of manufacturing same, and laser beam machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005026792A1 (en) * 2003-09-09 2005-03-24 Seiko Epson Corporation Reflector, auxiliary mirror, light source device and projector
JP2006308836A (en) * 2005-04-28 2006-11-09 Mitsubishi Electric Corp Scanning mirror, method of manufacturing same, and laser beam machine
JP4522315B2 (en) * 2005-04-28 2010-08-11 三菱電機株式会社 Scan mirror, method for manufacturing the same, and laser processing machine

Similar Documents

Publication Publication Date Title
US11520087B2 (en) Reflective optical element
US7920323B2 (en) Thermally stable multilayer mirror for the EUV spectral region
JP2629693B2 (en) Excimer laser mirror
US10605966B2 (en) Enhanced performance metallic based optical mirror substrates
US6331914B1 (en) Optical interference coating capable of withstanding severe temperature environments
JP7280198B2 (en) Extension of Reflection Bandwidth of Silver Coated Laminate for High Reflector
JPH038521B2 (en)
JPH06313803A (en) Highly-reflective silver mirror
JPH09292505A (en) Reflection mirror for high energy beam
JPH05127004A (en) Reflecting mirror
JP2000147205A (en) Infrared antireflection film
JPH03163402A (en) Reflecting mirror
JPH116906A (en) Reflection mirror with dielectric thin film
JP3031625B2 (en) Heat ray absorbing reflector
CN113994267A (en) Mirror mounting member, and position measuring mirror and exposure device using same
JPH1073705A (en) Reflection mirror
JPH1073704A (en) Reflection mirror for high energy ray
JPH03191301A (en) Reflection mirror
JP4136744B2 (en) Reflective film
JP2007003936A (en) Infrared region reflecting mirror and its manufacturing method
JP3054663B2 (en) Multilayer reflector
JPH0996708A (en) Reflection mirror for infrared ray
JPS58149002A (en) Total reflection mirror for laser light
JPH09178918A (en) Reflecting mirror with thin au film
JPH06138310A (en) Phaseless reflection mirror

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030701