JPH09292491A - Flammability gas concentration reducer and its control method - Google Patents

Flammability gas concentration reducer and its control method

Info

Publication number
JPH09292491A
JPH09292491A JP8107196A JP10719696A JPH09292491A JP H09292491 A JPH09292491 A JP H09292491A JP 8107196 A JP8107196 A JP 8107196A JP 10719696 A JP10719696 A JP 10719696A JP H09292491 A JPH09292491 A JP H09292491A
Authority
JP
Japan
Prior art keywords
gas
gas concentration
catalyst
oxygen
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8107196A
Other languages
Japanese (ja)
Inventor
Tadashi Fujii
正 藤井
Shozo Yamanari
省三 山成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8107196A priority Critical patent/JPH09292491A/en
Publication of JPH09292491A publication Critical patent/JPH09292491A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently process excess hydrogen gas when a large amount of hydrogen gas is produced in a severe accident in a flammability gas concentration reducer. SOLUTION: A plurality of flammability gas concentration reduces 100, are disposed in a reactor containment vessel houses a catalyst 1 for reacting hydrogen gas with oxygen gas in a housing vessel 3. The flammability gas concentration reducer 100 comprises a gas supply means having nozzles 3, tubing 4 and valves 6 for supplying gas containing oxygen to the catalyst 1, a concentration detection means having a detection tube 7 and a concentration meter 8 for detecting concentration of flammability gas (hydrogen and oxygen) in the containment vessel, and a control system (dotted line) for opening and closing the valves 6 on the basis of gas concentration detected with the concentration detection means. When excess hydrogen gas exists, oxygen gas is supplied to the housing vessel 3, and reacted with the excess hydrogen gas by the catalyst 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、原子炉格納容器内
の可燃性ガス低減装置及び、設計基準を超えるようなシ
ビアアクシデントが発生した場合の制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for reducing flammable gas in a nuclear reactor containment vessel and a control method when a severe accident exceeding a design standard occurs.

【0002】[0002]

【従来の技術】原子炉の安全設計では、設計基準事象と
して考慮している冷却材喪失事故が発生した場合に、原
子炉格納容器内において以下のような可燃性ガスの発生
が想定している。
2. Description of the Related Art In the safety design of a nuclear reactor, the following flammable gas is assumed to be generated in the containment vessel when a loss of coolant accident, which is considered as a design reference event, occurs. .

【0003】まず、原子炉圧力容器内の燃料温度が上昇
することで、燃料被覆材のジルコニウムと水が反応して
水素ガスが発生する。また、配管破断部から放出された
放射性物質が圧力抑制プールへ流入し、水の放射線分解
によって水素ガスと酸素ガスが発生する。なお、沸騰水
型原子炉では、通常運転中、原子炉格納容器内は窒素ガ
スで置換されているため、初期の酸素ガス濃度は3.5
%以下に抑制されている。
First, when the temperature of the fuel in the reactor pressure vessel rises, zirconium of the fuel coating material reacts with water to generate hydrogen gas. Further, the radioactive substance released from the broken portion of the pipe flows into the pressure suppression pool, and hydrogen gas and oxygen gas are generated by the radiolysis of water. In the boiling water reactor, the nitrogen gas in the reactor containment vessel is replaced during normal operation, so the initial oxygen gas concentration is 3.5.
% Or less.

【0004】図3に、水素、酸素の組成と可燃限界の関
係を示す。事故発生により、原子炉格納容器で水素ガス
と酸素ガスの濃度が上昇する。水素ガス濃度4%以上か
つ酸素ガス濃度5%以上の濃度に達すると、図示のよう
に可燃限界となり、自然発火して原子炉格納容器の安全
性が損なわれる危険性がある。このため、水素ガスと酸
素ガスを再結合させる可燃性ガス濃度制御系が設けられ
る。
FIG. 3 shows the relationship between the composition of hydrogen and oxygen and the flammability limit. Due to the accident, the concentrations of hydrogen gas and oxygen gas increase in the containment vessel. When the hydrogen gas concentration reaches 4% or more and the oxygen gas concentration reaches 5% or more, the flammability limit is reached as shown in the figure, and there is a risk of spontaneous ignition and loss of safety of the reactor containment vessel. Therefore, a combustible gas concentration control system for recombining hydrogen gas and oxygen gas is provided.

【0005】沸騰水型原子炉における従来の可燃性ガス
濃度制御系の概略を図2に示す。系統構成は再結合装置
を主体とし、ブロア15、加熱器16、熱反応式再結合
器17、冷却器18、セパレータ19、配管弁類及び計
測制御装置からなる。設計上想定している冷却材喪失事
故が発生した場合には、可搬式の再結合装置を原子炉建
屋に運搬し、搬入・据付を行う。そして、ドライウエル
12から原子炉格納容器11内のガスをブロア15で吸
引し、加熱器16を介して再結合器17で水素ガスと酸
素ガスを熱反応により再結合させる。再結合反応で生じ
た蒸気は、冷却器18で凝縮された後、セパレータ19
で水分を除去して、残りのガスはウェットウエル13に
戻される。
FIG. 2 shows an outline of a conventional combustible gas concentration control system in a boiling water reactor. The system configuration mainly includes a recombiner, and includes a blower 15, a heater 16, a thermal reaction recombiner 17, a cooler 18, a separator 19, piping valves, and a measurement controller. In the event of a coolant loss accident assumed in the design, the portable recombination equipment will be transported to the reactor building, and will be carried in and installed. Then, the gas in the reactor containment vessel 11 is sucked from the dry well 12 by the blower 15, and the hydrogen gas and the oxygen gas are recombined by the thermal reaction by the recombiner 17 via the heater 16. The vapor generated by the recombination reaction is condensed by the cooler 18 and then separated by the separator 19
The water is removed by and the remaining gas is returned to the wet well 13.

【0006】この他にも、事故時の可燃性ガスの濃度を
低減する方法としては、特開平3−200097号公報
や特公平4−6950号公報に記載のように、原子炉格
納容器11の外部に設置される可搬式の再結合装置を含
む配管部の途中に水素吸収装置を設置した例がある。ま
た、特開昭58−135991号公報に記載のように、
原子炉格納容器11内に水素ガスを酸化する触媒を設置
する例が知られている。
In addition to this, as a method for reducing the concentration of combustible gas at the time of an accident, as described in JP-A-3-200097 and JP-B-4-6950, There is an example in which a hydrogen absorbing device is installed in the middle of a pipe part including a portable recombining device installed outside. Further, as described in JP-A-58-135991,
An example is known in which a catalyst for oxidizing hydrogen gas is installed in the reactor containment vessel 11.

【0007】[0007]

【発明が解決しようとする課題】設計で想定すべき事故
事象を超えるようなシビアアクシデントが発生して、溶
融したデブリと水との反応によって大量の水素ガスが発
生するような場合には、格納容器内の水素ガスは酸素ガ
スに比べて相対的に多くなる。このため、上記した再結
合装置では、再結合器17で水素ガスと酸素ガスを反応
させても、格納容器11内に余剰の水素ガスが残ってし
まう。この状態は、図3に示す不燃領域に入り、直ちに
燃焼を生じることはないが、原子炉運転上の不安が残
る。しかし、従来の再結合装置では余剰水素ガスの処理
については考慮されていなかった。
If a severe accident that exceeds the accident event that should be assumed in the design occurs and a large amount of hydrogen gas is generated by the reaction between the molten debris and water, it is stored. The amount of hydrogen gas in the container is relatively larger than that of oxygen gas. Therefore, in the above-described recombining apparatus, even if the recombiner 17 causes the hydrogen gas and the oxygen gas to react with each other, excess hydrogen gas remains in the storage container 11. In this state, the non-combustible region shown in FIG. 3 is entered and combustion does not occur immediately, but anxiety about the operation of the reactor remains. However, the conventional recombination device has not considered the treatment of surplus hydrogen gas.

【0008】また、従来の再結合装置は原子炉格納容器
の外部に設置されているので、可燃性ガスを導くための
配管や格納容器貫通部での隔離弁が必要となるので、設
備コストが増加するのみならず保守上の問題が増加す
る。さらに、可搬式の再結合装置では、ブロア15や加
熱器16、冷却器18への冷却水の供給用ポンプなどを
作動させるのに、動力源を必要する。
Further, since the conventional recombining device is installed outside the reactor containment vessel, a pipe for guiding the combustible gas and an isolation valve at the penetration portion of the containment vessel are required, so that the facility cost is reduced. Not only does it increase, but maintenance problems also increase. Furthermore, the portable recombining device requires a power source to operate the blower 15, the heater 16, the pump for supplying the cooling water to the cooler 18, and the like.

【0009】さらに、特開昭58−135991号のよ
うに、格納容器内部に触媒を設置している場合にも、通
常運転中に触媒に付着するゴミの影響や、定検時などに
触媒機能の劣化を検査できない等の問題がある。
Further, even when a catalyst is installed inside the containment vessel as in Japanese Patent Laid-Open No. 58-135991, the effect of dust adhering to the catalyst during normal operation and the catalyst function during regular inspections, etc. There is a problem that the deterioration of can not be inspected.

【0010】本発明の第1の目的は、シビアアクシデン
トのように大量の水素ガスが発生した場合においても、
原子炉格納容器内の余剰水素ガスを効率的に処理する、
可燃性ガス濃度低減装置及びその制御方法を提供するこ
とにある。
A first object of the present invention is to provide a large amount of hydrogen gas such as a severe accident,
Efficiently process excess hydrogen gas in the reactor containment vessel,
An object of the present invention is to provide a combustible gas concentration reducing device and a control method thereof.

【0011】本発明の第2の目的は、可燃性ガス処理機
能の劣化防止あるいは保守点検を容易にし、信頼性の高
い可燃性ガス濃度低減装置を提供することにある。
A second object of the present invention is to provide a highly reliable flammable gas concentration reduction device which facilitates prevention of deterioration of the flammable gas treatment function or maintenance and inspection.

【0012】[0012]

【課題を解決するための手段】上記の第1の目的は、水
素ガスと酸素ガスを反応させる触媒と、その触媒を収納
した収納容器を備え、原子炉格納容器内に複数配置され
た可燃性ガス濃度低減装置において、前記収納容器内の
前記触媒の下方位置に、水素ガス吸収体を配置したこと
により達成される。
A first object of the present invention is to provide a catalyst for reacting hydrogen gas and oxygen gas, and a storage container storing the catalyst, and a plurality of flammable materials arranged in the reactor containment vessel. In the gas concentration reducing device, this is achieved by disposing a hydrogen gas absorber below the catalyst in the storage container.

【0013】この構成による作用として、触媒での水素
と酸素の反応熱により、格納容器内でガスの循環流が形
成され、前記収納装置への可燃性ガスの流入量が増加す
る。従って、水素ガス吸収体を収納容器内に設置してお
くことで、水素ガスの吸収が容易になる。さらに、触媒
出口部では水素と酸素の反応熱によりガス温度が上昇す
る。しかし、水素吸収体を触媒の下方位置に設けている
ので、温度上昇による水素ガスの吸収体からの再放出を
防止できる。
As a function of this configuration, the heat of reaction between hydrogen and oxygen in the catalyst forms a circulating flow of gas in the storage container, and the amount of flammable gas flowing into the storage device increases. Therefore, by installing the hydrogen gas absorber in the storage container, it becomes easy to absorb the hydrogen gas. Furthermore, the gas temperature rises at the catalyst outlet due to the reaction heat of hydrogen and oxygen. However, since the hydrogen absorber is provided below the catalyst, it is possible to prevent the hydrogen gas from being released again from the absorber due to the temperature rise.

【0014】これによれば、シビアアクシデント時に相
対的に多量の水素ガスが発生しても、水素ガスを一旦、
水素ガス吸収体により選択的に吸収することで水素ガス
濃度を低減でき、水素と酸素の割合を近付けてから触媒
による反応を行なうので、極めて簡単な構成によって余
剰水素ガスが効率よく低減できる。
According to this, even if a relatively large amount of hydrogen gas is generated during a severe accident, the hydrogen gas is temporarily
The hydrogen gas concentration can be reduced by selective absorption by the hydrogen gas absorber, and the reaction with the catalyst is performed after bringing the ratio of hydrogen and oxygen close to each other. Therefore, the excess hydrogen gas can be efficiently reduced with an extremely simple configuration.

【0015】また、上記の第1の目的は、本発明による
以下の構成によっても達成される。即ち、水素ガスと酸
素ガスを反応させる触媒と、その触媒を収容した収納容
器を備え、原子炉格納容器内に複数配置した可燃性ガス
濃度低減装置において、前記触媒に酸素または酸素を含
むガスを供給する酸素ガス供給手段と、前記格納容器内
の可燃性ガス(水素及び酸素)の濃度を検出する濃度検
出手段を設け、検出したガス濃度に基づいて前記酸素ガ
ス供給手段による酸素ガスの供給を制御することにより
達成される。
The above first object can also be achieved by the following configuration according to the present invention. That is, in a combustible gas concentration reducing device having a catalyst for reacting hydrogen gas and oxygen gas and a storage container containing the catalyst, and a plurality of flammable gas concentration reducing devices arranged in the reactor containment vessel, oxygen or a gas containing oxygen is added to the catalyst. An oxygen gas supply means for supplying and a concentration detection means for detecting the concentration of the flammable gas (hydrogen and oxygen) in the storage container are provided, and the oxygen gas is supplied by the oxygen gas supply means based on the detected gas concentration. It is achieved by controlling.

【0016】これによれば、酸素ガス濃度に比べて水素
ガス濃度が相対的に高いことを濃度検出手段で検出す
る。酸素ガスまたは酸素を含む空気などを供給する酸素
ガス供給手段では、水素ガス濃度が高い場合に酸素ガス
との割合に応じて、触媒を収納した収納容器内に酸素ガ
スを供給し、触媒で余剰水素ガスと反応させることで、
効率的に余剰水素ガスを処理できる。
According to this, the concentration detecting means detects that the hydrogen gas concentration is relatively higher than the oxygen gas concentration. In the oxygen gas supply means for supplying oxygen gas or air containing oxygen, when the hydrogen gas concentration is high, the oxygen gas is supplied into the storage container containing the catalyst according to the ratio with the oxygen gas, and the excess catalyst is used. By reacting with hydrogen gas,
Excess hydrogen gas can be treated efficiently.

【0017】上記の第2の目的は、上記の第1の目的に
対する可燃性ガス濃度低減装置において、通常運転時は
閉止状態となっている収納容器の出入口部が、事故時の
格納容器内の温度や圧力の上昇を検知して開放する機構
を有することによって達成される。
The above-mentioned second object is that in the apparatus for reducing the concentration of combustible gas for the above-mentioned first object, the inlet / outlet portion of the storage container which is in a closed state during the normal operation is inside the storage container at the time of an accident. This is achieved by having a mechanism that detects an increase in temperature or pressure and releases the pressure.

【0018】これによれば、通常運転時は閉止状態とな
っている収納容器の出入口部が、事故時の格納容器内の
温度や圧力の上昇を検知して開放する機構を有すること
により、通常運転時のごみなどが触媒表面に付着するこ
とを防止して、事故時に作用する触媒の機能劣化を予防
できる。
According to this, the entrance / exit of the storage container, which is closed during normal operation, has a mechanism for detecting an increase in temperature or pressure in the storage container at the time of an accident and opening it. It is possible to prevent dusts during operation from adhering to the surface of the catalyst and prevent functional deterioration of the catalyst that acts in the event of an accident.

【0019】また、上記第2の目的は、上記の第1の目
的に対する可燃性ガス濃度低減装置において、触媒の下
方に濃度既知の可燃性ガスを供給する検査用ガス供給手
段と、触媒の上方に水素ガス濃度の検出手段を備えるこ
とによって達成される。
The second purpose is to provide a test gas supply means for supplying a combustible gas of a known concentration below the catalyst and an upper part of the catalyst in the combustible gas concentration reducing apparatus for the above first purpose. It is achieved by providing a means for detecting the hydrogen gas concentration.

【0020】これによれば、原子力発電所の定期点検時
において、収納容器の出入口部が閉じた状態で、検査用
ガスを触媒の下方から供給し、触媒で検査用ガスを反応
させ、収納容器出口部での水素ガス濃度を検出すること
で、触媒での反応効率を評価することができ、可燃性ガ
ス濃度低減装置の点検検査が容易になる。
According to this, at the time of periodical inspection of the nuclear power plant, the inspection gas is supplied from below the catalyst with the inlet / outlet portion of the storage container closed, and the catalyst reacts the inspection gas to cause the storage container to react. By detecting the hydrogen gas concentration at the outlet, the reaction efficiency of the catalyst can be evaluated, and the inspection and inspection of the combustible gas concentration reduction device becomes easy.

【0021】なお、上記した本発明の各構成は、適宜な
組合せが可能である。
The above-mentioned respective configurations of the present invention can be appropriately combined.

【0022】[0022]

【発明の実施の形態】以下、本発明の複数の実施形態に
ついて、図面を参照しながら詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a plurality of embodiments of the present invention will be described in detail with reference to the drawings.

【0023】〔実施形態1〕実施形態1は主として上記
第1の目的に対応するものであり、図1、図3〜7によ
り説明する。
[Embodiment 1] Embodiment 1 mainly corresponds to the first object, and will be described with reference to FIGS. 1 and 3 to 7.

【0024】図1は、可燃性ガス濃度低減装置の概略の
構成を示す。可燃性ガス濃度低減装置100は、収納容
器3内に触媒1を配置し、支持構造物2により固定して
いる。触媒1の材質としては、従来より周知のように、
可燃性ガス濃度が低い状態からでも作動する白金やパラ
ジウムを用いるものとする。触媒1は複数のプレート状
に成形し、各プレートの間隙を可燃性ガスが流れる構造
としている。可燃性ガスが流れる際の流動抵抗を少なく
するには、触媒1を金網メッシュ状の構造とすることも
可能である。
FIG. 1 shows a schematic structure of a combustible gas concentration reducing device. In the apparatus 100 for reducing the concentration of combustible gas, the catalyst 1 is arranged in the storage container 3 and fixed by the support structure 2. As the material of the catalyst 1, as is well known in the art,
Platinum or palladium, which can operate even when the concentration of combustible gas is low, shall be used. The catalyst 1 is formed into a plurality of plates and has a structure in which flammable gas flows through the gaps between the plates. In order to reduce the flow resistance when the flammable gas flows, the catalyst 1 may have a wire mesh structure.

【0025】触媒1の下方には、酸素を含むガス(たと
えば、空気)を供給するための配管4、ノズル5を設け
るとともに、収納容器3の入口部には可燃性ガス濃度検
出器8とその検出配管7を設け、検出した水素ガス・酸
素ガス濃度から配管4に設けた弁6の開度を調整する制
御系(点線にて略記)も備える。
A pipe 4 and a nozzle 5 for supplying a gas containing oxygen (for example, air) are provided below the catalyst 1, and a flammable gas concentration detector 8 and its detector are provided at the entrance of the storage container 3. A detection pipe 7 is provided, and a control system (abbreviated with a dotted line) for adjusting the opening degree of the valve 6 provided in the pipe 4 based on the detected hydrogen gas / oxygen gas concentrations is also provided.

【0026】図4に、可燃性ガス濃度低減装置を配置し
た原子炉格納容器内の構成を示す。原子炉格納容器11
内では、水素ガスの集まりやすいドライウエル12やウ
ェットウエル13の上方位置に、可燃性ガス濃度低減装
置100の収納容器3をより多く配置する。このうち、
ドライウエル12に配置した収納容器3は、原子炉格納
容器11外側の冷却水プール34内の熱交換器30の入
口配管部に相対して配置される。
FIG. 4 shows the internal structure of the reactor containment vessel in which the combustible gas concentration reducing device is arranged. Primary containment vessel 11
Inside, more storage containers 3 of the combustible gas concentration reducing apparatus 100 are arranged above the dry wells 12 and the wet wells 13 where hydrogen gas easily collects. this house,
The storage container 3 arranged in the dry well 12 is arranged opposite to the inlet pipe portion of the heat exchanger 30 in the cooling water pool 34 outside the reactor containment vessel 11.

【0027】収納容器3への酸素ガス供給手段として
は、通常は窒素ガスで置換されている原子炉格納容器1
1内に、定期点検時に検査員が立ち入れるように、窒素
ガスを排気して酸素濃度を上昇させる格納容器調気系を
利用する。すなわち、格納容器調気系のブロア22と配
管23、24と、可燃性ガス濃度低減装置100の配管
4を接続する。あるいは、格納容器11内に小型の空気
ボンベや酸素ボンベを設置し、配管4と接続することで
もよい。
As means for supplying oxygen gas to the storage container 3, the reactor containment vessel 1 which is normally replaced with nitrogen gas is used.
A containment vessel air-conditioning system that exhausts nitrogen gas and raises the oxygen concentration is used so that an inspector can enter during the regular inspection. That is, the blower 22 of the containment vessel air conditioning system, the pipes 23 and 24, and the pipe 4 of the combustible gas concentration reducing apparatus 100 are connected. Alternatively, a small air cylinder or oxygen cylinder may be installed in the storage container 11 and connected to the pipe 4.

【0028】ところで、冷却材喪失事故のような設計基
準事故においては、安全解析上、炉心に存在するジルコ
ニウムの0.73%が水と反応すると想定している。例
えば、130万kWe級の原子炉の場合には、約150
Nm3 の水素ガスが発生する。また、水の放射線分解
では、原子炉スクラムから1000秒後において16N
3/hの水素ガス(酸素ガスはその半分)が発生する
が、時間とともにガス発生量は減少する。この水−金属
反応と放射線分解による水素ガスの発生量は、格納容器
11内のドライウエル12とウェットウエル13の容積
に比べて非常に小さい。このため、初期の水素ガス濃度
はドライウエル12側で約3%であり、その後の水素ガ
ス濃度の増加率も緩慢となる。なお、格納容器11内の
初期酸素ガス濃度は、通常運転時に窒素ガスで置換され
ているため約3.5%以下に維持されており、その後放
射線分解により酸素ガス濃度も徐々に増加する。
By the way, in a design standard accident such as a loss of coolant accident, it is assumed in the safety analysis that 0.73% of zirconium present in the core reacts with water. For example, in the case of a 1.3 million kWh class reactor, about 150
Hydrogen gas of Nm 3 is generated. In the radiolysis of water, 16N after 1000 seconds from the reactor scrum.
Hydrogen gas of m 3 / h (half that of oxygen gas) is generated, but the gas generation amount decreases with time. The amount of hydrogen gas generated by this water-metal reaction and radiolysis is very smaller than the volumes of the dry well 12 and the wet well 13 in the storage container 11. Therefore, the initial hydrogen gas concentration is about 3% on the dry well 12 side, and the rate of increase in the hydrogen gas concentration thereafter becomes slow. The initial oxygen gas concentration in the storage container 11 is maintained at about 3.5% or less because it is replaced with nitrogen gas during normal operation, and then the oxygen gas concentration gradually increases due to radiolysis.

【0029】本実施形態では、図3に示す可燃限界(水
素ガス濃度4%以上かつ酸素ガス濃度5%以上)より低
い濃度から作動する触媒1を収納した容器3を、格納容
器11の空間部の上方位置に多数配置しているので、設
計基準事故で発生した低濃度の水素ガスと酸素ガスは触
媒1で反応する。したがって、ガス供給配管4から酸素
ガスを供給することなく、水素ガスを処理できる。
In this embodiment, the container 3 accommodating the catalyst 1 which operates from a concentration lower than the flammability limit (hydrogen gas concentration 4% or more and oxygen gas concentration 5% or more) shown in FIG. Since a large number are arranged in the upper position of, the low concentration hydrogen gas and oxygen gas generated in the design standard accident react with the catalyst 1. Therefore, hydrogen gas can be processed without supplying oxygen gas from the gas supply pipe 4.

【0030】次に、シビアアクシデントのように溶融し
たデブリと水が反応して大量の水素ガスと蒸気が発生し
た場合を想定する。最も厳しい想定として、水とジルコ
ニウムの反応割合を100%とした場合には、約200
00Nm3 (約900kg)の水素ガスが発生するの
で、水素ガス濃度は急激に増加する。この場合、水素ガ
ス濃度が酸素ガス濃度に比べて相対的に高くなるので、
酸素ガスが触媒1で全量反応した後でも余剰水素ガスが
残る。この場合、酸素量が少ないため可燃限界には達し
ていないが、余剰水素ガスは残っている。
Next, it is assumed that molten debris reacts with water to generate a large amount of hydrogen gas and steam, as in a severe accident. The strictest assumption is that if the reaction rate of water and zirconium is 100%, it will be about 200.
Since hydrogen gas of 00 Nm 3 (about 900 kg) is generated, the hydrogen gas concentration sharply increases. In this case, since the hydrogen gas concentration is relatively higher than the oxygen gas concentration,
Excess hydrogen gas remains even after the oxygen gas is completely reacted by the catalyst 1. In this case, since the amount of oxygen is small, the flammability limit has not been reached, but surplus hydrogen gas remains.

【0031】図5に、余剰水素ガス状態での酸素を含む
ガスの供給制御方法を示す。濃度検出器8で水素ガス濃
度と酸素ガス濃度を検出し(S1)、H2 濃度が所定
量以上か、H2 濃度がO2 濃度以上か判定し(S2,
S3)、それら条件を満たしている場合に、弁6を開放
してO2 ガスを供給する(S4)。
FIG. 5 shows a method of controlling the supply of the gas containing oxygen in the excess hydrogen gas state. Detecting a hydrogen gas concentration and the oxygen gas concentration in the concentration detector 8 (S1), H 2 concentration or more than a predetermined amount, H 2 concentration is determined whether the O 2 concentration or more (S2,
S3), when those conditions are satisfied, the valve 6 is opened and O 2 gas is supplied (S4).

【0032】例えば、水素ガス濃度が4%以上で、かつ
酸素ガス濃度が通常運転時の3.5%以下と水素ガス濃
度に比べて非常に低い場合にのみ、ガス供給配管4に設
けた弁6を開放し、格納容器調気系等から酸素ガス(空
気でもよい)をノズル5から収納容器3内に徐々に注入
する。この結果、収納容器3内に注入された酸素ガス
は、格納容器11へ拡散することなく、触媒1で確実に
水素ガスと反応させることができる。水素ガス濃度が十
分低いレベル(例えば4%以下)になるまで、ガス供給
配管4に設けた弁6から酸素を含むガスの供給すること
で、触媒1を用いて余剰水素ガスを効率的に処理でき
る。
For example, only when the hydrogen gas concentration is 4% or higher and the oxygen gas concentration is 3.5% or lower during normal operation, which is very low compared to the hydrogen gas concentration, the valve provided in the gas supply pipe 4 6 is opened, and oxygen gas (may be air) is gradually injected from the nozzle 5 into the storage container 3 from the air conditioning system of the storage container. As a result, the oxygen gas injected into the storage container 3 can be surely reacted with the hydrogen gas by the catalyst 1 without being diffused into the storage container 11. By supplying the gas containing oxygen from the valve 6 provided in the gas supply pipe 4 until the hydrogen gas concentration reaches a sufficiently low level (for example, 4% or less), the surplus hydrogen gas is efficiently processed using the catalyst 1. it can.

【0033】ところで、触媒1では、水素ガスと酸素ガ
スの反応により水蒸気が生成し、格納容器11内の可燃
性ガス濃度は低減する。しかし、格納容器11内の蒸気
分圧は増加するので、格納容器外部の熱交換器によって
格納容器圧力を低減する。本実施形態では、圧力の低減
を速めて事故を収束させるために、ドライウエル12の
可燃性ガス濃度低減装置3の出口と外部の熱交換器30
の入口配管部を相対している。
By the way, in the catalyst 1, water vapor is generated by the reaction of hydrogen gas and oxygen gas, and the concentration of the combustible gas in the storage container 11 is reduced. However, since the vapor partial pressure in the containment vessel 11 increases, the containment vessel pressure is reduced by the heat exchanger outside the containment vessel. In the present embodiment, in order to accelerate the pressure reduction and to settle the accident, the outlet of the combustible gas concentration reduction device 3 of the dry well 12 and the external heat exchanger 30.
The inlet piping parts of are facing each other.

【0034】図6は、格納容器外部の熱交換器と可燃性
ガス濃度低減装置の配置と作用を説明する概念図であ
る。可燃性ガス濃度低減装置100の収納容器3は、そ
の出口部を熱交換器30の入口配管31と相対して配置
される。また、入口配管31を、ジェットポンプ形状と
する。これにより、水素ガスと酸素ガスの反応熱によっ
て触媒1の出口部に生じる上昇流を利用して、配管31
の入口周囲の格納容器11内のガスをあわせて吸引し、
熱交換器30に導くことができる。
FIG. 6 is a conceptual diagram for explaining the arrangement and operation of the heat exchanger and the combustible gas concentration reducing device outside the containment vessel. The storage container 3 of the apparatus 100 for reducing the concentration of combustible gas is arranged such that the outlet portion thereof faces the inlet pipe 31 of the heat exchanger 30. Further, the inlet pipe 31 has a jet pump shape. As a result, the ascending flow generated at the outlet of the catalyst 1 by the reaction heat of the hydrogen gas and the oxygen gas is used to
The gas in the storage container 11 around the inlet of the
It can be led to the heat exchanger 30.

【0035】熱交換器30では、冷却水プール34との
温度差によって、伝熱管で蒸気が凝縮する。熱交換器3
0の下部ヘッダで、凝縮水と窒素ガスのような不凝縮性
ガスを分離し、凝縮水は配管33から原子炉圧力容器1
0等へ供給し、不凝縮性ガスは配管32からウェットウ
エル13へ排出する。このように、可燃性ガス濃度低減
装置100を凝縮式熱交換器30の入口配管部に相対し
て配置することで、凝縮式熱交換器30への流入ガス量
を増大できるので、熱交換器30の凝縮伝熱性能も向上
し、蒸気容積の減少による格納容器11圧力の低減を促
進できる。
In the heat exchanger 30, steam is condensed in the heat transfer tubes due to the temperature difference between the heat exchanger 30 and the cooling water pool 34. Heat exchanger 3
At the bottom header of No. 0, the condensed water and the non-condensable gas such as nitrogen gas are separated, and the condensed water is supplied from the pipe 33 to the reactor pressure vessel 1
0, etc., and the non-condensable gas is discharged from the pipe 32 to the wet well 13. As described above, by disposing the combustible gas concentration reducing device 100 so as to face the inlet pipe section of the condensing heat exchanger 30, the amount of gas flowing into the condensing heat exchanger 30 can be increased, and thus the heat exchanger can be increased. The condensation heat transfer performance of 30 is also improved, and the reduction of the pressure of the containment vessel 11 due to the reduction of the vapor volume can be promoted.

【0036】〔実施形態2〕実施形態2の可燃性ガス濃
度低減装置は、主として上記第1の目的に対応する別案
である。
[Embodiment 2] The apparatus for reducing the concentration of combustible gas according to Embodiment 2 is another alternative mainly corresponding to the first object.

【0037】図7は、本実施形態による可燃性ガス濃度
低減装置の概略の構成図である。可燃性ガス濃度低減装
置200は、収納容器3内の触媒1の下方に水素ガス吸
収体9を配置し、触媒1と同様、支持構造物2により固
定している。上記した実施形態1(図1)との相違い
は、酸素ガス供給手段に代えて水素ガス吸収体9を設け
たことにある。
FIG. 7 is a schematic configuration diagram of the combustible gas concentration reducing apparatus according to this embodiment. In the combustible gas concentration reduction device 200, the hydrogen gas absorber 9 is arranged below the catalyst 1 in the storage container 3 and, like the catalyst 1, is fixed by the support structure 2. The difference from Embodiment 1 (FIG. 1) described above is that a hydrogen gas absorber 9 is provided instead of the oxygen gas supply means.

【0038】水素ガス吸収体9としては、吸蔵能力が大
きく、吸収した水素ガスを再度放出する解離温度が高い
MgあるいはMg−Ni合金等の水素吸蔵金属の適用が
好ましい。本例では、水素ガス吸収体9を触媒1と同様
に複数のプレート状に成形し、各プレートの間隙を可燃
性ガスが流れる構造としている。
As the hydrogen gas absorber 9, it is preferable to use a hydrogen storage metal such as Mg or a Mg—Ni alloy, which has a high storage capacity and a high dissociation temperature for releasing the absorbed hydrogen gas again. In this example, the hydrogen gas absorber 9 is formed into a plurality of plates like the catalyst 1, and the combustible gas flows through the gaps between the plates.

【0039】触媒1での水素ガスと酸素ガスの反応熱に
より、触媒1出口部のガス温度が上昇するので、この温
度上昇による水素ガスの解離を生じないように、吸収体
9は触媒1の下方に設置する。また、触媒1での水素ガ
スと酸素ガスの反応熱に誘起されて、収納容器3を通過
する循環流が格納容器11内に形成されるので、水素ガ
ス吸収体9を収納容器3内に配置しておくことで選択的
に水素ガスのみを吸収できるので、水素ガス濃度を容易
に低減できる。
Since the gas heat at the outlet of the catalyst 1 rises due to the reaction heat of the hydrogen gas and the oxygen gas in the catalyst 1, the absorber 9 is used to prevent the hydrogen gas from dissociating due to the temperature rise. Install it below. Further, since the circulation flow passing through the storage container 3 is induced in the storage container 11 by being induced by the reaction heat of the hydrogen gas and the oxygen gas in the catalyst 1, the hydrogen gas absorber 9 is arranged in the storage container 3. Since the hydrogen gas can be selectively absorbed by preliminarily setting the hydrogen gas concentration, the hydrogen gas concentration can be easily reduced.

【0040】仮に、シビアアクシデント時に発生する大
量の水素ガスを水素ガス吸収体9のみで対応する場合に
は、Mgの水素吸蔵能は7.6重量%であるので、約1
1800kgのMgが必要となる。格納容器11内に約
11800kgの水素ガス吸収体9を分散して配置する
ことは可能だが、水素ガス吸収体9の物量が増大する。
このため、本実施形態のように水素ガス吸収体9と触媒
1を併用することで、水素ガス吸収体9の物量を大幅に
低減することができる。しかも、制御機構を一切有しな
いので、保守が容易になる。
If a large amount of hydrogen gas generated at the time of severe accident is dealt with only by the hydrogen gas absorber 9, the hydrogen storage capacity of Mg is 7.6% by weight, and therefore, about 1%.
1800 kg of Mg is required. Although it is possible to disperse about 11800 kg of the hydrogen gas absorber 9 in the storage container 11, the amount of the hydrogen gas absorber 9 increases.
Therefore, by using the hydrogen gas absorber 9 and the catalyst 1 together as in the present embodiment, the physical quantity of the hydrogen gas absorber 9 can be significantly reduced. Moreover, since it has no control mechanism, maintenance becomes easy.

【0041】図8に、本実施形態の代案による可燃性ガ
ス濃度低減装置の概略の構成を示す。本例の可燃性ガス
濃度低減装置300は、図1に示した可燃性ガス濃度低
減装置に水素ガス吸収体9を組み合わせたものである
(したがって、実施形態1の代案でもある)。
FIG. 8 shows a schematic configuration of a combustible gas concentration reducing device according to an alternative of this embodiment. The combustible gas concentration reducing apparatus 300 of this example is a combination of the combustible gas concentration reducing apparatus shown in FIG. 1 and the hydrogen gas absorber 9 (thus, it is also an alternative to the first embodiment).

【0042】図1の可燃性ガス濃度低減装置100と比
べた場合、格納容器11内の余剰水素ガス濃度を吸収体
9により簡単に低減できるので、余剰水素ガスを処理す
るのに必要な酸素ガス供給量を低減できる。また、図7
の可燃性ガス濃度低減装置200と比べた場合、水素ガ
ス吸収体9の物量を低減できる。
When compared with the apparatus 100 for reducing the concentration of combustible gas in FIG. 1, the concentration of the excess hydrogen gas in the storage container 11 can be easily reduced by the absorber 9, so that the oxygen gas necessary for treating the excess hydrogen gas is required. The amount of supply can be reduced. FIG.
When compared with the combustible gas concentration reducing device 200 of No. 2, the amount of the hydrogen gas absorber 9 can be reduced.

【0043】〔実施形態3〕実施形態3の可燃性ガス濃
度低減装置は、主として上記第2の目的に対応するもの
である。以下では、酸素ガス供給手段と水素ガス吸収体
9の組合せを持つ可燃性ガス濃度低減装置300(図
8)の例で説明するが、図1の装置100または図7の
装置200であってもよい。
[Third Embodiment] A combustible gas concentration reducing apparatus according to the third embodiment mainly corresponds to the second object. Hereinafter, an example of the combustible gas concentration reducing device 300 (FIG. 8) having a combination of the oxygen gas supply means and the hydrogen gas absorber 9 will be described, but the device 100 of FIG. 1 or the device 200 of FIG. Good.

【0044】図9に、本実施形態の可燃性ガス濃度低減
装置の概略の構成を示す。可燃性ガス濃度低減装置30
0には、図8の構成に加え、収納容器3に収納容器入口
板50と収納容器出口板51を備えている。入口板50
と出口板51は扉状に形成され、通常運転時には点線で
示した位置に、図示しない特定の物質で固定されてお
り、収納容器3内部は格納容器11と隔離されている。
FIG. 9 shows a schematic configuration of the combustible gas concentration reducing apparatus of this embodiment. Combustible gas concentration reduction device 30
0, in addition to the configuration of FIG. 8, the storage container 3 is provided with a storage container inlet plate 50 and a storage container outlet plate 51. Entrance plate 50
The outlet plate 51 is formed in a door shape, and is fixed to a position shown by a dotted line with a specific substance (not shown) during normal operation, and the inside of the storage container 3 is isolated from the storage container 11.

【0045】事故発生時には、格納容器11の温度や圧
力が上昇する。格納容器11内のガス温度の上昇によっ
て、入口板50と出口板51を固定していた特定物質
(たとえばゴムのような低融点のもの)が溶解すること
で、重力の作用で入口板50と出口板51が実線で示し
た位置まで回転して、格納容器11雰囲気と収納容器3
内部が連通する。なお、圧力上昇を利用する場合には、
ラプチャディスクで入口板50と出口板51を構成する
こと等により、格納容器11雰囲気と収納容器3内部を
連通させることも可能である。
When an accident occurs, the temperature and pressure of the storage container 11 rise. As the gas temperature in the storage container 11 rises, a specific substance (for example, a substance having a low melting point such as rubber) that has fixed the inlet plate 50 and the outlet plate 51 is melted, so that the inlet plate 50 and the inlet plate 50 are separated by gravity. The outlet plate 51 rotates to the position shown by the solid line, and the atmosphere of the storage container 11 and the storage container 3
The inside communicates. When using the pressure increase,
It is possible to connect the atmosphere of the storage container 11 and the inside of the storage container 3 by composing the inlet plate 50 and the outlet plate 51 with a rupture disc.

【0046】このように、通常運転時は閉止状態となっ
ている収納容器3の出入口部に、事故時の格納容器内の
温度や圧力の上昇を検知して開放する機構を備えること
により、ごみなどが触媒1表面に付着することを防止し
て、事故時に作用する触媒1の機能劣化を予防できる。
これにより、可燃性ガス濃度低減装置の信頼性が向上す
る。
As described above, the entrance and exit of the storage container 3 which is in the closed state during the normal operation is provided with a mechanism for detecting an increase in the temperature or pressure in the storage container at the time of an accident and opening it. It is possible to prevent such substances from adhering to the surface of the catalyst 1 and prevent functional deterioration of the catalyst 1 that acts at the time of an accident.
This improves the reliability of the combustible gas concentration reducing device.

【0047】〔実施形態4〕実施形態3の可燃性ガス濃
度低減装置は、主として上記第2の目的に対応するもの
で、触媒機能の試験設備を具備している。以下では、図
9に示した可燃性ガス濃度低減装置を例にして説明する
が、上記した他の実施形態(図1、図7、図8)にも適
用可能である。
[Embodiment 4] The combustible gas concentration reducing apparatus of Embodiment 3 mainly corresponds to the second object, and is equipped with a test facility for catalyst function. In the following, the flammable gas concentration reducing device shown in FIG. 9 will be described as an example, but it is also applicable to the other embodiments described above (FIGS. 1, 7, and 8).

【0048】図10に、本実施形態の可燃性ガス濃度低
減装置の概略の構成を示す。本例では、触媒1の下方
で、かつ水素ガス吸収体9の上方位置において、濃度が
既知である水素と酸素を含む検査用ガスボンベ52と配
管53、弁54からなる検査用ガス供給設備と、触媒1
上方の収納容器3の出口部において水素ガス濃度の検出
器55、配管57、弁56を備えている。
FIG. 10 shows a schematic configuration of the combustible gas concentration reducing apparatus of this embodiment. In this example, below the catalyst 1 and above the hydrogen gas absorber 9, an inspection gas cylinder 52 containing hydrogen and oxygen whose concentrations are known, a pipe 53, and an inspection gas supply facility including a valve 54, Catalyst 1
A hydrogen gas concentration detector 55, a pipe 57, and a valve 56 are provided at the outlet of the upper storage container 3.

【0049】図示の収納装置3は、原子力発電所の定期
点検中の状態を示しており、収納容器3の出入口は入口
板50と出口板51により閉止されている。触媒1の機
能を検査するために、可燃性ガス濃度が既知である検査
用ガスを触媒1の下方から流入させ、触媒1を通過して
酸素と反応した後の水素ガス濃度を検出器55で検出す
る。密封状態となっている収納容器3の内部に設けられ
た検出器55で検知された水素ガス濃度と、流入させた
検査用ガス濃度と比較することで、触媒1の反応効率が
評価できるので、触媒1の点検検査が容易になる。
The storage device 3 shown in the drawing shows a state in which the nuclear power plant is under regular inspection, and the inlet and outlet of the storage container 3 are closed by an inlet plate 50 and an outlet plate 51. In order to test the function of the catalyst 1, a test gas having a known combustible gas concentration is introduced from below the catalyst 1, and the hydrogen gas concentration after passing through the catalyst 1 and reacting with oxygen is detected by the detector 55. To detect. Since the reaction efficiency of the catalyst 1 can be evaluated by comparing the hydrogen gas concentration detected by the detector 55 provided inside the sealed storage container 3 with the concentration of the inspected gas that has been introduced, The inspection and inspection of the catalyst 1 becomes easy.

【0050】このように、定期点検時等において、ガス
濃度が既知である検査用ガスを触媒1の下方から供給
し、触媒1出口部での水素ガス濃度を検出することで、
触媒1での反応効率を評価でき、触媒1の点検検査が容
易になる。これにより、可燃性ガス濃度低減装置の信頼
性が向上する。
As described above, at the time of periodic inspection, etc., the inspection gas having a known gas concentration is supplied from below the catalyst 1 and the hydrogen gas concentration at the outlet of the catalyst 1 is detected,
The reaction efficiency of the catalyst 1 can be evaluated, and the inspection and inspection of the catalyst 1 becomes easy. This improves the reliability of the combustible gas concentration reducing device.

【0051】[0051]

【発明の効果】本発明の可燃性ガス濃度低減装置によれ
ば、水素ガス吸収体を触媒の下方位置に配置すること
で、触媒で発生する循環流を利用して水素ガスを選択的
に吸収できるので、水素ガス濃度を簡単に低減できる。
また、シンプルな構成となるので、保守が容易になる効
果がある。
According to the combustible gas concentration reducing apparatus of the present invention, by disposing the hydrogen gas absorber below the catalyst, the hydrogen gas is selectively absorbed by utilizing the circulating flow generated in the catalyst. Therefore, the hydrogen gas concentration can be easily reduced.
Further, since the structure is simple, there is an effect that maintenance is easy.

【0052】本発明の可燃性ガス濃度低減装置によれ
ば、シビアアクシデントにより原子炉格納容器内に余剰
水素ガスが残存する場合、触媒の収納容器に酸素ガスを
注入することで、余剰水素ガスと酸素ガスを確実に反応
させて余剰水素ガスを低減できるので、原子炉の安全性
が向上する。また、格納容器内の可燃性ガス(水素、酸
素)の濃度を検出し、水素ガス量及び水素と酸素の濃度
比に応じて酸素ガスの供給を制御するので効率的に余剰
水素ガスを確実に除去処理できる効果がある。また、供
給する酸素ガスには格納容器調気系の空気を使用するの
で、構成が簡単で動力源の必要もない。
According to the combustible gas concentration reducing apparatus of the present invention, when excess hydrogen gas remains in the reactor containment vessel due to a severe accident, oxygen gas is injected into the catalyst accommodation vessel to generate excess hydrogen gas. Since the excess hydrogen gas can be reduced by reliably reacting the oxygen gas, the safety of the nuclear reactor is improved. In addition, the concentration of combustible gas (hydrogen, oxygen) in the containment vessel is detected, and the supply of oxygen gas is controlled according to the hydrogen gas amount and the concentration ratio of hydrogen and oxygen. There is an effect that can be removed. Further, since the air in the containment vessel air conditioning system is used as the oxygen gas to be supplied, the configuration is simple and no power source is required.

【0053】さらに、収納容器の触媒下方に酸素吸収体
を配置するとともに、収納容器に酸素ガスを注入するの
で、余剰水素ガス除去に必要な水素ガス吸収体の物量等
を低減でき、コストダウンが可能になる。
Further, since the oxygen absorber is arranged below the catalyst in the storage container and oxygen gas is injected into the storage container, the amount of hydrogen gas absorber required for removing the surplus hydrogen gas can be reduced and the cost can be reduced. It will be possible.

【0054】本発明の可燃性ガス濃度低減装置によれ
ば、収納容器の出入口部が通常運転時は閉止状態とされ
るので、触媒表面にごみなどが付着することを防止で
き、触媒機能が劣化することを予防できる。
According to the combustible gas concentration reducing apparatus of the present invention, since the inlet / outlet portion of the storage container is closed during normal operation, it is possible to prevent dust and the like from adhering to the catalyst surface and deteriorate the catalytic function. You can prevent what you do.

【0055】本発明の可燃性ガス濃度低減装置によれ
ば、定検時等に使用される触媒機能の検査手段を具備し
ているので、酸化触媒の反応効率が評価でき、触媒の点
検検査が容易になり、可燃性ガス濃度低減装置の信頼性
が向上する。
According to the apparatus for reducing the concentration of combustible gas of the present invention, since it is equipped with the means for inspecting the catalyst function used during the regular inspection, the reaction efficiency of the oxidation catalyst can be evaluated, and the inspection and inspection of the catalyst can be performed. This facilitates and improves the reliability of the combustible gas concentration reducing device.

【0056】本発明によれば、可燃性ガス濃度低減装置
を、水素ガスの集まりやすい格納容器空間部の上方位置
に配置しておくことで、可燃性ガスの処理効率が向上す
る。
According to the present invention, by disposing the combustible gas concentration reducing device above the storage container space where hydrogen gas is likely to collect, the processing efficiency of the combustible gas is improved.

【0057】本発明によれば、可燃性ガス濃度低減装置
から排出された蒸気を効率良く熱交換器で凝縮し、事故
時の格納容器の圧力低減が促進できる。
According to the present invention, the steam discharged from the combustible gas concentration reducing device can be efficiently condensed by the heat exchanger, and the pressure reduction of the containment vessel at the time of an accident can be promoted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態1による可燃性ガス濃度低減
装置の概略の構成図。
FIG. 1 is a schematic configuration diagram of a combustible gas concentration reducing device according to a first embodiment of the present invention.

【図2】従来の可燃性ガス濃度制御系の概略の系統図。FIG. 2 is a schematic system diagram of a conventional flammable gas concentration control system.

【図3】水素、酸素の組成と可燃限界の関係を示す特性
図。
FIG. 3 is a characteristic diagram showing the relationship between the composition of hydrogen and oxygen and the flammability limit.

【図4】可燃性ガス濃度低減装置の原子炉格納容器内の
配置図。
FIG. 4 is a layout view of a flammable gas concentration reducing device in a reactor containment vessel.

【図5】可燃性ガス濃度低減装置の酸素ガス供給制御方
法を示すフロー図。
FIG. 5 is a flowchart showing an oxygen gas supply control method of the combustible gas concentration reducing device.

【図6】可燃性ガス濃度低減装置と外部熱交換器による
圧力低減作用を示す概念図。
FIG. 6 is a conceptual diagram showing a pressure reducing action by a combustible gas concentration reducing device and an external heat exchanger.

【図7】本発明の実施形態2による可燃性ガス濃度低減
装置の概略の構成図。
FIG. 7 is a schematic configuration diagram of a combustible gas concentration reducing device according to a second embodiment of the present invention.

【図8】本発明の実施形態1または実施形態2の代案に
よる可燃性ガス濃度低減装置の概略の構成図。
FIG. 8 is a schematic configuration diagram of a combustible gas concentration reducing device according to an alternative of the first or second embodiment of the present invention.

【図9】本発明の実施形態3による可燃性ガス濃度低減
装置の概略の構成図。
FIG. 9 is a schematic configuration diagram of a combustible gas concentration reducing device according to a third embodiment of the present invention.

【図10】本発明の実施形態5による可燃性ガス濃度低
減装置の概略の構成図。
FIG. 10 is a schematic configuration diagram of a combustible gas concentration reducing device according to a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…触媒、2…支持構造物、3…収納容器、4…配管、
5…ノズル、6…弁、7…配管、8…濃度検出器、9…
水素ガス吸収体、10…原子炉圧力容器、11…原子炉
格納容器、12…ドライウエル、13…ウェットウエ
ル、15…ブロア、16…加熱器、17…再結合器、1
8…冷却器、19…セパレータ、20,21…隔離弁、
22…ブロア、23,24…配管、30…凝縮式熱交換
器、31,32,33…配管、34…冷却水プール、5
0…収納容器入口板、51…収納容器出口板、52…検
査用ガスボンベ、53,57…配管、54,56…弁、
55…濃度検出器。
1 ... Catalyst, 2 ... Support structure, 3 ... Storage container, 4 ... Piping,
5 ... Nozzle, 6 ... Valve, 7 ... Piping, 8 ... Concentration detector, 9 ...
Hydrogen gas absorber, 10 ... Reactor pressure vessel, 11 ... Reactor containment vessel, 12 ... Dry well, 13 ... Wet well, 15 ... Blower, 16 ... Heater, 17 ... Recombiner, 1
8 ... Cooler, 19 ... Separator, 20, 21 ... Isolation valve,
22 ... Blower, 23, 24 ... Piping, 30 ... Condensing heat exchanger, 31, 32, 33 ... Piping, 34 ... Cooling water pool, 5
0 ... Storage container inlet plate, 51 ... Storage container outlet plate, 52 ... Inspection gas cylinder, 53, 57 ... Piping, 54, 56 ... Valve,
55 ... Concentration detector.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 水素ガスと酸素ガスを反応させる触媒
と、その触媒を収納した収納容器を備え、原子炉格納容
器内に複数配置された可燃性ガス濃度低減装置におい
て、 前記収納容器内の前記触媒の下方位置に、水素ガス吸収
体を配置したことを特徴とする可燃性ガス濃度低減装
置。
1. A combustible gas concentration reducing apparatus comprising a catalyst for reacting hydrogen gas and oxygen gas, and a storage container storing the catalyst, wherein a plurality of flammable gas concentration reducing devices are arranged in a reactor containment vessel. A combustible gas concentration reduction device, characterized in that a hydrogen gas absorber is arranged below the catalyst.
【請求項2】 水素ガスと酸素ガスを反応させる触媒
と、その触媒を収納した収納容器を備え、原子炉格納容
器内に複数配置された可燃性ガス濃度低減装置におい
て、 前記触媒に酸素または酸素を含むガスを供給する酸素ガ
ス供給手段と、前記格納容器内の可燃性ガス(水素及び
酸素)の濃度を検出する濃度検出手段を設け、検出した
ガス濃度に基づいて前記酸素ガス供給手段による酸素ガ
スの供給を制御することを特徴とする可燃性ガス濃度低
減装置。
2. A combustible gas concentration reducing apparatus comprising a catalyst for reacting hydrogen gas and oxygen gas, and a container for accommodating the catalyst, wherein a plurality of combustible gas concentration reducing devices are arranged in the reactor containment vessel. An oxygen gas supply means for supplying a gas containing oxygen and a concentration detection means for detecting the concentration of the combustible gas (hydrogen and oxygen) in the storage container, and oxygen based on the detected gas concentration A combustible gas concentration reducing device characterized by controlling gas supply.
【請求項3】 請求項2において、 前記収納容器内の前記触媒の下方位置に、水素ガス吸収
体を配置したことを特徴とする可燃性ガス濃度低減装
置。
3. The combustible gas concentration reducing device according to claim 2, wherein a hydrogen gas absorber is arranged below the catalyst in the storage container.
【請求項4】 請求項2または3のいずれか1項におい
て、 前記酸素ガス供給手段を原子炉格納容器の調気系と接続
し、前記酸素を含むガスとして空気を供給することを特
徴とする可燃性ガス濃度低減装置。
4. The oxygen gas supply means according to claim 2, wherein the oxygen gas supply means is connected to an air conditioning system of a reactor containment vessel, and air is supplied as the gas containing oxygen. Combustible gas concentration reduction device.
【請求項5】 請求項1乃至4のいずれか1項におい
て、 前記触媒の下方位置に濃度既知の可燃性ガス(水素及び
酸素)を供給する検査用ガス供給手段と、前記触媒の上
方位置に水素ガス濃度の検出手段を備え、前記触媒の機
能試験を可能にしたことを特徴とする可燃性ガス濃度低
減装置。
5. The inspection gas supply means for supplying a combustible gas (hydrogen and oxygen) having a known concentration to a position below the catalyst, and an inspection gas supply device to a position above the catalyst according to any one of claims 1 to 4. A combustible gas concentration reducing apparatus comprising a hydrogen gas concentration detecting means and enabling a functional test of the catalyst.
【請求項6】 請求項1乃至5のいずれか1項におい
て、 前記収納容器の下方の入口部に入口板、上方の出口部に
出口板を、通常運転時には閉止状態に設け、原子炉格納
容器内の事故時の温度または圧力の上昇に応じて前記入
口板及び前記出口板を開放するように構成したことを特
徴とする可燃性ガス濃度低減装置。
6. The reactor containment vessel according to claim 1, wherein an inlet plate is provided at a lower inlet portion of the storage container, and an outlet plate is provided at an upper outlet portion thereof in a closed state during normal operation. A combustible gas concentration reducing device, characterized in that the inlet plate and the outlet plate are opened according to a rise in temperature or pressure at the time of an accident.
【請求項7】 請求項1乃至6のいずれか1項におい
て、 前記可燃性ガス濃度低減装置は、原子炉格納容器の空間
部上方位置により多く配置したことを特徴とする可燃性
ガス濃度低減装置。
7. The combustible gas concentration reducing device according to claim 1, wherein the combustible gas concentration reducing device is arranged more in a space above the space of the reactor containment vessel. .
【請求項8】 前記請求項1乃至7のいずれか1項にお
いて、 可燃性ガス濃度低減装置を原子炉格納容器の空間部上方
位置に設け、その前記収納装置の出口部を原子炉格納容
器の外側に設置された冷却水プール内の熱交換器の入口
配管部に相対して配置したことを特徴とする可燃性ガス
濃度低減装置。
8. The combustible gas concentration reducing device according to claim 1, wherein the combustible gas concentration reducing device is provided at a position above a space portion of the reactor containment vessel, and an outlet portion of the accommodating device is provided in the reactor containment vessel. A combustible gas concentration reducing device, which is arranged so as to face an inlet pipe portion of a heat exchanger in a cooling water pool installed outside.
【請求項9】 水素ガスと酸素ガスを反応させる触媒
と、その触媒を収納した収納容器を備え、原子炉格納容
器内に複数配置された可燃性ガス濃度低減装置の制御方
法において、 原子炉格納容器内の水素ガス濃度が4%以上で、酸素ガ
ス濃度が前記水素ガス濃度以下であることを検出した場
合に、前記収納容器内に酸素ガスを供給することを特徴
とする可燃性ガス濃度低減装置の制御方法。
9. A method for controlling a combustible gas concentration reducing apparatus, comprising a plurality of catalysts for reacting hydrogen gas and oxygen gas, and a storage container for storing the catalyst, the control method comprising: When it is detected that the hydrogen gas concentration in the container is 4% or more and the oxygen gas concentration is less than or equal to the hydrogen gas concentration, oxygen gas is supplied into the storage container to reduce the flammable gas concentration. Device control method.
JP8107196A 1996-04-26 1996-04-26 Flammability gas concentration reducer and its control method Pending JPH09292491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8107196A JPH09292491A (en) 1996-04-26 1996-04-26 Flammability gas concentration reducer and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8107196A JPH09292491A (en) 1996-04-26 1996-04-26 Flammability gas concentration reducer and its control method

Publications (1)

Publication Number Publication Date
JPH09292491A true JPH09292491A (en) 1997-11-11

Family

ID=14452922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8107196A Pending JPH09292491A (en) 1996-04-26 1996-04-26 Flammability gas concentration reducer and its control method

Country Status (1)

Country Link
JP (1) JPH09292491A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11166996A (en) * 1997-12-04 1999-06-22 Toshiba Corp Hydrogen removing device of reactor containment
JPH11183690A (en) * 1997-12-25 1999-07-09 Toshiba Corp Method for restoring nuclear power plant
JP2011506990A (en) * 2007-12-21 2011-03-03 テーエヌ・アンテルナシオナル Radioactive material transport and / or storage device designed to allow controlled release of oxygen in a sealed container
EP1482292A3 (en) * 2003-05-30 2012-03-28 Air Products And Chemicals, Inc. Fueling nozzle with integral hydrogen leak sensor
JP2013083470A (en) * 2011-10-06 2013-05-09 Hitachi-Ge Nuclear Energy Ltd Hydrogen treatment facility for nuclear power plant

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56137298A (en) * 1980-03-31 1981-10-27 Hitachi Ltd Burnable gas condensation control system
JPH02238399A (en) * 1989-03-13 1990-09-20 Toshiba Corp Reactor containment facilities
JPH03200097A (en) * 1989-12-28 1991-09-02 Toshiba Corp Control system for concentration of combustible gas in atomic power plant
JPH04235388A (en) * 1991-01-09 1992-08-24 Toshiba Corp Nuclear power plant
JPH05164892A (en) * 1991-12-11 1993-06-29 Toshiba Corp Inflammable gas control device for nuclear reactor
JPH05203778A (en) * 1992-01-24 1993-08-10 Hitachi Ltd Static system for controlling concentration of burnable gas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56137298A (en) * 1980-03-31 1981-10-27 Hitachi Ltd Burnable gas condensation control system
JPH02238399A (en) * 1989-03-13 1990-09-20 Toshiba Corp Reactor containment facilities
JPH03200097A (en) * 1989-12-28 1991-09-02 Toshiba Corp Control system for concentration of combustible gas in atomic power plant
JPH04235388A (en) * 1991-01-09 1992-08-24 Toshiba Corp Nuclear power plant
JPH05164892A (en) * 1991-12-11 1993-06-29 Toshiba Corp Inflammable gas control device for nuclear reactor
JPH05203778A (en) * 1992-01-24 1993-08-10 Hitachi Ltd Static system for controlling concentration of burnable gas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11166996A (en) * 1997-12-04 1999-06-22 Toshiba Corp Hydrogen removing device of reactor containment
JPH11183690A (en) * 1997-12-25 1999-07-09 Toshiba Corp Method for restoring nuclear power plant
EP1482292A3 (en) * 2003-05-30 2012-03-28 Air Products And Chemicals, Inc. Fueling nozzle with integral hydrogen leak sensor
JP2011506990A (en) * 2007-12-21 2011-03-03 テーエヌ・アンテルナシオナル Radioactive material transport and / or storage device designed to allow controlled release of oxygen in a sealed container
JP2013083470A (en) * 2011-10-06 2013-05-09 Hitachi-Ge Nuclear Energy Ltd Hydrogen treatment facility for nuclear power plant

Similar Documents

Publication Publication Date Title
KR102225810B1 (en) Emission monitoring system for a venting system of a nuclear power plant
US8848856B2 (en) Method for catalytic recombination of hydrogen, which is carried in a gas flow, with oxygen and a recombination system for carrying out the method
RU2358255C2 (en) Method and system of taking samples from atmosphere of reactor containment of nuclear process installation
JP6876447B2 (en) Nuclear power plant
US20120294404A1 (en) Nuclear Power Plant and Method of Operating It
EP2704153B1 (en) Gas treatment equipment of nuclear power plant
US3890100A (en) Gas conditioning and analyzing system
JPH09292491A (en) Flammability gas concentration reducer and its control method
JPH05203778A (en) Static system for controlling concentration of burnable gas
WO2020121714A1 (en) Organic iodine collection device and organic iodine collection method
US4430292A (en) Radioactive gaseous waste disposing system
JP3596843B2 (en) Combustible gas concentration control device
JPH1194992A (en) Catalyst type recombiner
JPH0990092A (en) Reactor container
JPH04348299A (en) Reactor plant
Solaija et al. Filtered Containment Venting System (FCVS) for removal of elemental and organic iodine during severe nuclear power plant accidents
JPH06281779A (en) Reactor container cooling device
JPH10227885A (en) Flammable gas concentration controlling system
JPH10221477A (en) Reactor containment
JP3402915B2 (en) Combustible gas concentration control device
JPS63289488A (en) Pressure controller for containment vessel of nuclear reactor
Henrie et al. Evaluation of special safety issues associated with handling the Three Mile Island Unit 2 core debris
JPS5819599A (en) Heating device for recombiner of radioactive gaseous waste processing system
Gildea Operating experience with the Sandia tritium facility cleanup systems
JP2000292581A (en) Reactor containment vessel