JPH09292387A - Method and apparatus for measuring amount of component to be measured - Google Patents

Method and apparatus for measuring amount of component to be measured

Info

Publication number
JPH09292387A
JPH09292387A JP10500896A JP10500896A JPH09292387A JP H09292387 A JPH09292387 A JP H09292387A JP 10500896 A JP10500896 A JP 10500896A JP 10500896 A JP10500896 A JP 10500896A JP H09292387 A JPH09292387 A JP H09292387A
Authority
JP
Japan
Prior art keywords
measured
component
amount
value
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10500896A
Other languages
Japanese (ja)
Inventor
Kazuo Iketaki
和雄 池滝
Yoshiharu Sato
義治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkray Inc
Original Assignee
KDK Corp
Kyoto Daiichi Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDK Corp, Kyoto Daiichi Kagaku KK filed Critical KDK Corp
Priority to JP10500896A priority Critical patent/JPH09292387A/en
Publication of JPH09292387A publication Critical patent/JPH09292387A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To more accurately determine the amount of a component to be measured from a measured physical quantity. SOLUTION: After the reaction is made between a sample to be measured and a reagent, the amount of a component to be measured contained in the sample to be measured is determined, based on a measured value obtained using the sample. In this case, a table indicating a corresponding relationship between a preset value and a corresponding amount of a component primarily corresponding to a set value in the component to be measured is prepared beforehand, and the amount of the component to be measured is derived regarding the measured value based on the table (S6).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、被測定試料に含ま
れる被測定成分の成分量を上記被測定試料を用いて測定
する際における、被測定成分量の測定方法及び該測定方
法を使用する測定装置に関する。特に、本発明は、医療
分野において例えば血液や尿のような生体液に含まれる
被測定成分の成分量の測定に際し使用され、さらにはい
わゆるドライケミストリーを応用して被測定成分の成分
量の測定を行う際に使用される被測定成分量の測定方法
及び測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a method for measuring the amount of a component to be measured when the amount of the component to be measured contained in the sample to be measured is measured using the sample to be measured. Regarding measuring device. In particular, the present invention is used in the medical field for the measurement of the amount of components of the components to be measured contained in biological fluids such as blood and urine, and further the so-called dry chemistry is applied to measure the amount of components of the components to be measured. The present invention relates to a measuring method and a measuring device for measuring an amount of a component to be measured used in performing

【0002】[0002]

【従来の技術】被測定試料として例えば血液や尿のよう
な生化学分野における生体液を例に説明する。上記生体
液に含まれる被測定成分、例えば糖成分、即ちグルコー
スの濃度を上記生体液を用いて測定を行う装置が存在す
る。このような装置の一例として、乾燥させた試薬と被
測定試料とを反応させる、いわゆるドライケミストリー
を利用し、上記生体液に含まれる被測定成分の成分量を
測定する装置が存在する。図9に示すものは、このよう
な測定装置140にセットされる試験片130である。
尚、この試験片130は、本願出願人による特許出願の
特開平4−188065号公報に開示される液体試料分
析用具に相当するものである。試験片130の裏面13
2に取り付けられる支持体133には貫通穴134が形
成されており、上述のドライケミストリーを利用した試
薬からなる試薬層を含む反応部135が該貫通穴134
を覆い支持体133に取り付けられている。又、試験片
130の表面131側には試料供給用穴136及び空気
排出用穴137が形成され、試料供給用穴136と空気
排出用穴137とは毛細管室138を介して連通されて
いる。尚、上記反応部135は、毛細管室138の延在
長さにおけるほぼ中央部に配置される。
2. Description of the Related Art As a sample to be measured, a biological fluid in the field of biochemistry such as blood and urine will be described as an example. There is an apparatus that measures the concentration of a component to be measured, for example, a sugar component, that is, glucose, contained in the biological fluid using the biological fluid. As an example of such an apparatus, there is an apparatus that measures the amount of the component to be measured contained in the biological fluid by utilizing a so-called dry chemistry in which a dried reagent and a sample to be measured are reacted. What is shown in FIG. 9 is a test piece 130 set in such a measuring device 140.
The test piece 130 corresponds to the liquid sample analysis tool disclosed in Japanese Patent Application Laid-Open No. 4-188065 filed by the applicant of the present application. Back surface 13 of test piece 130
A through hole 134 is formed in the support 133 attached to the No. 2 and the reaction part 135 including the reagent layer made of the reagent using the above-mentioned dry chemistry is provided in the through hole 134.
And is attached to the support 133. Further, a sample supply hole 136 and an air discharge hole 137 are formed on the surface 131 side of the test piece 130, and the sample supply hole 136 and the air discharge hole 137 are communicated with each other through a capillary chamber 138. The reaction part 135 is arranged substantially at the center of the length of the capillary chamber 138.

【0003】一方、上記試験片130がセットされる上
記測定装置140には、図10に示すように、濃度測定
用LED(発光ダイオード)141と、点着検知用LE
D142と、受光用光検出器143と、補正用光検出器
144と、光分岐ガラス板145とを備える。尚、濃度
測定用LED141は、試験片130が使用済のものか
否かを確認するためにも使用され、点着検知用LED1
42は試験片130の有無を検出するためにも使用され
る。
On the other hand, as shown in FIG. 10, the measuring device 140 on which the test piece 130 is set has an LED (light emitting diode) 141 for concentration measurement and an LE for spotting detection.
D142, a light receiving photodetector 143, a correcting photodetector 144, and a light branching glass plate 145. The concentration measuring LED 141 is also used to confirm whether or not the test piece 130 has been used.
42 is also used to detect the presence or absence of the test strip 130.

【0004】このような試験片130と測定装置140
とにおいて、被測定成分として例えば血糖、即ちグルコ
ースを例に採った場合、被測定試料である血液を上記試
料供給用穴136に点着することで、点着された血液
は、毛細管室138を空気排出用穴137の方向へ毛細
管現象にて浸透して行く。よって、点着された血液が反
応部135にも到達し、血液中のグルコースと上記試薬
層の試薬との反応が生じる。尚、上記試薬はグルコース
オキシダーゼ、ペルオキシダーゼを含み、反応部135
は反応前においては黄色を呈している。血液中のグルコ
ースは上記グルコースオキシダーゼにより酸化される。
よって上記反応部135においてグルコン酸と過酸化水
素とが生成される。生成された過酸化水素は上記ペルオ
キシダーゼにより、青緑色のキノン色素を生成する。こ
のように反応部135は、反応前の黄色から反応後にお
いて青緑色に色相が変化する。生成されたキノン色素の
量は、濃度測定用LED141から発せられ反応部13
5にて反射した光を受光用光検出器143にて受光し該
検出器143の出力電圧に基づき反射率として求めら
れ、該反射率に基づきグルコース濃度が測定される。
Such a test piece 130 and a measuring device 140
In the case where blood glucose, that is, glucose is taken as an example of the component to be measured, the blood as the sample to be measured is spotted in the sample supply hole 136, so that the spotted blood is stored in the capillary chamber 138. It permeates in the direction of the air discharge hole 137 by a capillary phenomenon. Therefore, the spotted blood reaches the reaction part 135, and the reaction between glucose in the blood and the reagent in the reagent layer occurs. The above reagent contains glucose oxidase and peroxidase, and the reaction part 135
Has a yellow color before the reaction. Glucose in blood is oxidized by the glucose oxidase.
Therefore, gluconic acid and hydrogen peroxide are produced in the reaction section 135. The produced hydrogen peroxide produces a blue-green quinone dye by the above peroxidase. In this way, the reaction portion 135 changes its hue from yellow before the reaction to blue-green after the reaction. The amount of the generated quinone dye is emitted from the concentration measuring LED 141 and is emitted from the reaction unit 13
The light reflected at 5 is received by the light-receiving photodetector 143, the reflectance is obtained based on the output voltage of the detector 143, and the glucose concentration is measured based on the reflectance.

【0005】上記ドライケミストリーは、試薬が乾燥状
態のため、i)液体の試薬のように試薬の調整が不要で
ある、ii)比較的長期間にわたり安定している、ii
i)試薬の保存スペースが小さくてすむ、iv)試薬の
取り扱いが簡単である、v)測定操作が簡単である、v
i)被測定試料が微量ですむ、という特徴がある。この
ような特徴から、ドライケミストリーは、緊急検査、診
察前検査(スクリーニング)、個人使用物等に多く用い
られている。
In the above dry chemistry, since the reagent is in a dry state, it is not necessary to adjust the reagent like a liquid reagent, ii) stable for a relatively long period of time, ii
i) small storage space for reagents, iv) easy handling of reagents, v) easy measurement operation, v
i) The feature is that the amount of sample to be measured is small. Due to these characteristics, dry chemistry is often used for emergency tests, pre-examination tests (screening), personal items, and the like.

【0006】[0006]

【発明が解決しようとする課題】上述した測定装置14
0において、上述したように反応部135の色相の変化
による上記反射率から直接に血液中のグルコース濃度を
測定することは測定誤差が大きい。したがって、所定の
反射率に基づき予め算出した「K/S」なる項目を用い
たK/S関数を利用して上記反射率からグルコース濃度
を算出する。尚、上記K/S関数にて得られる値(以
下、「K/S関数値」という)と濃度との関係は、図8
に示すように1次関数のような検量線にて示されるの
で、実際には、測定された反射率について上記検量線に
基づき算出された式であって上記測定装置140内に格
納されている換算式を利用してグルコース濃度が測定さ
れる。尚、上記K/Sとは、吸収散乱体における吸収係
数と散乱係数との比であり、クベルカ−ムンクの式にて
得られるものである。検量線150は、図8に示すよう
に、横軸に濃度値、縦軸に上記K/S関数値をとった直
交座標に、予め、複数の既知のグルコース濃度と、これ
らのそれぞれのグルコース濃度に対して測定されたそれ
ぞれの反射率を元に得られた上記K/S関数値との交点
151を順次記し、これら複数の交点151に基づき例
えば最小自乗法を使用して作成した1次直線、又は3次
の曲線(図8には不図示)である。このような検量線1
50から1次又は3次式の上記換算式が算出され、該換
算式に関するデータが測定装置140内に予め格納され
る。このような検量線150の性質から、被測定試料中
のグルコース濃度と反射率から求めた上記K/S関数値
との関係のすべてが上記検量線150に基づく上記換算
式にて示される関係に一致することはない。又、上記換
算式に基づき濃度値を算出する場合には、真の濃度値が
上記換算式にて求まる換算濃度値から大きく外れ始める
値、即ち符号152,153に相当する値が当該測定装
置における検出限界値となる。この検出限界値は、被測
定成分や測定する物性によって大きく異なるが、例えば
上述のグルコースで、物性が電圧の場合には、真の濃度
値が上記換算濃度値から±15%程度外れてくる値であ
る。特に、上述のドライケミストリーを利用する場合、
上記K/S関数値と上記被測定成分濃度との関係は非直
線性となることが多く、したがって検量線を用いて換算
する方法では、上記K/S関数値と上記被測定成分濃度
との関係が直線性を有する範囲、即ち測定精度の高い範
囲154が狭くなる。
The measuring device 14 described above is used.
At 0, as described above, measuring the glucose concentration in blood directly from the reflectance due to the change in the hue of the reaction part 135 causes a large measurement error. Therefore, the glucose concentration is calculated from the reflectance using the K / S function using the item “K / S” calculated in advance based on the predetermined reflectance. The relationship between the value obtained by the above K / S function (hereinafter referred to as “K / S function value”) and the concentration is shown in FIG.
Since it is represented by a calibration curve such as a linear function as shown in (1), it is actually an equation calculated based on the calibration curve for the measured reflectance and stored in the measuring device 140. The glucose concentration is measured using the conversion formula. The above K / S is the ratio of the absorption coefficient and the scattering coefficient in the absorbing / scattering body, and is obtained by the Kubelka-Munk equation. As shown in FIG. 8, the calibration curve 150 has a plurality of known glucose concentrations and their respective glucose concentrations in advance on the Cartesian coordinates in which the horizontal axis represents the concentration value and the vertical axis represents the K / S function value. The intersections 151 with the above K / S function values obtained based on the respective measured reflectances are sequentially described, and a linear line created by using, for example, the least squares method based on the plurality of intersections 151. , Or a cubic curve (not shown in FIG. 8). Such a calibration curve 1
The conversion formula of the linear or cubic formula is calculated from 50, and the data related to the conversion formula is stored in the measuring device 140 in advance. From the properties of the calibration curve 150, all the relationships between the glucose concentration in the sample to be measured and the K / S function value obtained from the reflectance are expressed by the conversion formula based on the calibration curve 150. There is no match. Further, when the concentration value is calculated based on the above conversion formula, the value at which the true concentration value starts to deviate greatly from the converted concentration value obtained by the above conversion formula, that is, the values corresponding to the reference numerals 152 and 153 are It becomes the detection limit value. The detection limit value greatly varies depending on the component to be measured and the physical property to be measured. For example, in the case of glucose described above, when the physical property is voltage, the true concentration value deviates from the converted concentration value by about ± 15%. Is. Especially when using the above-mentioned dry chemistry,
The relationship between the K / S function value and the concentration of the measured component is often non-linear. Therefore, in the method of converting using the calibration curve, the K / S function value and the concentration of the measured component are The range in which the relationship has linearity, that is, the range 154 with high measurement accuracy is narrowed.

【0007】尚、以上の説明は、試薬としてドライケミ
ストリーを利用した場合であって、反射率から得られる
K/S関数値とグルコース濃度との関係を例に採った
が、被測定試料における被測定成分はグルコースに限ら
れるものではなく、又、測定されるある物性における測
定値も上述の反射率に限られるものではなく光の透過率
や、伝導度や、起電力等がある。このような測定値から
被測定成分の成分量を測定する場合においても上記検量
線が使用されており、上述したような問題がある。本発
明は上述したような問題点を解決するためになされたも
ので、測定値から被測定成分の成分量をより正確に求め
ることができる、被測定成分量の測定方法及び当該測定
方法を使用した測定装置を提供することを目的とする。
In the above description, the case where dry chemistry is used as a reagent and the relationship between the K / S function value obtained from the reflectance and the glucose concentration is taken as an example. The component to be measured is not limited to glucose, and the measured value of a certain physical property to be measured is not limited to the above-mentioned reflectance, but may be light transmittance, conductivity, electromotive force, or the like. The above-mentioned calibration curve is used even when the component amount of the component to be measured is measured from such a measured value, and there is a problem as described above. The present invention has been made in order to solve the above-mentioned problems, and it is possible to more accurately determine the component amount of the component to be measured from the measured value. It is an object of the present invention to provide a measuring device that

【0008】[0008]

【課題を解決するための手段とその作用】本発明の第1
態様による測定方法は、被測定試料と試薬とを反応させ
た反応後試料を用いて測定されたある物性における測定
値に基づき上記被測定試料に含まれる被測定成分の被測
定成分量を求める測定方法であって、上記測定値に対す
る上記被測定成分量は、上記測定値における物性と同一
の物性において予め設定した設定値と、上記被測定成分
において上記設定値に一義的に対応する対応成分量との
対応関係を表すテーブルに基づき導き出すことを特徴と
する。
Means for Solving the Problems and Their Actions First of the Invention
The measurement method according to the embodiment is a method of obtaining the amount of a component to be measured of the component to be measured contained in the sample to be measured based on a measured value in a certain physical property measured using a sample after reaction in which a sample to be measured and a reagent are reacted In the method, the measured component amount for the measured value is a preset value in the same physical property as the physical property in the measured value, and the corresponding component amount uniquely corresponding to the set value in the measured component. It is characterized in that it is derived based on a table showing the correspondence relationship with.

【0009】又、本発明の第2態様による測定方法は、
被測定試料と試薬とを反応させた反応後試料を用いて測
定されたある物性における測定値に基づき上記被測定試
料に含まれる被測定成分の被測定成分量を求めるため、
上記被測定試料に含まれる被測定成分における複数の既
知の成分量と該既知成分量に対応する複数の既知測定値
との複数の関係に基づき検量線を予め求め、上記測定値
について上記検量線に基づき上記被測定成分量を求める
測定方法であって、上記検量線に基づき上記被測定成分
量を求めることができる換算可能範囲に上記測定値が含
まれるときにはこの測定値については上記検量線に基づ
き上記被測定成分量を求め、上記検量線に基づき上記被
測定成分量を求めることができない換算禁止範囲に上記
測定値が含まれるときには、上記測定値における物性と
同一の物性において予め設定した設定値と、上記被測定
成分において上記設定値に一義的に対応する対応成分量
との対応関係を表すテーブルに基づき上記測定値に対す
る上記被測定成分量を導き出すことを特徴とする。
The measuring method according to the second aspect of the present invention is
In order to obtain the measured component amount of the measured component contained in the measured sample based on the measured value in a certain physical property measured using the reaction sample after reacting the measured sample and the reagent,
A calibration curve is obtained in advance based on a plurality of known component amounts in the measured component contained in the measured sample and a plurality of known measured values corresponding to the known component amounts, and the calibration curve for the measured values is obtained. A measurement method for obtaining the amount of the component to be measured based on the above, when the measured value is included in the convertible range in which the amount of the component to be measured can be obtained based on the calibration curve If the measured value is included in the conversion prohibited range in which the measured component amount is determined based on the calibration curve and the measured component amount cannot be determined based on the calibration curve, the preset setting is the same as the physical property of the measured value. And the measured component for the measured value based on a table showing the correspondence relationship between the value and the corresponding component amount that uniquely corresponds to the set value in the measured component. Characterized in that derive.

【0010】又、本発明の第3態様による測定装置は、
被測定試料と試薬とを反応させた反応後試料を用いて測
定されたある物性における測定値に基づき上記被測定試
料に含まれる被測定成分の被測定成分量を求めるための
被測定成分量の測定方法を使用する測定装置であって、
上記測定値に対する上記被測定成分量は、上記測定値に
おける物性と同一の物性において予め設定した設定値
と、上記被測定成分において上記設定値に一義的に対応
する対応成分量との対応関係を表すテーブルに基づき導
き出すことを特徴とする。
The measuring device according to the third aspect of the present invention is
Of the measured component amount for obtaining the measured component amount of the measured component contained in the measured sample based on the measured value in a certain physical property measured by using the post-reaction sample obtained by reacting the measured sample with a reagent A measuring device using a measuring method,
The measured component amount for the measured value is a preset value in the same physical property as the physical property in the measured value, and the corresponding relationship between the corresponding component amount that uniquely corresponds to the set value in the measured component. It is characterized in that it is derived based on the table shown.

【0011】又、本発明の第4態様による測定装置は、
被測定試料と試薬とを反応させた反応後試料を用いて測
定されたある物性における測定値に基づき上記被測定試
料に含まれる被測定成分の被測定成分量を求めるための
被測定成分量の測定方法を使用する測定装置であって、
上記測定値における物性と同一の物性において予め設定
した設定値と、上記被測定成分において上記設定値に一
義的に対応する対応成分量との対応関係を表すテーブル
を記憶するメモリと、上記測定値が供給され当該測定値
に対応する上記対応成分量を上記メモリから読み出す成
分量導出手段と、を備えたことを特徴とする。
The measuring device according to the fourth aspect of the present invention is
Of the measured component amount for obtaining the measured component amount of the measured component contained in the measured sample based on the measured value in a certain physical property measured by using the post-reaction sample obtained by reacting the measured sample with a reagent A measuring device using a measuring method,
A memory that stores a table showing a correspondence relationship between a preset value in the same physical property as the measured value and a corresponding component amount that uniquely corresponds to the set value in the measured component, and the measured value And component amount deriving means for reading the corresponding component amount corresponding to the measured value from the memory.

【0012】又、本発明の第5態様による測定装置は、
被測定試料と試薬とを反応させた反応後試料を用いて測
定されたある物性における測定値に基づき上記被測定試
料に含まれる被測定成分の被測定成分量を求めるため、
上記被測定試料に含まれる被測定成分における複数の既
知の成分量と該既知成分量に対応する複数の既知測定値
との複数の関係に基づき検量線を予め求め、上記測定値
について上記検量線に基づき上記被測定成分量を求める
測定方法を使用する測定装置であって、上記検量線に基
づき上記被測定成分量を求めることができる換算可能範
囲に上記測定値が含まれるときにはこの測定値について
は上記検量線に基づき上記被測定成分量を求め、上記検
量線に基づき上記被測定成分量を求めることができない
換算禁止範囲に上記測定値が含まれるときには、上記測
定値における物性と同一の物性において予め設定した設
定値と、上記被測定成分において上記設定値に一義的に
対応する対応成分量との対応関係を表すテーブルに基づ
き上記測定値に対する上記被測定成分量を導き出すこと
を特徴とする。
The measuring apparatus according to the fifth aspect of the present invention is
In order to obtain the measured component amount of the measured component contained in the measured sample based on the measured value in a certain physical property measured using the reaction sample after reacting the measured sample and the reagent,
A calibration curve is obtained in advance based on a plurality of known component amounts in the measured component contained in the measured sample and a plurality of known measured values corresponding to the known component amounts, and the calibration curve for the measured values is obtained. A measurement device that uses a measurement method for determining the measured component amount based on the above, when the measured value is included in the convertible range in which the measured component amount can be calculated based on the calibration curve Is the same as the physical property in the measured value when the measured value is included in the conversion prohibited range in which the measured component amount cannot be calculated based on the calibration curve. In the above-mentioned measured value based on the table showing the correspondence relationship between the preset value and the corresponding component amount that uniquely corresponds to the preset value in the measured component. That wherein the deriving the measuring component amount.

【0013】又、本発明の第6態様による測定装置は、
被測定試料と試薬とを反応させた反応後試料を用いて測
定されたある物性における測定値に基づき上記被測定試
料に含まれる被測定成分の被測定成分量を求めるため、
上記被測定試料に含まれる被測定成分における複数の既
知の成分量と該既知成分量に対応する複数の既知測定値
との複数の関係に基づき検量線を予め求め、上記測定値
について上記検量線に基づき上記被測定成分量を求める
測定方法を使用する測定装置であって、上記測定値にお
ける物性と同一の物性において予め設定した設定値と、
上記被測定成分において上記設定値に一義的に対応する
対応成分量との対応関係を表すテーブルと、上記検量線
を表す情報とを記憶するメモリと、上記測定値が供給さ
れ、供給された測定値が上記検量線に基づき上記被測定
成分量を求めることができる換算可能範囲に含まれるか
否かを判断する判断手段と、上記判断手段に電気的に接
続され、上記判断手段にて上記測定値が上記換算可能範
囲に含まれると判断されたときには当該測定値について
は上記メモリに記憶される上記検量線を表す情報に基づ
き上記被測定成分量を求め、一方、上記判断手段にて上
記測定値が上記検量線に基づき上記被測定成分量を求め
ることができない換算禁止範囲に含まれると判断したと
きには当該測定値については上記メモリに記憶される上
記テーブルに基づき上記被測定成分量を求める成分量導
出手段と、を備えたことを特徴とする。
The measuring device according to the sixth aspect of the present invention is
In order to obtain the measured component amount of the measured component contained in the measured sample based on the measured value in a certain physical property measured using the reaction sample after reacting the measured sample and the reagent,
A calibration curve is obtained in advance based on a plurality of known component amounts in the measured component contained in the measured sample and a plurality of known measured values corresponding to the known component amounts, and the calibration curve for the measured values is obtained. A measurement device that uses a measurement method for determining the amount of the component to be measured based on, with preset values set in the same physical properties as the measured values,
In the measured component, a table representing the correspondence relationship with the corresponding component amount that uniquely corresponds to the set value, a memory that stores information that represents the calibration curve, and the measured value is supplied, the supplied measurement Judgment means for judging whether or not the value is included in the convertible range capable of obtaining the measured component amount based on the calibration curve, and electrically connected to the judgment means, and the measurement is performed by the judgment means. When it is determined that the value falls within the convertible range, the measured component amount is obtained based on the information representing the calibration curve stored in the memory for the measured value, while the determination unit determines the measured value. When it is determined that the value falls within the conversion prohibited range where the measured component amount cannot be obtained based on the calibration curve, the measured value is based on the table stored in the memory. Characterized in that and a component amount deriving means for obtaining the measured component amount.

【0014】上記第1態様による測定方法、並びに第3
及び第4態様による測定装置は、測定値について、検量
線を使用せずに、設定値と対応成分量との予め作成した
対応関係に基づき被測定成分量を導き出すことから、従
来のように検量線による換算にて被測定成分量を求めた
場合には換算により求めた成分量と真の成分量との差が
大きく測定精度が悪くなる範囲についても、高い精度に
て被測定成分量を求めるように作用する。
The measuring method according to the first aspect, and the third method
And the measuring device according to the fourth aspect derives the measured component amount based on the previously created correspondence relationship between the set value and the corresponding component amount for the measured value without using the calibration curve, and thus the conventional calibration method is used. When the measured component amount is obtained by line conversion, the measured component amount is obtained with high accuracy even in the range where the difference between the component amount obtained by conversion and the true component amount is large and the measurement accuracy deteriorates. Acts like.

【0015】又、上記第2態様による測定方法、並びに
第5及び第6態様による測定装置においては、検量線に
よる換算にて被測定成分量を求めた場合であっても、換
算により求めた成分量と真の成分量との差が小さく測定
精度の良い、換算可能範囲については従来通り検量線を
用いて被測定成分量を求める。一方、検量線による換算
では測定精度が悪くなる換算禁止範囲においては、設定
値と対応成分量との予め作成した対応関係に基づき被測
定成分量を導き出す。このように、第2態様による測定
方法、並びに第5及び第6態様による測定装置は、測定
の全範囲において高い精度にて被測定成分量を求めるよ
うに作用する。
Further, in the measuring method according to the second aspect and the measuring apparatus according to the fifth and sixth aspects, even when the amount of the component to be measured is obtained by the conversion by the calibration curve, the component obtained by the conversion is calculated. For the convertible range in which the difference between the amount and the true component amount is small and the measurement accuracy is good, the measured component amount is obtained using a calibration curve as in the conventional method. On the other hand, in the conversion prohibited range in which the measurement accuracy is deteriorated by the conversion using the calibration curve, the measured component amount is derived based on the previously created correspondence between the set value and the corresponding component amount. As described above, the measuring method according to the second aspect and the measuring apparatuses according to the fifth and sixth aspects act so as to obtain the amount of the component to be measured with high accuracy in the entire measurement range.

【0016】[0016]

【発明の実施の形態】本発明の一実施形態である、被測
定成分量の測定方法について図、表を参照しながら以下
に説明する。尚、本発明の他の実施形態である測定装置
は上記測定方法を使用して機能する装置である。又、こ
れらの実施形態にて使用する、被測定試料としては、あ
らゆる液体、気体等が使用可能な他、例えば生体液が使
用可能であり、具体的には血液や尿等が使用可能であ
る。又、試薬は、上記被測定試料に含まれる被測定成分
の成分量を求めるために上記被測定試料と反応するもの
であり、液体状のものや乾燥したものが使用可能であ
る。当該実施形態においては、特にいわゆるドライケミ
ストリーと呼ばれる、試薬が乾燥したタイプを利用する
場合を例にとる。又、測定値とは、測定者が必要とす
る、例えば成分量を提供するため、上記被測定試料と上
記試薬とを反応させた反応後試料から得られる光の反射
率、光の透過率、伝導度、起電力等の物性における値を
いう。上記測定値としては、例えば上述したような試験
片130の反応部135における反射光を光検出器14
3にて受光して得られる電圧値や反射率、あるいは上記
反応後試料に対して電極から得られる電圧値や電流値等
が相当する。又、後述するように「テーブル」を作成す
るため、上記物性の内、予め設定した値を設定値とす
る。
BEST MODE FOR CARRYING OUT THE INVENTION A method for measuring the amount of a component to be measured, which is an embodiment of the present invention, will be described below with reference to the drawings and tables. A measuring device according to another embodiment of the present invention is a device that functions by using the above measuring method. Further, as the sample to be measured used in these embodiments, any liquid, gas or the like can be used, for example, biological fluid can be used, and specifically blood, urine or the like can be used. . The reagent reacts with the sample to be measured in order to obtain the amount of the component to be measured contained in the sample to be measured, and a liquid or dried reagent can be used. In this embodiment, a case where a dry reagent type is used, which is so-called dry chemistry, is used as an example. Further, the measurement value is required by the measurer, for example, in order to provide the component amount, the reflectance of light obtained from the reaction sample after reacting the sample to be measured and the reagent, the transmittance of light, It is a value in physical properties such as conductivity and electromotive force. As the above-mentioned measurement value, for example, the reflected light in the reaction part 135 of the test piece 130 as described above is detected by the photodetector 14
3 corresponds to the voltage value or reflectance obtained by receiving light at 3, or the voltage value or current value obtained from the electrode for the post-reaction sample. Further, as will be described later, a “table” is created, so that among the above-mentioned physical properties, preset values are used as set values.

【0017】当該測定方法においては、まず、上記設定
値と、該設定値に一義的に対応する値であって、上記設
定値に対応する、上記被測定成分量の実測値である対応
成分量との対応関係を示したものを、いわゆるテーブル
の形態にて作成する。このテーブルの具体例を後述の実
施例内に示す。尚、例えば表1に記載する「電圧値」の
各値が上記設定値に対応し、「テーブル換算」の欄にお
ける「濃度」の各値が上記対応成分量に対応する。又、
表1における電圧値は、上述したように反応部135に
おける光の反射率に基づき光検出器143から出力され
るものである。又、テーブルに記述する各データの採取
は、後述するように、通常、予め成分量が既知、即ち真
の濃度値を有する被測定試料についての測定値、即ち設
定値、及び上記測定値から求まる上記対応成分量を求め
ることで、上記対応成分量と上記設定値との対応関係を
調べることで行う。
In the measurement method, first, the set value and a corresponding component amount that is a value that uniquely corresponds to the set value and that is the measured value of the measured component amount that corresponds to the set value. A table showing a correspondence relationship with is created in the form of a so-called table. A specific example of this table will be shown in an embodiment described later. In addition, for example, each value of “voltage value” described in Table 1 corresponds to the set value, and each value of “concentration” in the column of “table conversion” corresponds to the corresponding component amount. or,
The voltage values in Table 1 are output from the photodetector 143 based on the reflectance of light in the reaction section 135 as described above. In addition, the collection of each data described in the table is usually obtained from the measured value, that is, the set value, and the measured value of the sample to be measured whose component amount is known in advance, that is, the true concentration value, as described later. By determining the corresponding component amount, the correspondence between the corresponding component amount and the set value is examined.

【0018】本実施形態では、上述したようなテーブル
を参照し被測定成分量を求める。例えば反射光にて得ら
れる電圧によりグルコース濃度を測定する場合であれ
ば、表1を参照し、例えば測定値が34.8mVである
ならば、「電圧値」の「34.8mV」に対応する濃度
値である「75.5mg/dl」を導出する。又、測定
値がテーブルには記載のない値となった場合、例えば表
1において測定値が32.0mVとなった場合には、表
1のテーブルに存在する設定値「34.8mV」及び
「30.7mV」と、これらにそれぞれ対応する「濃度
値」の「75.5mg/dl」及び「98.6mg/d
l」とに基づき例えば内挿計算を行う等して、上記3
2.0mVに対応する濃度値を求めることができる。
尚、上記設定値の設定間隔は、各被測定成分に対応して
経験に基づき決定されるものである。
In the present embodiment, the amount of component to be measured is obtained by referring to the above table. For example, in the case of measuring the glucose concentration by the voltage obtained by reflected light, refer to Table 1. If the measured value is 34.8 mV, it corresponds to “34.8 mV” of “voltage value”. The concentration value “75.5 mg / dl” is derived. Further, when the measured value is a value not described in the table, for example, when the measured value is 32.0 mV in Table 1, the set values “34.8 mV” and 30.7 mV "and" concentration values "of" 75.5 mg / dl "and" 98.6 mg / d ", respectively.
Based on “1”, for example, interpolation calculation is performed, and the above 3
A concentration value corresponding to 2.0 mV can be obtained.
The setting intervals of the above-mentioned set values are determined empirically corresponding to each measured component.

【0019】又、テーブルは、測定者が必要とする測定
範囲のすべてにわたり作成することができるが、上記テ
ーブルのデータを記憶するメモリの容量との兼ね合いか
ら、被測定成分量を求めるのに際し上述した検量線と、
上記テーブルとを併用してもよい。即ち、上述した検量
線に基づき被測定成分量を換算可能な換算可能範囲、例
えば図8に記す、測定精度の高い範囲154に測定値が
含まれるときには、検量線を用いて被測定成分量を求
め、一方、検量線に基づき被測定成分量を換算したので
は換算により得られる値と真の成分量との誤差が大きく
なるような換算禁止範囲、例えば図8に記す、範囲15
5,156に測定値が含まれるときには、テーブルを使
用して被測定成分量を導出するようにしてもよい。この
ような併用タイプでは、各被測定成分について予め上記
換算可能範囲を決定しておき、上記換算禁止範囲につい
てテーブルを作成する。よってメモリには上記換算禁止
範囲についてのテーブルに関するデータを記憶すること
で、メモリの記憶容量の増大を防止することができる。
The table can be created over the entire measuring range required by the measurer, but in consideration of the capacity of the memory for storing the data of the table, the above-mentioned method is used when determining the amount of the component to be measured. Calibration curve,
You may use together with the said table. That is, when the measured value is included in the convertible range in which the measured component amount can be converted based on the calibration curve described above, for example, the range 154 with high measurement accuracy shown in FIG. 8, the measured component amount is calculated using the calibration curve. On the other hand, on the other hand, if the measured component amount is converted based on the calibration curve, a conversion prohibited range in which the error between the value obtained by the conversion and the true component amount becomes large, for example, range 15 shown in FIG.
When the measured values are included in 5, 156, a table may be used to derive the measured component amount. In such a combined type, the convertible range is determined in advance for each component to be measured, and a table is created for the conversion prohibited range. Therefore, by storing the data related to the table of the above-mentioned conversion prohibited range in the memory, it is possible to prevent the storage capacity of the memory from increasing.

【0020】各設定値と、該設定値に対応する対応成分
量の値との対応関係については、通常、既知の成分量を
有する被測定試料、換言すると真の成分量が予め既知の
被測定試料を用い、該被測定試料を用いて測定された測
定値を設定値とし、上記測定値に基づき求められた成分
量を対応成分量として、各設定値と、該設定値に対応す
る対応成分量の値との対応関係が決定されていく。尚、
一つの真の成分量に対する設定値及び対応成分量の測定
は、一回でもいいが、真の成分量を調整する際に誤差が
発生することや測定値及び対応成分量の測定誤差等が存
在することから、複数回の測定を行い、これらから得ら
れる複数個の測定値の平均値を設定値とし、上記複数個
の測定値に基づき求まる複数個の成分量の平均値を対応
成分量とするのが好ましい。尚、複数個の測定値及び成
分量から設定値及び対応成分量を決定する方法は、上述
の単純平均を取る方法に限られるものではなく例えば、
加重平均、ローリング平均等の公知の方法を取ることが
できる。例えば測定値についてローリング平均を取る場
合、図5に示すように、上記真の成分量と測定値との関
係を測定範囲にわたり予め出来る限り多く求めておき、
上記測定範囲のある領域20に含まれる複数の測定値の
平均値22を該領域20の中心の真の成分量21に対応
する測定値、換言すれば設定値とし、次に、上記領域2
0よりも小さい領域にて、例えば1デジット分にて、上
記領域20を移動した領域23に含まれる複数の測定値
の平均値25を該領域23の中心の真の成分量24に対
応する測定値(設定値)とし、以下このようにして順
次、上記真の成分量と設定値との関係を決定してもよ
い。このような方法により求めた測定値の平均値22,
25は、互いに独立した母集団の中の平均値ではなく、
相互に関連した母集団の平均値であるので、このような
平均値22,25を用いて導出された被測定成分量はよ
り高い測定精度を有することができる。
Regarding the correspondence between each set value and the value of the corresponding component amount corresponding to the set value, a sample to be measured having a known component amount, in other words, a measured component whose true component amount is known in advance is usually used. Using a sample, the measured value measured using the sample to be measured is a set value, and the component amount obtained based on the measured value is the corresponding component amount, and each set value and the corresponding component corresponding to the set value. The correspondence with the quantity value is determined. still,
The set value and corresponding component amount for one true component amount may be measured only once, but an error may occur when adjusting the true component amount, and there is a measurement error between the measured value and the corresponding component amount. Therefore, the measurement is performed a plurality of times, the average value of the plurality of measurement values obtained from these is set, and the average value of the plurality of component amounts obtained based on the plurality of measurement values is the corresponding component amount. Preferably. Incidentally, the method of determining the set value and the corresponding component amount from the plurality of measured values and component amounts is not limited to the method of taking the above-mentioned simple average, for example,
Known methods such as weighted average and rolling average can be used. For example, when taking a rolling average of the measured values, as shown in FIG. 5, the relationship between the true component amount and the measured values is calculated in advance as much as possible over the measuring range.
An average value 22 of a plurality of measurement values included in the area 20 having the measurement range is set as a measurement value corresponding to the true component amount 21 at the center of the area 20, in other words, a set value, and then the area 2
In an area smaller than 0, for example, by one digit, an average value 25 of a plurality of measurement values included in the area 23 moved from the area 20 is measured to correspond to the true component amount 24 at the center of the area 23. As a value (set value), the relationship between the true component amount and the set value may be sequentially determined in this manner. Average value of the measured values obtained by such a method 22,
25 is not the average value in the population independent of each other,
Since it is the average value of the mutually related population, the measured component amount derived using such average values 22 and 25 can have higher measurement accuracy.

【0021】又、特に、試薬がドライケミストリーを使
用するものである場合には、試薬には、該試薬の製造誤
差、例えば製造ロット単位で生じる誤差、製造ラインに
よって生じる誤差等が存在する。よって、従来から行わ
れていることであるが、図9に示すような例えば試験片
130には、反応部135に塗布された試薬の製造誤差
を示す情報が示されている。したがってこのような従来
からの措置に対応すべく、本実施形態においても上記製
造誤差に対応して、上記設定値と上記対応成分量との対
応関係を示した複数種のテーブルを作成しており、上記
製造誤差を示す情報に対応したテーブルを選択し使用す
る。
Further, particularly when the reagent uses dry chemistry, the reagent has a manufacturing error of the reagent, for example, an error generated in units of manufacturing lots, an error generated by a manufacturing line, and the like. Therefore, as is conventionally done, for example, the test piece 130 as shown in FIG. 9 shows information indicating the manufacturing error of the reagent applied to the reaction part 135. Therefore, in order to deal with such conventional measures, a plurality of types of tables showing the correspondence relationship between the set values and the corresponding component amounts are also created in the present embodiment in response to the manufacturing error. , A table corresponding to the information indicating the manufacturing error is selected and used.

【0022】以上説明したテーブルに関するデータは、
被測定成分量の測定装置に備わる例えば半導体メモリ内
に記憶される。以下に該測定装置の構成を図を参照し説
明する。図6に示す測定装置210は、測定者が必要と
する測定範囲のすべてにわたり上記テーブルを作成した
場合に対応する装置であり、測定手段1と、測定手段1
に電気的に接続される演算装置2及び制御部3と、演算
装置2及び制御部3に電気的に接続される表示装置4
と、演算装置2に電気的に接続されるメモリ205とを
含む。尚、演算装置2には成分量導出手段206を備
え、測定手段1は成分量導出手段206に電気的に接続
される。一方、図1に示す測定装置10は、被測定成分
量の導出に際し、上記テーブルと上述の検量線との両方
を使用する装置であり、演算装置2にはさらに判断手段
200を備える。尚、判断手段200を備える場合には
成分量導出手段206に代えて成分量導出手段201を
設ける。又、図1に示すように、測定装置10ではメモ
リ205に代えてメモリ5を備える。測定装置10の場
合には、判断手段200は測定手段1及び制御部3に電
気的に接続され、成分量導出手段201は、判断手段2
00、制御部3、メモリ5及び表示装置4に電気的に接
続される。
The data relating to the table described above is
It is stored in, for example, a semiconductor memory provided in the measuring device for measuring the amount of component to be measured. The configuration of the measuring device will be described below with reference to the drawings. The measuring device 210 shown in FIG. 6 is a device corresponding to the case where the above table is created over the entire measuring range required by the measurer, and is the measuring means 1 and the measuring means 1.
The arithmetic unit 2 and the control unit 3 electrically connected to the display unit 4 and the display unit 4 electrically connected to the arithmetic unit 2 and the control unit 3.
And a memory 205 electrically connected to the arithmetic unit 2. The arithmetic unit 2 includes a component amount deriving unit 206, and the measuring unit 1 is electrically connected to the component amount deriving unit 206. On the other hand, the measuring device 10 shown in FIG. 1 is a device that uses both the above-mentioned table and the above-mentioned calibration curve when deriving the measured component amount, and the computing device 2 is further provided with a judging means 200. When the determination unit 200 is provided, the component amount derivation unit 201 is provided instead of the component amount derivation unit 206. Further, as shown in FIG. 1, the measuring apparatus 10 includes a memory 5 instead of the memory 205. In the case of the measuring device 10, the judging means 200 is electrically connected to the measuring means 1 and the control section 3, and the component amount deriving means 201 is the judging means 2.
00, the control unit 3, the memory 5, and the display device 4 are electrically connected.

【0023】試薬6を含む部分は測定手段1内に設けら
れたり測定手段1に機械的に接続されたりする。例え
ば、被測定成分量の測定が反応後試料における反射光に
基づき行われるような測定装置10においては、測定手
段1は、図2に示すように、反応後試料へ投光する光源
であって上述した濃度測定用LED141に相当する光
源7と、光源7からの光が反応後試料に反射した反射光
を検出する受光装置であって上述した受光用光検出器1
43に相当する受光装置8とを有する。受光装置8の出
力は演算装置2及び制御部3に電気的に接続される。
又、例えば、試薬6が一対の電極間に設けられている場
合、上記電極は測定手段1に機械的及び電気的に接続さ
れ測定手段1は試薬6と被測定試料との反応により生じ
る、上記測定値に相当する起電力を測定する。尚、以下
の構成の説明は、反応後試料における反射光に対応して
得られる電圧に基づき測定が行われるような測定装置で
あって、主に測定装置10を例に採り行う。
The portion containing the reagent 6 is provided in the measuring means 1 or mechanically connected to the measuring means 1. For example, in the measuring device 10 in which the amount of the component to be measured is measured based on the reflected light from the post-reaction sample, the measuring means 1 is a light source for projecting light onto the post-reaction sample, as shown in FIG. A light source 7 corresponding to the above-described concentration measuring LED 141, and a light receiving device for detecting the reflected light reflected from the sample after the light from the light source 7 has reacted, and the above-described light receiving photodetector 1
And a light receiving device 8 corresponding to 43. The output of the light receiving device 8 is electrically connected to the computing device 2 and the control unit 3.
Further, for example, when the reagent 6 is provided between the pair of electrodes, the electrode is mechanically and electrically connected to the measuring means 1, and the measuring means 1 is generated by the reaction between the reagent 6 and the sample to be measured. Measure the electromotive force corresponding to the measured value. Note that the following description of the configuration is a measuring apparatus in which the measurement is performed based on the voltage obtained corresponding to the reflected light in the sample after the reaction, and the measuring apparatus 10 is mainly taken as an example.

【0024】制御部3は、例えば上述した試験片130
が測定手段1に着脱されるのに応じて、測定装置10の
オン、オフや表示装置4への表示の開始等の動作制御を
行う。メモリ5には、表1等に示す「電圧値」の各値
と、「テーブル換算」の欄における「濃度」の各値とを
示すテーブル及び検量線を構成するデータが記憶されて
いる。尚、メモリ205には、上記「電圧値」の各値
と、上記「濃度」の各値とを示すテーブルのデータのみ
が記憶されている。演算装置2内の成分量導出手段20
1は、制御部3の制御に応じて測定手段1から供給され
る測定値に基づきメモリ5から被測定成分量を読み出
し、該被測定成分量を表示装置4へ表示する。上述した
ように、上記テーブルと上記検量線とを併用する場合に
は上記演算装置2内の判断手段200は、測定手段1か
ら供給される測定値が、まず、検量線に基づき被測定成
分量を換算可能な換算可能範囲に含まれるのか、又は上
記換算禁止範囲に含まれるのかを判断する。該判断に基
づき、成分量導出手段201は、検量線を使用した換算
による被測定成分量、又は上記テーブルから読み出した
被測定成分量を表示装置4に表示する。又、判断手段2
00は、測定手段1から供給される測定値が換算可能範
囲又は換算禁止範囲に含まれるかの判断に従い、上記測
定値が少なくとも換算禁止範囲に含まれると判断したと
きには、制御部3を介して表示装置4へその旨を表示さ
せるように機能することもできる。
The control unit 3 uses, for example, the above-described test piece 130.
In response to the attachment / detachment to / from the measurement means 1, operation control such as turning on / off of the measuring device 10 and starting display on the display device 4 is performed. The memory 5 stores a table showing each value of “voltage value” shown in Table 1 and the like, and each value of “concentration” in the column of “table conversion”, and data forming a calibration curve. It should be noted that the memory 205 stores only the data of the table showing the respective values of the “voltage value” and the respective “density”. Component amount deriving means 20 in the arithmetic unit 2
1 reads out the measured component amount from the memory 5 based on the measured value supplied from the measuring means 1 according to the control of the control unit 3, and displays the measured component amount on the display device 4. As described above, when the table and the calibration curve are used in combination, the determination means 200 in the computing device 2 determines that the measured value supplied from the measurement means 1 is the amount of the component to be measured based on the calibration curve. Is included in the convertible range or is included in the conversion prohibited range. Based on the determination, the component amount deriving unit 201 displays the component amount to be measured by conversion using the calibration curve or the component amount to be measured read from the table on the display device 4. Also, the judging means 2
00 is determined through the control unit 3 when it is determined that the measured value supplied from the measuring means 1 is included in the convertible range or the prohibited range, and that the measured value is included in at least the prohibited range. It can also function so as to display that fact on the display device 4.

【0025】又、被測定成分量の測定を開始する前に、
測定に使用する試薬の上記製造誤差に対応した、上記テ
ーブル及び上記検量線の選択を行うため、測定に使用す
る試薬と同じ上記製造誤差を有する試薬について、予
め、測定手段1にて製造誤差確認用の測定値を測定す
る。制御部3は、測定手段1から供給される、上記製造
誤差確認用測定値に基づき上記テーブル及び上記検量線
の選択を行い、その選択情報を演算装置2内の成分量導
出手段201へ送出する。よって、演算装置2は、被測
定成分量を測定するに際し上記選択情報に基づき選択さ
れたテーブル、又はテーブル及び検量線を使用し被測定
成分量を求める。
Before starting the measurement of the amount of component to be measured,
In order to select the table and the calibration curve corresponding to the manufacturing error of the reagent used for the measurement, the manufacturing error is confirmed in advance by the measuring means 1 for the reagent having the same manufacturing error as the reagent used for the measurement. Measure the measurement value for. The control unit 3 selects the table and the calibration curve based on the manufacturing error confirmation measurement value supplied from the measuring unit 1, and sends the selection information to the component amount deriving unit 201 in the arithmetic unit 2. . Therefore, the arithmetic unit 2 obtains the measured component amount by using the table selected based on the selection information or the table and the calibration curve when measuring the measured component amount.

【0026】又、上記判断手段200の機能を制御部3
にて実行させるように構成して、テーブルと検量線とを
併用する測定装置においても判断手段200を削除した
構成とすることができる。
The function of the judging means 200 is controlled by the control unit 3.
It is possible to delete the determination means 200 even in the measuring device that uses both the table and the calibration curve.

【0027】このように構成される測定装置10又は測
定装置210の動作を図3及び図4を参照し以下に説明
する。又、図3には、測定装置210において、テーブ
ルのみを用いて被測定成分量を求める場合を示し、図4
には、測定装置10において、テーブルと検量線とを併
用して被測定成分量を求める場合を示している。
The operation of the measuring device 10 or the measuring device 210 configured as described above will be described below with reference to FIGS. 3 and 4. Further, FIG. 3 shows a case where the measured component amount is obtained using only the table in the measuring device 210.
In the measurement device 10, the case where the table and the calibration curve are used together to obtain the amount of the component to be measured is shown.

【0028】図3において、ステップ(図内では「S」
にて示す)0にて、上述した、製造誤差に対応した、上
記テーブルの選択を行う。ステップ1にて、上述したよ
うな、試薬を含む試験片を測定装置に取り付け、ステッ
プ2にて被測定試料を上記試薬に付着し、ステップ3に
て被測定試料と試薬とを反応させるため一定時間待機す
る。ステップ4にて反応後試料に光源7から光を照射
し、ステップ5において上記反応後試料にて反射した光
を受光装置8で検出し受光装置8は受光量に対応した電
圧を送出する。尚、この電圧値が上記測定値に相当す
る。ステップ6にて、演算装置2の成分量導出手段20
6は、得られた上記電圧値に基づき、メモリ205に記
憶しているテーブルから該電圧値に対応する被測定成分
量、換言すると上記対応成分量を導出し、ステップ7に
て導出した被測定成分量を表示装置4に表示する。尚、
ステップ6にて、測定値が、テーブルに記憶する設定値
以外の値である場合には、演算装置2の成分量導出手段
206は、上述したように内挿計算により被測定成分量
を求める。
In FIG. 3, steps (“S” in the figure)
At 0), the table is selected according to the manufacturing error. In step 1, the test piece containing the reagent as described above is attached to the measuring device, in step 2, the sample to be measured is attached to the reagent, and in step 3, the sample to be measured and the reagent are fixed so as to react. Wait time. In step 4, the post-reaction sample is irradiated with light from the light source 7, and in step 5, the light reflected by the post-reaction sample is detected by the light receiving device 8, and the light receiving device 8 sends out a voltage corresponding to the amount of received light. This voltage value corresponds to the above measured value. In step 6, the component amount deriving means 20 of the arithmetic unit 2
6 derives the measured component amount corresponding to the voltage value, in other words, the corresponding component amount from the table stored in the memory 205 based on the obtained voltage value, and measures the measured component derived in step 7. The component amount is displayed on the display device 4. still,
In step 6, when the measured value is a value other than the set value stored in the table, the component amount deriving means 206 of the arithmetic unit 2 obtains the measured component amount by the interpolation calculation as described above.

【0029】一方、テーブルと検量線とを併用して被測
定成分量を求める場合には、ステップ0にてテーブル及
び検量線の選択がなされ、図3に示すステップ6が図4
に示すステップ21ないし23に置き換わった動作とな
る。即ち、ステップ21では、ステップ5にて得られた
電圧値が検量線を用いて被測定成分量を求めることがで
きる上記換算可能範囲に含まれるか否かが演算装置2の
判断手段200にて判断され、上記換算可能範囲に含ま
れない場合には図3に示すステップ6と同一の動作を行
うステップ22に移行する。一方、上記電圧値が上記換
算可能範囲に含まれる場合にはステップ23にて成分量
導出手段201は、得られる電圧値に基づき、メモリ5
に記憶している検量線を使用して被測定成分量を換算す
る。ステップ22及びステップ23にて求まった被測定
成分量は、ステップ7にて表示装置4に表示される。
On the other hand, when the amount of the component to be measured is determined by using the table and the calibration curve together, the table and the calibration curve are selected in step 0, and step 6 shown in FIG.
The operation is replaced with steps 21 to 23 shown in FIG. That is, in step 21, the determination means 200 of the arithmetic unit 2 determines whether or not the voltage value obtained in step 5 is included in the above convertible range in which the measured component amount can be obtained using the calibration curve. If it is determined that the value is not included in the convertible range, the process proceeds to step 22 where the same operation as step 6 shown in FIG. 3 is performed. On the other hand, when the voltage value is included in the convertible range, the component amount deriving unit 201 determines in step S23 the memory 5 based on the obtained voltage value.
Convert the amount of component to be measured using the calibration curve stored in. The measured component amount obtained in steps 22 and 23 is displayed on the display device 4 in step 7.

【0030】尚、ステップ21において、判断手段20
0にて電圧値が換算禁止範囲に含まれると判断され、上
記テーブルを使用して被測定成分量が導き出された場
合、ステップ7では、テーブルを使用して被測定成分量
を導き出した旨を表示装置4に表示し測定者に知らせる
ようにすることもできる。このような表示を行うこと
で、測定者は当該被測定試料について再度測定を実行す
ることもでき、又、当該被測定試料を希釈して測定をし
直すこともできるので、測定結果の信頼性を高くするこ
とができる。
Incidentally, in step 21, the judgment means 20
When it is determined that the voltage value is included in the conversion prohibited range at 0 and the measured component amount is derived using the above table, in step 7, it is determined that the measured component amount is derived using the table. It may be displayed on the display device 4 so as to notify the measurer. By making such a display, the measurer can perform the measurement again on the sample to be measured, or can dilute the sample to be measured and perform the measurement again. Can be higher.

【0031】尚、例えばテーブル又は検量線の情報に含
まれる範囲以外の測定値、即ち測定をまったく予定して
いない測定値が供給された場合のように、成分量導出手
段201、206が被測定成分量を求めることができな
い場合には、成分量導出手段201、206は表示装置
4に対してエラー表示を行う。
The component amount deriving means 201, 206 are to be measured, for example, when a measured value outside the range included in the information of the table or the calibration curve, that is, a measured value for which no measurement is planned is supplied. When the component amount cannot be obtained, the component amount deriving means 201 and 206 display an error on the display device 4.

【0032】又、図3及び図4に示す動作では、いずれ
も反応後試料に光を照射したが、これに限らず、例え
ば、試薬を含む上記反応部を一対の電極を覆って形成
し、試薬と被測定試料とを反応させた後上記電極間に電
流を流すことで得られる電圧にて被測定成分量を求めて
もよい。
In each of the operations shown in FIGS. 3 and 4, the sample was irradiated with light after the reaction. However, the present invention is not limited to this. For example, the reaction section containing a reagent is formed by covering a pair of electrodes, The amount of the component to be measured may be determined by the voltage obtained by reacting the reagent with the sample to be measured and then applying a current between the electrodes.

【0033】以上説明したように、本実施形態の測定方
法及び該測定方法を使用した測定装置によれば以下の効
果が得られる。設定値と、該設定値に一義的に対応する
対応成分量との対応関係を予め求めて、テーブルの形で
記憶しておき、測定の際には該テーブルを参照し被測定
成分量、即ち上記対応成分量を導出することから、上記
テーブルに記されている範囲においては真の成分量若し
くは真の成分量に最も近い成分量を導出することができ
る。即ち、従来のように検量線を使用し換算にて被測定
成分量を求めた場合、真の成分量と換算による成分量と
の差が許容範囲を越える範囲では精度上の問題から使用
に耐えず、測定限界があった。一方、本実施形態では、
上述のように、従来例に比べ、測定可能な範囲を拡大す
ることができる。
As described above, according to the measuring method of this embodiment and the measuring apparatus using the measuring method, the following effects can be obtained. The correspondence between the set value and the corresponding component amount uniquely corresponding to the set value is previously obtained and stored in the form of a table, and the measured component amount, that is, the measured component amount is referred to by referring to the table during measurement. Since the corresponding component amount is derived, the true component amount or the component amount closest to the true component amount can be derived within the range described in the table. That is, when the amount of component to be measured is obtained by conversion using a calibration curve as in the past, if the difference between the true component amount and the component amount by conversion exceeds the allowable range, it will not be used due to accuracy problems. No, there was a measurement limit. On the other hand, in the present embodiment,
As described above, the measurable range can be expanded as compared with the conventional example.

【0034】又、反射率に基づき被測定成分量を求める
場合、反射率と被測定成分の濃度との関係は、図7に示
すような双曲線の関係であり、濃度の低い領域では反射
率が高く、濃度の高い領域では反射率が低いことから、
上記双曲線を表す検量線を用いたのでは測定精度が低
い。そこで従来から、上述したように「K/S」なる項
目を介在させ、図8に示すように、K/S関数値と濃度
との直線的な関係、換言すると検量線を利用して濃度値
を導出していた。しかし、本実施形態のように、測定値
と濃度値との関係をテーブルにて作成することで、従来
のようなK/Sなる項目を介在させる必要はなくなり、
かつより測定精度も向上させることができる。
When the amount of the measured component is obtained based on the reflectance, the relationship between the reflectance and the density of the measured component is a hyperbolic relationship as shown in FIG. 7, and the reflectance is low in the low density region. Since the reflectance is low in high and high density areas,
The measurement accuracy is low when the calibration curve representing the hyperbola is used. Therefore, conventionally, by interposing the item “K / S” as described above, as shown in FIG. 8, the linear relationship between the K / S function value and the concentration, in other words, the concentration value using the calibration curve is used. Was derived. However, by creating the relationship between the measured value and the density value in the table as in the present embodiment, it is not necessary to intervene the item K / S as in the conventional case.
In addition, the measurement accuracy can be improved.

【0035】[0035]

【実施例】【Example】

【0036】[0036]

【表1】 [Table 1]

【0037】表1は、上述したような試験片130を使
用して、上記反応後試料における反射光を受光した光検
出器から得られる電圧値と、該電圧値により得られるグ
ルコースの濃度との関係を、従来のように検量線のみを
使用して求める場合と、テーブルのみを使用して求める
場合とを示したものである。尚、表1、表2、表4、表
5に示す「参照法(真値)」の欄の各値は、これらの濃
度を有すると推測される被測定試料について信頼のおけ
る所定の測定方法によって測定した測定値を示し、真の
濃度値とみなす値である。表1から明らかなように、検
量線のみを用いる場合には、真の濃度値において38.
0〜405.1mg/dl、即ち、測定装置における測
定レンジにあっては表3に示すように40〜400mg
/dlの範囲が測定可能であった。この範囲を外れる
と、低濃度域では乖離度が10%を超え、高濃度域では
約−10%を超え、真値と測定値との誤差が大きくなり
実用的でなくなる。これに対し、テーブルを使用する場
合には、真の濃度値において19.9〜507.4mg
/dl、即ち測定装置における測定レンジにあっては表
3に示すように20〜500mg/dlの範囲が測定可
能となる。尚、上記「測定レンジ」として設定した値
は、上記乖離度がほぼ±10%以下である表1,2,
4,5に示す「正確度良好域」に対応する上記真の濃度
値における最低濃度値から最高濃度値までの範囲内にお
いて設定される値である。
Table 1 shows the voltage value obtained from the photodetector that received the reflected light in the post-reaction sample using the test piece 130 as described above, and the glucose concentration obtained by the voltage value. It shows a case where the relationship is obtained using only the calibration curve as in the conventional case and a case where it is obtained using only the table. Each value in the column of “reference method (true value)” shown in Table 1, Table 2, Table 4, and Table 5 is a predetermined measurement method that is reliable for the sample to be measured which is assumed to have these concentrations. It shows the measured value measured by, and is a value regarded as a true density value. As is apparent from Table 1, when only the calibration curve is used, the true concentration value is 38.
0 to 405.1 mg / dl, that is, 40 to 400 mg as shown in Table 3 in the measuring range of the measuring device.
The range of / dl was measurable. If it deviates from this range, the deviation degree exceeds 10% in the low concentration range and exceeds -10% in the high concentration range, and the error between the true value and the measured value becomes large, which is not practical. On the other hand, when the table is used, the true concentration value is 19.9 to 507.4 mg.
/ Dl, that is, in the measuring range of the measuring device, as shown in Table 3, a range of 20 to 500 mg / dl can be measured. The values set as the above “measurement range” are shown in Tables 1 and 2, in which the deviation degree is approximately ± 10% or less.
It is a value set within the range from the minimum density value to the maximum density value in the true density value corresponding to the “accuracy good range” shown by 4 and 5.

【0038】[0038]

【表2】 [Table 2]

【0039】表2は、上述の試験片130を使用して、
上記反応後試料における反射光を受光した光検出器から
得られる電圧値と、該電圧値により得られる総ビリルビ
ンの濃度との関係を、従来のように検量線のみを使用し
て求める場合と、テーブルのみを使用して求める場合と
を示したものである。表2から明らかなように、検量線
のみを用いる場合には、真の濃度値において0.46〜
20.02mg/dl、即ち、測定装置の測定レンジに
あっては0.5〜20mg/dlの範囲が測定可能であ
った。この範囲を外れると、低濃度域では乖離度が十数
%を超え、高濃度域では約−十数%を超え、真値と測定
値との誤差が大きくなり実用的でなくなる。これに対
し、テーブルを使用する場合には、真の濃度値において
0.18〜30.39mg/dl、即ち、測定装置の測
定レンジにあっては0.2〜30mg/dlの範囲が測
定可能となる。
Table 2 uses the test strip 130 described above,
When the relationship between the voltage value obtained from the photodetector that receives the reflected light in the sample after the reaction and the concentration of total bilirubin obtained by the voltage value is obtained using only a calibration curve as in the conventional case, It shows the case of using only the table. As is clear from Table 2, when only the calibration curve is used, the true concentration value is 0.46 to
It was possible to measure 20.02 mg / dl, that is, a range of 0.5 to 20 mg / dl in the measuring range of the measuring device. If it deviates from this range, the deviation degree exceeds 10% in the low concentration range and exceeds −10% in the high concentration range, and the error between the true value and the measured value becomes large, which is not practical. On the other hand, when using the table, the true concentration value can be measured in the range of 0.18 to 30.39 mg / dl, that is, the range of 0.2 to 30 mg / dl in the measuring range of the measuring device. Becomes

【0040】[0040]

【表3】 [Table 3]

【0041】表3は、上述の試験片130を使用して、
各種の被測定成分について、測定の物性が電圧値におい
て、従来のように検量線のみを使用して被測定成分量を
求める場合における測定装置の測定レンジと、テーブル
のみを使用して求める場合における測定装置の測定レン
ジとを示したものである。表3から明らかなように、い
ずれの被測定成分についても検量線を使用する場合より
もテーブルを使用した場合の方が測定レンジが広がるこ
とがわかる。
Table 3 uses the test strip 130 described above,
For various measured components, in the case where the physical properties of the measurement are voltage values, the measurement range of the measuring device when determining the measured component amount using only the calibration curve as in the past, and when using only the table It shows the measurement range of the measuring device. As is clear from Table 3, the measurement range is wider when the table is used than when the calibration curve is used for any of the measured components.

【0042】[0042]

【表4】 [Table 4]

【0043】表4は、測定値における物性が電圧であっ
て、対向電極部分に試薬が塗布された電極を使用して、
反応後試料において上記電極から得られる電圧と、該電
圧により得られるグルコースの濃度との関係を、従来の
ように検量線のみを使用して求める場合と、テーブルの
みを使用して求める場合とを示したものである。表4か
ら明らかなように、検量線のみを用いる場合には、真の
濃度値において39.9〜506.6mg/dl、即
ち、測定装置の測定レンジにあっては40〜500mg
/dlの範囲が測定可能であった。この範囲を外れる
と、低濃度域では乖離度が20%を超え、高濃度域では
約−9%を超え、真値と測定値との誤差が大きくなり実
用的でなくなる。これに対し、テーブルを使用する場合
には、真の濃度値において19.8〜649.7mg/
dl、即ち、測定装置の測定レンジにあっては20〜6
00mg/dlの範囲が測定可能となる。
Table 4 shows that the physical property in the measured value is voltage, and the electrode in which the reagent is applied to the counter electrode portion is used.
The relationship between the voltage obtained from the electrode and the glucose concentration obtained by the voltage in the post-reaction sample can be determined by using only a calibration curve as in the conventional case or by using only a table. It is shown. As is clear from Table 4, when only the calibration curve is used, the true concentration value is 39.9 to 506.6 mg / dl, that is, 40 to 500 mg in the measuring range of the measuring device.
The range of / dl was measurable. Outside this range, the degree of deviation exceeds 20% in the low concentration range and exceeds approximately -9% in the high concentration range, and the error between the true value and the measured value becomes large, making it impractical. On the other hand, when the table is used, the true concentration value is 19.8 to 649.7 mg /
dl, that is, 20 to 6 in the measuring range of the measuring device
A range of 00 mg / dl can be measured.

【0044】[0044]

【表5】 [Table 5]

【0045】表5は、測定値における物性が電圧であっ
て、対向電極部分に試薬が塗布された電極を使用して、
反応後試料において上記電極から得られる電圧と、該電
圧により得られる乳酸の濃度との関係を、従来のように
検量線のみを使用して求める場合と、テーブルのみを使
用して求める場合とを示したものである。表5から明ら
かなように、検量線のみを用いる場合には、真の濃度値
において9.9〜140.3mg/dl、即ち、測定装
置の測定レンジにあっては10〜140mg/dlの範
囲が測定可能であった。この範囲を外れると、低濃度域
では乖離度が数%を超え、高濃度域では約−9%を超
え、真値と測定値との誤差が大きくなり実用的でなくな
る。これに対し、テーブルを使用する場合には、真の濃
度値において4.9〜180.9mg/dl、即ち、測
定装置の測定レンジにあっては5〜180mg/dlの
範囲が測定可能となる。
Table 5 shows that the physical property in the measured value is a voltage, and an electrode in which a reagent is applied to the counter electrode portion is used.
The relationship between the voltage obtained from the electrode in the post-reaction sample and the concentration of lactic acid obtained by the voltage can be obtained by using only a calibration curve as in the conventional case or by using only a table. It is shown. As is clear from Table 5, when only the calibration curve is used, the true concentration value is 9.9 to 140.3 mg / dl, that is, the range of 10 to 140 mg / dl in the measuring range of the measuring device. Was measurable. If it deviates from this range, the degree of deviation exceeds several percent in the low concentration range and exceeds about -9% in the high concentration range, and the error between the true value and the measured value becomes large, which is not practical. On the other hand, when the table is used, it is possible to measure a true concentration value of 4.9 to 180.9 mg / dl, that is, a range of 5 to 180 mg / dl in the measuring range of the measuring device. .

【0046】[0046]

【発明の効果】以上詳述したように本発明の第1態様に
よる測定方法、並びに第3及び第4態様による測定装置
によれば、測定値について、検量線を使用せずに、設定
値と対応成分量との予め作成した対応関係に基づき被測
定成分量を導き出す。したがって、従来のように検量線
による換算にて被測定成分量を求めた場合に、換算によ
り求めた成分量と真の成分量との差が大きく測定精度が
悪くなる範囲についても、上記第1態様による測定方
法、並びに第3及び第4態様による測定装置は、高い精
度にて被測定成分量を求めることができる。
As described above in detail, according to the measuring method according to the first aspect of the present invention and the measuring apparatus according to the third and fourth aspects, the measured values are set to the set values without using the calibration curve. The measured component amount is derived based on the correspondence relationship created in advance with the corresponding component amount. Therefore, even when the measured component amount is converted by the calibration curve as in the prior art, the range where the difference between the calculated component amount and the true component amount is large and the measurement accuracy deteriorates is The measuring method according to the aspect and the measuring devices according to the third and fourth aspects can obtain the amount of the component to be measured with high accuracy.

【0047】又、上記第2態様による測定方法、並びに
第5及び第6態様による測定装置によれば、検量線によ
る換算にて被測定成分量を求めた場合であっても、換算
により求めた成分量と真の成分量との差が小さく測定精
度が良い範囲については従来通り検量線を用いて被測定
成分量を求める。一方、検量線による換算にて被測定成
分量を求めた場合には換算により求めた成分量と真の成
分量との差が大きく測定精度が悪くなる範囲においては
設定値と対応成分量との予め作成した対応関係に基づき
被測定成分量を導き出す。したがって、第2態様による
測定方法、並びに第5及び第6態様による測定装置によ
れば、測定の全範囲において高い精度にて被測定成分量
を求めることができる。
Further, according to the measuring method according to the second aspect and the measuring apparatus according to the fifth and sixth aspects, even when the amount of the component to be measured is obtained by the conversion with the calibration curve, it is obtained by the conversion. For the range where the difference between the component amount and the true component amount is small and the measurement accuracy is good, the amount of component to be measured is obtained using a calibration curve as in the conventional method. On the other hand, when the measured component amount is obtained by conversion using the calibration curve, in the range where the difference between the component amount obtained by conversion and the true component amount is large and the measurement accuracy deteriorates, the set value and the corresponding component amount are The amount of component to be measured is derived based on the correspondence created in advance. Therefore, according to the measuring method according to the second aspect and the measuring apparatus according to the fifth and sixth aspects, the amount of the component to be measured can be obtained with high accuracy in the entire measurement range.

【0048】又、上記設定値と対応成分量との対応関係
をテーブルの形態にてメモリに記憶させることは当該メ
モリにおいて大きな記憶容量を使用することになるが、
第5及び第6態様による測定装置によれば、測定範囲の
一部については検量線を使用し被測定成分量を求めるこ
とから、上記対応関係を記憶するに要するメモリの容量
を軽減することができる。
Further, storing the correspondence between the set value and the corresponding component amount in the memory in the form of a table uses a large storage capacity in the memory,
According to the measuring device of the fifth and sixth aspects, since the calibration curve is used for a part of the measurement range to obtain the amount of the component to be measured, it is possible to reduce the memory capacity required to store the above correspondence. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の被測定成分量の測定方法を使用する
測定装置であって検量線とテーブルとの両方を使用する
場合の測定装置の構成を示すブロック図である。
FIG. 1 is a block diagram showing the configuration of a measuring apparatus that uses the method for measuring an amount of a component to be measured according to the present invention and uses both a calibration curve and a table.

【図2】 図1に示す測定装置が被測定試料に対する光
の反射率を測定する場合において、図1に示す測定手段
の構成を示すブロック図である。
2 is a block diagram showing a configuration of a measuring unit shown in FIG. 1 when the measuring apparatus shown in FIG. 1 measures the reflectance of light with respect to a sample to be measured.

【図3】 本発明の被測定成分量の測定方法を示すフロ
ーチャートであり、測定値における物性が電圧であって
全測定範囲にわたりテーブルを使用して被測定成分量を
求める場合のフローチャートである。
FIG. 3 is a flowchart showing a method for measuring an amount of a component to be measured according to the present invention, which is a flow chart when a physical property in a measured value is a voltage and the amount of the component to be measured is obtained using a table over the entire measurement range.

【図4】 図3に示すフローチャートにおいて、テーブ
ル及び検量線の両方を併用して被測定成分量を求める場
合のフローチャートである。
FIG. 4 is a flowchart in a case where both the table and the calibration curve are used together to obtain the measured component amount in the flowchart shown in FIG. 3.

【図5】 本発明の被測定成分量の測定方法において、
テーブルに記述する測定値の一決定方法を説明するため
のグラフである。
FIG. 5 shows a method for measuring an amount of a component to be measured according to the present invention,
It is a graph for explaining one determination method of the measurement value described in the table.

【図6】 本発明の被測定成分量の測定方法を使用する
測定装置であってテーブルのみを使用する場合の測定装
置の構成を示すブロック図である。
FIG. 6 is a block diagram showing a configuration of a measuring apparatus that uses the method for measuring an amount of a component to be measured according to the present invention and uses only a table.

【図7】 反応後試料における光の反射率と、被測定成
分の濃度との関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the reflectance of light in the sample after the reaction and the concentration of the component to be measured.

【図8】 検量線と被測定成分量との関係を説明するた
めのグラフである。
FIG. 8 is a graph for explaining the relationship between the calibration curve and the amount of component to be measured.

【図9】 反応後試料における光の反射を利用して被測
定成分濃度を測定するための試料片の構成を示す斜視図
である。
FIG. 9 is a perspective view showing the configuration of a sample piece for measuring the concentration of a component to be measured by utilizing the reflection of light in the sample after the reaction.

【図10】 図9に示す試料片の断面形状及び測定装置
の概略構造を示す図である。
10 is a diagram showing a cross-sectional shape of the sample piece shown in FIG. 9 and a schematic structure of a measuring device.

【符号の説明】[Explanation of symbols]

1…測定手段、2…演算装置、3…制御部、4…表示装
置、5…メモリ、6…試薬、7…光源、8…受光装置、
10…測定装置、200…判断手段、201…成分量導
出手段、205…メモリ、206…成分量導出手段、2
10…測定装置。
DESCRIPTION OF SYMBOLS 1 ... Measuring means, 2 ... Arithmetic device, 3 ... Control part, 4 ... Display device, 5 ... Memory, 6 ... Reagent, 7 ... Light source, 8 ... Light receiving device,
10 ... Measuring device, 200 ... Judging means, 201 ... Component amount deriving means, 205 ... Memory, 206 ... Component amount deriving means, 2
10 ... Measuring device.

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 被測定試料と試薬とを反応させた反応後
試料を用いて測定されたある物性における測定値に基づ
き上記被測定試料に含まれる被測定成分の被測定成分量
を求める測定方法であって、 上記測定値に対する上記被測定成分量は、 上記測定値における物性と同一の物性において予め設定
した設定値と、上記被測定成分において上記設定値に一
義的に対応する対応成分量との対応関係を表すテーブル
に基づき導き出す(S6、S16)ことを特徴とする被
測定成分量の測定方法。
1. A measuring method for obtaining an amount of a component to be measured of a component to be measured contained in the sample to be measured based on a measured value in a certain physical property measured by using a post-reaction sample obtained by reacting a sample to be measured with a reagent. That is, the measured component amount for the measured value is a preset value in the same physical property as the physical property in the measured value, and the corresponding component amount that uniquely corresponds to the set value in the measured component. A method for measuring the amount of a component to be measured, which is derived based on a table showing the correspondence relationship of (S6, S16).
【請求項2】 被測定試料と試薬とを反応させた反応後
試料を用いて測定されたある物性における測定値に基づ
き上記被測定試料に含まれる被測定成分の被測定成分量
を求めるため、上記被測定試料に含まれる被測定成分に
おける複数の既知の成分量と該既知成分量に対応する複
数の既知測定値との複数の関係に基づき検量線を予め求
め、上記測定値について上記検量線に基づき上記被測定
成分量を求める測定方法であって、 上記検量線に基づき上記被測定成分量を求めることがで
きる換算可能範囲に上記測定値が含まれるときにはこの
測定値については上記検量線に基づき上記被測定成分量
を求め(S21,S23,S31,S33)、 上記検量線に基づき上記被測定成分量を求めることがで
きない換算禁止範囲に上記測定値が含まれるときには、
上記測定値における物性と同一の物性において予め設定
した設定値と、上記被測定成分において上記設定値に一
義的に対応する対応成分量との対応関係を表すテーブル
に基づき上記測定値に対する上記被測定成分量を導き出
す(S21,S22,S31,S32)ことを特徴とす
る被測定成分量の測定方法。
2. The amount of the measured component of the measured component contained in the measured sample is obtained based on the measured value of a certain physical property measured by using the post-reaction sample obtained by reacting the measured sample with a reagent, A calibration curve is obtained in advance based on a plurality of known component amounts in the measured component contained in the measured sample and a plurality of known measured values corresponding to the known component amounts, and the calibration curve for the measured values is obtained. A measurement method for obtaining the amount of the component to be measured based on the above, when the measured value is included in the convertible range in which the amount of the component to be measured can be obtained based on the calibration curve If the measured component amount is calculated based on the above (S21, S23, S31, S33), and the measured value is included in the conversion prohibited range where the measured component amount cannot be calculated based on the calibration curve. The,
The measured value for the measured value based on the table showing the correspondence relationship between the preset value in the same physical property as the measured value and the corresponding component amount uniquely corresponding to the set value in the measured component A method for measuring an amount of a component to be measured, which comprises deriving an amount of the component (S21, S22, S31, S32).
【請求項3】 2つの上記換算禁止範囲を有するとき上
記換算可能範囲は上記換算禁止範囲に挟まれ、かつそれ
ぞれの換算禁止範囲と換算可能範囲とは連続する、請求
項2記載の被測定成分量の測定方法。
3. The component to be measured according to claim 2, wherein when there are two said conversion prohibited ranges, said convertible range is sandwiched by said conversion prohibited ranges, and each conversion prohibited range and said convertible range are continuous. How to measure quantity.
【請求項4】 上記試薬はドライケミストリーを利用し
た試薬である、請求項1ないし3のいずれかに記載の被
測定成分量の測定方法。
4. The method for measuring the amount of a component to be measured according to claim 1, wherein the reagent is a reagent utilizing dry chemistry.
【請求項5】 上記被測定成分は生化学分野における成
分である、請求項1ないし4のいずれかに記載の被測定
成分量の測定方法。
5. The method for measuring the amount of a component to be measured according to claim 1, wherein the component to be measured is a component in the field of biochemistry.
【請求項6】 上記被測定成分はグルコースであり、上
記測定値が電圧値のとき、上記被測定成分量の測定範囲
は20mg/dl〜500mg/dlである、請求項5
記載の被測定成分量の測定方法。
6. The measured component is glucose, and when the measured value is a voltage value, the measurement range of the measured component amount is 20 mg / dl to 500 mg / dl.
The method for measuring the amount of a component to be measured described.
【請求項7】 上記被測定成分は乳酸であり、上記測定
値が電圧値のとき、上記被測定成分量の測定範囲は5m
g/dl〜180mg/dlである、請求項5記載の被
測定成分量の測定方法。
7. The measured component is lactic acid, and when the measured value is a voltage value, the measuring range of the measured component amount is 5 m.
The method for measuring the amount of a component to be measured according to claim 5, which is g / dl to 180 mg / dl.
【請求項8】 上記被測定成分はビリルビンであり、上
記測定値が電圧値のとき、上記被測定成分量の測定範囲
は0.2mg/dl〜30mg/dlである、請求項5
記載の被測定成分量の測定方法。
8. The measured component is bilirubin, and when the measured value is a voltage value, the measurement range of the measured component amount is 0.2 mg / dl to 30 mg / dl.
The method for measuring the amount of a component to be measured described.
【請求項9】 被測定試料と試薬とを反応させた反応後
試料を用いて測定されたある物性における測定値に基づ
き上記被測定試料に含まれる被測定成分の被測定成分量
を求めるための被測定成分量の測定方法を使用する測定
装置であって、 上記測定値に対する上記被測定成分量は、 上記測定値における物性と同一の物性において予め設定
した設定値と、上記被測定成分において上記設定値に一
義的に対応する対応成分量との対応関係を表すテーブル
に基づき導き出すことを特徴とする被測定成分量の測定
装置。
9. A method for obtaining an amount of a component to be measured of a component to be measured contained in the sample to be measured based on a measured value in a certain physical property measured by using a post-reaction sample obtained by reacting a sample to be measured with a reagent. A measuring device using a method for measuring an amount of a component to be measured, wherein the amount of the component to be measured with respect to the measured value is a set value preset in the same physical property as the physical property in the measured value, and An apparatus for measuring an amount of a component to be measured, which is derived based on a table showing a correspondence relationship with a corresponding component amount that uniquely corresponds to a set value.
【請求項10】 被測定試料と試薬とを反応させた反応
後試料を用いて測定されたある物性における測定値に基
づき上記被測定試料に含まれる被測定成分の被測定成分
量を求めるための被測定成分量の測定方法を使用する測
定装置であって、 上記測定値における物性と同一の物性において予め設定
した設定値と、上記被測定成分において上記設定値に一
義的に対応する対応成分量との対応関係を表すテーブル
を記憶するメモリ(205)と、 上記測定値が供給され当該測定値に対応する上記対応成
分量を上記メモリから読み出す成分量導出手段(20
6)と、を備えたことを特徴とする被測定成分量の測定
装置。
10. A method for determining an amount of a component to be measured of a component to be measured contained in the sample to be measured based on a measured value in a certain physical property measured by using a post-reaction sample obtained by reacting a sample to be measured with a reagent. A measuring device that uses a method for measuring an amount of a component to be measured, wherein a preset value is set in advance in the same physical property as that of the measured value, and an amount of a corresponding component uniquely corresponding to the set value in the measured component. And a memory (205) for storing a table showing a correspondence relationship between the measured value and the component amount deriving means (20) for reading the corresponding component amount corresponding to the measured value from the memory.
6) And the measuring device of the to-be-measured component amount characterized by including these.
【請求項11】 被測定試料と試薬とを反応させた反応
後試料を用いて測定されたある物性における測定値に基
づき上記被測定試料に含まれる被測定成分の被測定成分
量を求めるため、上記被測定試料に含まれる被測定成分
における複数の既知の成分量と該既知成分量に対応する
複数の既知測定値との複数の関係に基づき検量線を予め
求め、上記測定値について上記検量線に基づき上記被測
定成分量を求める測定方法を使用する測定装置であっ
て、 上記検量線に基づき上記被測定成分量を求めることがで
きる換算可能範囲に上記測定値が含まれるときにはこの
測定値については上記検量線に基づき上記被測定成分量
を求め、 上記検量線に基づき上記被測定成分量を求めることがで
きない換算禁止範囲に上記測定値が含まれるときには、
上記測定値における物性と同一の物性において予め設定
した設定値と、上記被測定成分において上記設定値に一
義的に対応する対応成分量との対応関係を表すテーブル
に基づき上記測定値に対する上記被測定成分量を導き出
すことを特徴とする被測定成分量の測定装置。
11. An amount of a measured component of a measured component contained in the measured sample is obtained based on a measured value of a certain physical property measured by using a post-reaction sample obtained by reacting a measured sample with a reagent, A calibration curve is obtained in advance based on a plurality of known component amounts in the measured component contained in the measured sample and a plurality of known measured values corresponding to the known component amounts, and the calibration curve for the measured values is obtained. A measurement device that uses a measurement method for determining the measured component amount based on the above, when the measured value is included in the convertible range in which the measured component amount can be calculated based on the calibration curve Is the amount of the component to be measured based on the calibration curve, when the measured value is included in the conversion prohibited range in which the amount of the component to be measured cannot be determined based on the calibration curve,
The measured value for the measured value based on the table showing the correspondence relationship between the preset value in the same physical property as the measured value and the corresponding component amount uniquely corresponding to the set value in the measured component An apparatus for measuring an amount of a component to be measured, which is characterized by deriving an amount of the component.
【請求項12】 被測定試料と試薬とを反応させた反応
後試料を用いて測定されたある物性における測定値に基
づき上記被測定試料に含まれる被測定成分の被測定成分
量を求めるため、上記被測定試料に含まれる被測定成分
における複数の既知の成分量と該既知成分量に対応する
複数の既知測定値との複数の関係に基づき検量線を予め
求め、上記測定値について上記検量線に基づき上記被測
定成分量を求める測定方法を使用する測定装置であっ
て、 上記測定値における物性と同一の物性において予め設定
した設定値と、上記被測定成分において上記設定値に一
義的に対応する対応成分量との対応関係を表すテーブル
と、上記検量線を表す情報とを記憶するメモリ(5)
と、 上記測定値が供給され、供給された測定値が上記検量線
に基づき上記被測定成分量を求めることができる換算可
能範囲に含まれるか否かを判断する判断手段(200)
と、 上記判断手段に電気的に接続され、上記判断手段にて上
記測定値が上記換算可能範囲に含まれると判断されたと
きには当該測定値については上記メモリに記憶される上
記検量線を表す情報に基づき上記被測定成分量を求め、
一方、上記判断手段にて上記測定値が上記検量線に基づ
き上記被測定成分量を求めることができない換算禁止範
囲に含まれると判断したときには当該測定値については
上記メモリに記憶される上記テーブルに基づき上記被測
定成分量を求める成分量導出手段(201)と、を備え
たことを特徴とする被測定成分量の測定装置。
12. The amount of the component to be measured of the component to be measured contained in the sample to be measured is determined based on a measured value in a certain physical property measured by using a post-reaction sample obtained by reacting a sample to be measured with a reagent, A calibration curve is obtained in advance based on a plurality of known component amounts in the measured component contained in the measured sample and a plurality of known measured values corresponding to the known component amounts, and the calibration curve for the measured values is obtained. A measuring device using a measuring method for determining the amount of the component to be measured based on the above, wherein a preset value is set in advance in the same physical property as the physical property in the measured value, and the set value is uniquely corresponded to in the measured component. A memory (5) for storing a table showing the correspondence relationship with the corresponding component amounts and the information showing the calibration curve.
And a determination means (200) for determining whether or not the measured value is supplied and the supplied measured value is included in a convertible range in which the measured component amount can be obtained based on the calibration curve.
And electrically connected to the determination means, and when the determination means determines that the measured value falls within the convertible range, the measured value is information indicating the calibration curve stored in the memory. The amount of the component to be measured is calculated based on
On the other hand, when the determination means determines that the measured value is included in the conversion prohibited range in which the measured component amount cannot be obtained based on the calibration curve, the measured value is stored in the table stored in the memory. An apparatus for measuring a measured component amount, comprising: a component amount deriving unit (201) for obtaining the measured component amount based on the above.
【請求項13】 2つの上記換算禁止範囲を有するとき
上記換算可能範囲は上記換算禁止範囲に挟まれ、かつそ
れぞれの換算禁止範囲と換算可能範囲とは連続する、請
求項12記載の被測定成分量の測定装置。
13. The component to be measured according to claim 12, wherein when there are two said conversion prohibited ranges, said convertible range is sandwiched by said conversion prohibited ranges, and each conversion prohibited range and said convertible range are continuous. Quantity measuring device.
【請求項14】 上記試薬はドライケミストリーを利用
した試薬である、請求項9ないし13のいずれかに記載
の被測定成分量の測定装置。
14. The apparatus for measuring the amount of a component to be measured according to claim 9, wherein the reagent is a reagent utilizing dry chemistry.
【請求項15】 上記被測定成分は生化学分野における
成分である、請求項9ないし14のいずれかに記載の被
測定成分量の測定装置。
15. The apparatus for measuring the amount of a component to be measured according to claim 9, wherein the component to be measured is a component in the field of biochemistry.
【請求項16】 上記被測定成分はグルコースであり、
上記測定値が電圧値のとき、上記被測定成分量の測定範
囲は20mg/dl〜500mg/dlである、請求項
15記載の被測定成分量の測定装置。
16. The component to be measured is glucose,
The measuring device for measuring the amount of the component to be measured according to claim 15, wherein the measuring range of the amount of the component to be measured is 20 mg / dl to 500 mg / dl when the measured value is a voltage value.
【請求項17】 上記被測定成分は乳酸であり、上記測
定値が電圧値のとき、上記被測定成分量の測定範囲は5
mg/dl〜180mg/dlである、請求項15記載
の被測定成分量の測定装置。
17. The measured component is lactic acid, and when the measured value is a voltage value, the measuring range of the measured component amount is 5
The measuring device for measuring the amount of the component to be measured according to claim 15, which is in the range of mg / dl to 180 mg / dl.
【請求項18】 上記被測定成分はビリルビンであり、
上記測定値が電圧値のとき、上記被測定成分量の測定範
囲は0.2mg/dl〜30mg/dlである、請求項
15記載の被測定成分量の測定装置。
18. The component to be measured is bilirubin,
The measuring device for measuring the amount of the component to be measured according to claim 15, wherein the measuring range of the amount of the component to be measured is 0.2 mg / dl to 30 mg / dl when the measured value is a voltage value.
JP10500896A 1996-04-25 1996-04-25 Method and apparatus for measuring amount of component to be measured Pending JPH09292387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10500896A JPH09292387A (en) 1996-04-25 1996-04-25 Method and apparatus for measuring amount of component to be measured

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10500896A JPH09292387A (en) 1996-04-25 1996-04-25 Method and apparatus for measuring amount of component to be measured

Publications (1)

Publication Number Publication Date
JPH09292387A true JPH09292387A (en) 1997-11-11

Family

ID=14396054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10500896A Pending JPH09292387A (en) 1996-04-25 1996-04-25 Method and apparatus for measuring amount of component to be measured

Country Status (1)

Country Link
JP (1) JPH09292387A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6377896B1 (en) 1998-01-06 2002-04-23 Kyoto Daiichi Kagaku Co., Ltd. Method and apparatus for determination of a substance coexisting with another substance
JP2010002398A (en) * 2008-06-23 2010-01-07 Horiba Ltd Analyzing device
JP2010534838A (en) * 2007-07-26 2010-11-11 ホーム ダイアグナスティックス,インコーポレーテッド Method and system for measuring analyte concentration using time-resolved current measurement
US8574424B2 (en) 2007-07-26 2013-11-05 Nipro Diagnostics, Inc. System and methods for determination of analyte concentration using time resolved amperometry
WO2017122485A1 (en) * 2016-01-12 2017-07-20 テルモ株式会社 Component measuring device, component measuring method and component measuring program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6377896B1 (en) 1998-01-06 2002-04-23 Kyoto Daiichi Kagaku Co., Ltd. Method and apparatus for determination of a substance coexisting with another substance
JP2010534838A (en) * 2007-07-26 2010-11-11 ホーム ダイアグナスティックス,インコーポレーテッド Method and system for measuring analyte concentration using time-resolved current measurement
US8574424B2 (en) 2007-07-26 2013-11-05 Nipro Diagnostics, Inc. System and methods for determination of analyte concentration using time resolved amperometry
JP2010002398A (en) * 2008-06-23 2010-01-07 Horiba Ltd Analyzing device
WO2017122485A1 (en) * 2016-01-12 2017-07-20 テルモ株式会社 Component measuring device, component measuring method and component measuring program
CN108474794A (en) * 2016-01-12 2018-08-31 泰尔茂株式会社 Component measuring device, method for measuring components and composition measurement program
CN108474794B (en) * 2016-01-12 2022-02-11 泰尔茂株式会社 Component measuring device, component measuring method, and computer-readable recording medium

Similar Documents

Publication Publication Date Title
US7054759B2 (en) Concentration measuring method
US20200348306A1 (en) Slope-Based Compensation
JP4256588B2 (en) Electrochemical measurement method and measurement apparatus using statistical methods
TWI453409B (en) Temperature-adjusted analyte determination for biosensor systems
RU2509304C2 (en) Biosensor system with signal correction
JP2800981B2 (en) Biosensing meter with fail-safe function to prevent false display
US7947222B2 (en) Mobile communication terminal equipped with temperature compensation function for use in bio-information measurement
US8343331B2 (en) Method for correcting erroneous results of measurement in biosensors and apparatus using the same
EP0928967B1 (en) Method and apparatus for the determination of a substance coexisting with another substance
US20090229996A1 (en) Analyte sensors and methods
JP2011506966A5 (en)
JP2019109251A (en) System error compensation of determination of analyte concentration
KR20080069572A (en) Bio-sensor measuring device, bio-sensor measuring system, and bio-sensor measuring method
JPH03128439A (en) Calibrating method for liquid analysis
JPH09292387A (en) Method and apparatus for measuring amount of component to be measured
JP3203411B2 (en) Clinical testing device and method
JPH0712964U (en) Biosensor
JPH06169797A (en) Method for measuring hrp
JPS635267A (en) Biochemical automatic analyser

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040510

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050419

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050615

A02 Decision of refusal

Effective date: 20051227

Free format text: JAPANESE INTERMEDIATE CODE: A02