JPS635267A - Biochemical automatic analyser - Google Patents

Biochemical automatic analyser

Info

Publication number
JPS635267A
JPS635267A JP14913586A JP14913586A JPS635267A JP S635267 A JPS635267 A JP S635267A JP 14913586 A JP14913586 A JP 14913586A JP 14913586 A JP14913586 A JP 14913586A JP S635267 A JPS635267 A JP S635267A
Authority
JP
Japan
Prior art keywords
concn
concentration
value
analytical output
immobilized enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14913586A
Other languages
Japanese (ja)
Inventor
Matashige Ooyabu
大藪 又茂
Hideki Yamamoto
山本 英毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP14913586A priority Critical patent/JPS635267A/en
Publication of JPS635267A publication Critical patent/JPS635267A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE:To simply check the activity of immobilized enzyme, by operating the difference between the high concn. value in a range wherein the linearity of the concn. of the component to be examined in a specimen and analytical output is held and a concn. value obtained by converting the analytical output at the measuring time of a high concn. standard solution prepared so as to have said high concn. value by a calibration curve. CONSTITUTION:The high concn. value in a range wherein the linearity of the concn. of the component to be examined in a specimen and analytical output is held is stored in a memory 72. From the relation of the concn.-analytical output of a standard solution for calibration with the low concn. in the range wherein said linearity is held, an analytical output-concn. converting calibration curve is corrected at every predetermined analytical cycle by a first operation part 73 and the analytical output at the measuring time of a high concn. standard solution prepared so as to have the high concn. value is converted to concn. by a correcting calibration curve. The difference between this converted concn. and the high concn. value is operated by a second operation part 74 to judge whether the concn. difference is 1/10 or less of the high concn. value and the activity of immobilized enzyme is checked simply. The use propriety of an immobilized enzyme column 5 is displayed on a display device 75.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は生化学自動分析装置に関する。さらに詳しく
:よ固定化酵素カラムを用いた生化学自動分析装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to an automatic biochemical analyzer. More details: Regarding a biochemical automatic analyzer using an immobilized enzyme column.

(ロ)従来の技術 近年、生化学分析等の分野では固定化酵素を臨床用のバ
イオリアククとして用いる試みがなされており、ことに
キャリア供給部から試料導入部を介して固定化酵素カラ
ムへ延設されるキャリア流路と、該固定化酵素カラムか
ら分析部へ延設される分析流路とからなる自動分析装置
が提案されている。そして固定化酵素カラムにはグルコ
ース、尿酸、乳酸、BUN等の各測定項目に応じてそれ
ぞれ対応する酵素を多孔性の担体にそれぞれ固定化した
ものが用いられている。
(b) Conventional technology In recent years, attempts have been made to use immobilized enzymes as clinical bioreactors in fields such as biochemical analysis, and in particular, attempts have been made to use immobilized enzymes as bioreactors for clinical use. An automatic analyzer has been proposed that includes a carrier flow path and an analysis flow path extending from the immobilized enzyme column to an analysis section. The immobilized enzyme column is made by immobilizing enzymes corresponding to each measurement item such as glucose, uric acid, lactic acid, BUN, etc. on a porous carrier.

(ハ)発明が解決しようとする問題点 しかしながら、上記装置に用いられているカラム中の固
定化酵素は、使用しているうちに酵素活性、とくに高濃
度域における活性が低下し、その結果所定濃度の標準試
料と分析出力との関係で決定される検量線の直線性が失
われ測定誤差を招きやすい。そしてこの活性の低下は環
境温度、測定検体数、作製した固定化酵素のロフト等の
要因に支配されているので、単に使用回数や経過時間等
により一律に固定化酵素の寿命を定めるわけにはいかず
、その取り替え時期を決定するのは極めて困難であると
いう問題点があった。
(c) Problems to be solved by the invention However, the enzyme activity of the immobilized enzyme in the column used in the above-mentioned device decreases while being used, especially in the high concentration range, and as a result, the enzyme activity decreases, especially in the high concentration range. The linearity of the calibration curve, which is determined based on the relationship between the concentration standard sample and the analytical output, is likely to be lost, leading to measurement errors. Since this decrease in activity is controlled by factors such as the environmental temperature, the number of samples to be measured, and the loft of the immobilized enzyme produced, it is not possible to uniformly determine the lifespan of an immobilized enzyme simply by the number of times it is used or the elapsed time. However, there was a problem in that it was extremely difficult to decide when to replace it.

この発明はかかる状況に鑑み為されたものであり、こと
に固定化された酵素の活性を簡単にチエツクできる演算
制御部を備えた生化学自動分析装置を提供しようとする
ものである。
The present invention has been made in view of the above circumstances, and particularly aims to provide an automatic biochemical analyzer equipped with an arithmetic control section that can easily check the activity of immobilized enzymes.

(ニ)問題点を解決するための手段 かくしてこの発明によれば、キャリア供給部から試料導
入部を介して固定化酵素カラムへ延設されるキャリア流
路と、該固定化酵素カラムから分析部へ延設される分析
流路とからなり、分析初期こおいて試料中の被検成分濃
度と分析出力との直線性が保た右る範囲内の高濃度値C
を予め記憶する第1記憶部と、上記直線性が保たれる範
囲内における低濃度の較正用標準液の濃度−分析出力の
関係により所定の分析サイクル毎に分析出力−濃度変換
用検量線を較正する第1演算部と、前記高濃度値c+、
:′Agされた高濃度標準液測定時の分析出力を上記較
正検量線に基づいて濃度C゛に変換し、次いで該濃度C
°と前記高濃度値Cとの差ΔCを演算する第2演算部と
、第2演算部からの濃度差Δc b< cの1/lO以
下かどうかを判断し、前記固定化酵素カラムの使用の適
否を表示する表示部、とから構成される演算表示部を有
してなる生化学自動分析装置が提供される。
(d) Means for Solving the Problems Thus, according to the present invention, there is provided a carrier channel extending from the carrier supply section to the immobilized enzyme column via the sample introduction section, and a carrier channel extending from the immobilized enzyme column to the analysis section. A high concentration value C within the range that maintains linearity between the concentration of the analyte component in the sample and the analytical output during the initial stage of the analysis.
A calibration curve for analytical output-concentration conversion is prepared every predetermined analysis cycle based on the relationship between the concentration and analytical output of a low-concentration calibration standard solution within the range in which the linearity is maintained. a first calculation unit to calibrate; the high concentration value c+;
:'The analytical output during the measurement of the Aged high concentration standard solution is converted to the concentration C' based on the above calibration standard curve, and then the concentration C' is converted to the concentration C'.
a second calculation unit that calculates the difference ΔC between ° and the high concentration value C, and a second calculation unit that determines whether the concentration difference Δc from the second calculation unit is less than 1/1O of b<c, and determines whether the immobilized enzyme column is used. An automatic biochemical analyzer is provided, which has a calculation display section configured with a display section for displaying the suitability of the test.

この発明において、高濃度値Cは項目により異なるため
とくに限定はされないが、通常低濃度値の3〜5倍程度
の値付近に設定することが好ましい。また低濃度値は通
常、生体試料の正常値より若干高い目の濃度に設定する
のが適している。
In the present invention, the high density value C is not particularly limited as it varies depending on the item, but it is usually preferably set around a value of about 3 to 5 times the low density value. Further, it is usually appropriate to set the low concentration value to a concentration slightly higher than the normal value of the biological sample.

(ホ)作用 この発明によれば、酵素活性が低下した場合には、高濃
度値の算出濃度と実際濃度との間に有意な差を生じ、こ
れに基づいて継続使用不可の表示等がなされ、酵素活性
か実質的に低下せず上記濃度差に有意の差が無い(すな
わち、高濃度値のl/10以下)場合には継続使用可能
の表示等かなされることとなる。
(E) Effect According to this invention, when the enzyme activity decreases, a significant difference occurs between the calculated high concentration value and the actual concentration, and based on this, a display indicating that continued use is not possible is made. If the enzyme activity does not substantially decrease and there is no significant difference in concentration (that is, 1/10 or less of the high concentration value), a statement indicating that continued use is possible will be made.

以下実施例によりこの発明の詳細な説明するが、これに
よりこの発明は限定されるものではない。
The present invention will be described in detail below with reference to Examples, but the present invention is not limited thereby.

(へ)実施例 第1図はこの発明の生化学自動分析装置の一実施例の構
成説明図である。
(F) Embodiment FIG. 1 is an explanatory diagram of the configuration of an embodiment of the automatic biochemical analyzer of the present invention.

図において(1)はキャリア、(2)は送液ポンプ、(
3)は試料導入部、(4)は試料供給部、(5)は固定
化酵素カラム、(6)は化学発光検出器、(7)は演算
表示部、(a)はキャリア流路、(b)は分析流路であ
る。なお、(8)はルミノール溶液、(9)は赤血塩溶
液、(10)および(]1)はドレインである。
In the figure, (1) is the carrier, (2) is the liquid pump, (
3) is a sample introduction section, (4) is a sample supply section, (5) is an immobilized enzyme column, (6) is a chemiluminescence detector, (7) is a calculation display section, (a) is a carrier flow path, ( b) is the analysis channel. Note that (8) is a luminol solution, (9) is a red blood salt solution, and (10) and (]1) are drains.

試料導入部(3)はインジェクタ(3])と三方電磁弁
(32)とピペッタ(33)で構成されており、試料供
給部(4)はターンテ、−プル(41)と多数のサンプ
ルカップ(42)からなっている。
The sample introduction section (3) consists of an injector (3]), a three-way solenoid valve (32), and a pipetter (33), and the sample supply section (4) consists of a turntable, a pull (41), and a large number of sample cups ( 42).

また演算表示部(7)にはA/D変換器(7」)、記憶
部(72)、第1演算部(73)、第2演算部(74)
および表示部(75)を備えている。
In addition, the calculation display section (7) includes an A/D converter (7''), a storage section (72), a first calculation section (73), and a second calculation section (74).
and a display section (75).

固定化酵素カラム(5)にはグルコースオキシダーゼが
使用され、化学発光検出器(6)には光電子増倍管が使
用されている。
Glucose oxidase is used for the immobilized enzyme column (5), and a photomultiplier tube is used for the chemiluminescence detector (6).

また、上記装置の動作は図示しないCPUにより全て制
御されるよう構成されている。
Further, the operation of the above device is configured to be completely controlled by a CPU (not shown).

次にこの装置の具体的な動作について説明する。Next, the specific operation of this device will be explained.

まず、分析初期において試料中の被検成分濃度と分析出
力との関係を多数の標準液によって評価し、その直線性
が保たれる範囲内の高濃度値Cを記憶部(72)にキー
インして記憶する。−方該高濃度(C)の標準液は試料
および較正用標準液と共にそれぞれサンプルカップ(4
2)に調製されている。ここで較正用標準液は前記直線
性が保たれる範囲内の低濃度液を用いる。
First, in the initial stage of analysis, the relationship between the concentration of the analyte in the sample and the analytical output is evaluated using a number of standard solutions, and a high concentration value C within a range that maintains linearity is keyed into the storage unit (72). memorize it. - On the other hand, the high concentration (C) standard solution is placed in a sample cup (4
2). Here, as the calibration standard solution, a low concentration solution within the range where the above-mentioned linearity is maintained is used.

次いで分析が行われ所定の分析サイクル毎に較正が行わ
れる。すなわち、分析時には三方電磁弁(32)とピペ
ッタ(33)によりターンテーブル(4])上のサンプ
ルカップ(42)中の上記試料が吸引され、この試料は
インジェクタ(31)によりキャリア流路(a)に注入
される。次いで試料はキャリアとともに固定化酵素カラ
ム(5)を通過する。このとき試料中にグルコース(被
検成分)が含まれていると該カラム(5)中では以下に
示す反応により過酸化水素が発生する グルコン酸+H20゜ 発生した過酸化水素は分析流路(b)中でルミノール溶
液(8)および赤血塩溶液(9)と合流し化学発光を生
じる。化学発光は化学発光検出器(6)により検出され
、この検出された出力はA/D変換器(71)によりデ
ジタル量に変換され、CPUにより処理され分析出力−
濃度変換用検量線に基づいてグルコース濃度として出力
される。
Analysis is then performed and calibration is performed at every predetermined analysis cycle. That is, during analysis, the sample in the sample cup (42) on the turntable (4) is aspirated by the three-way solenoid valve (32) and pipetter (33), and the sample is transferred to the carrier channel (a) by the injector (31). ). The sample then passes through the immobilized enzyme column (5) together with the carrier. At this time, if the sample contains glucose (test component), hydrogen peroxide is generated in the column (5) by the reaction shown below. ) in which the luminol solution (8) and red blood salt solution (9) are combined to produce chemiluminescence. Chemiluminescence is detected by a chemiluminescence detector (6), and the detected output is converted into a digital quantity by an A/D converter (71) and processed by the CPU to provide an analytical output -
The glucose concentration is output based on the concentration conversion calibration curve.

一方、較正時には前記試料の代わりに低濃度標準液が導
入され、その際の濃度−分析出力の関係から分析出力−
濃度変換用検量線の設定、較正が第1演算部(73)で
行われ、これに基づいて演算ベースの適正化が行われる
On the other hand, during calibration, a low-concentration standard solution is introduced instead of the sample, and from the relationship between concentration and analytical output, the analytical output is
Setting and calibration of the concentration conversion calibration curve are performed in the first calculation section (73), and based on this, the calculation base is optimized.

さらに演算表示部(7)にはカラムの評価を行う第2演
算部(74)が設定されている。第2演算部(74)は
、前記検量線の較正後に、試料の代わりに高濃c、(濃
度C)標準液を導入した際の出力を該検量線に基づいて
濃度C°に変換し、このCとC。
Further, the calculation display section (7) is provided with a second calculation section (74) that performs column evaluation. After calibrating the calibration curve, the second calculation unit (74) converts the output when a highly concentrated C (concentration C) standard solution is introduced in place of the sample into a concentration C° based on the calibration curve; This C and C.

の差ΔC(=IC’−CI)を算出する。このΔCの出
力は表示m(75)に送られる。
The difference ΔC (=IC'-CI) is calculated. The output of this ΔC is sent to display m (75).

表示部(75)は次式関係; IC’−CI>0.IC
の場合には固定化酵素カラムに寿命がきたことを知らせ
るメツセージを表示し、Ic’−CI≦0.ICの場合
には継続使用可能のメツセージを表示する。
The display section (75) has the following relationship; IC'-CI>0. IC
In the case of Ic'-CI≦0. In the case of an IC, a message indicating that continued use is possible is displayed.

今、上記固定化酵素カラムに使用されているグルコース
オキシダーゼの新鮮な状態での分析出力−濃度の関係が
第2図の標準液希釈系列の出力例で示された関係を保持
している場合、較正に用いる低濃度標準液(1りとして
は正常値に近接する濃度が200mg/df2のものお
よびカラム評価用に用いる高濃度標準液(Sh)として
濃度が1000mg/dc(=C)のグルコース溶液が
それぞれ調製され前述の分析および較正が行われると共
に、例えば第3図に示したアルゴリズムに従って上記装
置の固定化酵素がチエツクされる。
Now, if the relationship between the analytical output and concentration of glucose oxidase used in the immobilized enzyme column in the fresh state holds the relationship shown in the output example of the standard solution dilution series in Figure 2, then A low concentration standard solution used for calibration (one example is one with a concentration close to the normal value of 200 mg/df2, and a glucose solution with a concentration of 1000 mg/dc (=C) as a high concentration standard solution (Sh) used for column evaluation. are each prepared and subjected to the above-mentioned analysis and calibration, and the immobilized enzyme in the device is checked, for example, according to the algorithm shown in FIG.

なお、カラムの評価の表示は表示ランプの点灯、未点灯
で行−フでもよい。
Note that the evaluation of the column may be displayed in rows or blanks with the indicator lamp being lit or not lit.

このようにして、固定化酵素カラムの評価が可能な生化
学自動分析装置が得られることとなる。
In this way, an automatic biochemical analyzer capable of evaluating immobilized enzyme columns can be obtained.

(ト)発明の効果 この発明の方法によれば、固定化酵素を用いた分析装置
においては被検成分の低濃度値での精度のみならず高濃
度値での精度も良好に測定できる。
(G) Effects of the Invention According to the method of the present invention, in an analyzer using an immobilized enzyme, it is possible to measure the test component with good accuracy not only at low concentration values but also at high concentration values.

また、固定化酵素カラムの交換時期を正確に知ることが
できる。またさらに固定化酵素の寿命ぎりぎりまで該固
定化酵素カラムを使用できるのでラニングコストの低減
が可能となる。
In addition, it is possible to accurately know when to replace the immobilized enzyme column. Furthermore, since the immobilized enzyme column can be used until the end of the life of the immobilized enzyme, running costs can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の生化学自動分析装置の一実施例の構
成説明図、第2図はグルコースオキシダーゼの標準液希
釈系列の出力例を示すグラフ図、第3図はこの発明の生
化学自動分析装置の較正およびカラム評価のアルゴリズ
ムの一例を示すフローチャート図である。 (1)・・・・・・キャリア、 (2)・・・・・・送
液ポンプ、(3)・・・・・・試料導入部、 (5)・
・・・・・固定化酵素カラム、(7)・・・・・・演算
表示部 (72)・・・・・・記憶部、(73)・・・
・・・第1演算部、(74)・・・・・・第2演算部、
(75)・・・・・・表示部、 (a)・・・・・・キャリア流路、 (b)・・・・・
・分析流路。
FIG. 1 is an explanatory diagram of the configuration of an embodiment of the biochemical automatic analyzer of the present invention, FIG. 2 is a graph diagram showing an output example of a glucose oxidase standard solution dilution series, and FIG. 3 is a diagram showing the configuration of an embodiment of the biochemical automatic analyzer of the present invention. FIG. 2 is a flowchart diagram illustrating an example of an algorithm for calibrating an analyzer and evaluating a column. (1)...Carrier, (2)...Liquid pump, (3)...Sample introduction section, (5)...
...immobilized enzyme column, (7) ...calculation display section (72) ...memory section, (73) ...
...first calculation section, (74) ...second calculation section,
(75)...Display section, (a)...Carrier flow path, (b)...
・Analysis flow path.

Claims (1)

【特許請求の範囲】 1、キャリア供給部から試料導入部を介して固定化酵素
カラムへ延設されるキャリア流路と、該固定化酵素カラ
ムから分析部へ延設される分析流路とからなり、 分析初期において試料中の被検成分濃度と分析出力との
直線性が保たれる範囲内の高濃度値Cを予め記憶する第
1記憶部と、上記直線性が保たれる範囲内における低濃
度の較正用標準液の濃度−分析出力の関係により所定の
分析サイクル毎に分析出力−濃度変換用検量線を較正す
る第1演算部と、前記高濃度値Cに調製された高濃度標
準液測定時の分析出力を上記較正検量線に基づいて濃度
Cに変換し、次いで該濃度Cと前記高濃度値Cとの差Δ
Cを演算する第2演算部と、第2演算部からの濃度差Δ
CがCの1/10以下かどうかを判断し、前記固定化酵
素カラムの使用の適否を表示する表示部、とから構成さ
れる演算表示部を有してなる生化学自動分析装置。
[Claims] 1. A carrier channel extending from the carrier supply section to the immobilized enzyme column via the sample introduction section, and an analysis channel extending from the immobilized enzyme column to the analysis section. A first storage section that stores in advance a high concentration value C within a range where linearity between the concentration of the test component in the sample and the analytical output is maintained at the initial stage of analysis, and a high concentration value C within the range where the linearity is maintained. a first calculation unit that calibrates the analytical output-concentration conversion calibration curve for each predetermined analysis cycle based on the relationship between the concentration of the low-concentration calibration standard solution and the analytical output; and a high-concentration standard prepared to the high concentration value C. The analytical output during liquid measurement is converted to concentration C based on the above calibration standard curve, and then the difference Δ between the concentration C and the high concentration value C is calculated.
A second calculation unit that calculates C and a concentration difference Δ from the second calculation unit
An automatic biochemical analyzer comprising: a display section that determines whether C is 1/10 or less of C and displays whether or not the immobilized enzyme column is suitable for use;
JP14913586A 1986-06-25 1986-06-25 Biochemical automatic analyser Pending JPS635267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14913586A JPS635267A (en) 1986-06-25 1986-06-25 Biochemical automatic analyser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14913586A JPS635267A (en) 1986-06-25 1986-06-25 Biochemical automatic analyser

Publications (1)

Publication Number Publication Date
JPS635267A true JPS635267A (en) 1988-01-11

Family

ID=15468508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14913586A Pending JPS635267A (en) 1986-06-25 1986-06-25 Biochemical automatic analyser

Country Status (1)

Country Link
JP (1) JPS635267A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2175259A1 (en) * 2007-06-19 2010-04-14 Beckman Coulter, Inc. Method of specifying error and analyzer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2175259A1 (en) * 2007-06-19 2010-04-14 Beckman Coulter, Inc. Method of specifying error and analyzer
EP2175259A4 (en) * 2007-06-19 2011-11-02 Beckman Coulter Inc Method of specifying error and analyzer

Similar Documents

Publication Publication Date Title
EP0928967B1 (en) Method and apparatus for the determination of a substance coexisting with another substance
US7338802B2 (en) Method of performing calibration and quality control of a sensor and apparatus for performing the method
US20050107956A1 (en) Concentration measuring method
JP2511062B2 (en) Gas verification method and device
Chua et al. Plasma glucose measurement with the Yellow Springs Glucose Analyzer.
US20110165608A1 (en) Blood component measurement method utilizing hemolyzed whole blood, and kit for the method
Haeckel et al. A new concept to derive permissible limits for analytical imprecision and bias considering diagnostic requirements and technical state-of-the-art
Levinson et al. Measuring hemoglobin in plasma by reaction with tetramethylbenzidine.
Hagvik Glucose measurement: time for a gold standard
JP4141440B2 (en) Method for performing sensor calibration and quality control, and apparatus for performing the method
JPS635267A (en) Biochemical automatic analyser
EP2103923A2 (en) Automatic analyzer and analysis system using photomultiplier tube
JPS5861459A (en) Analyzing device for creatine and creatinine
JP3516069B2 (en) How to measure glucose concentration
CN112067562A (en) Calibration product for fructosamine detection and detection kit using same
Girotti et al. Luminescent techniques applied to bioanalysis
JP3074361B2 (en) Quantitative analyzer
Makin et al. A rapid and simple method for the specific estimation of glucose in blood
CN110564894B (en) Method for evaluating interference of interferent on fluorescence quantitative PCR detection HBV DNA
JP2019086450A (en) Analysis device for whole blood albumin, and analysis method for whole blood albumin
Magner Detection of ferricyanide as a probe for the effect of hematocrit in whole blood biosensors
JPH06249856A (en) Measurement of automatic biochemical analyzing device
Couck et al. Preliminary performance evaluation of blood gas analyzers
JPH10108695A (en) Measurement of glucose concentration
Wentz et al. Improved method for measurement of inorganic phosphate in serum with a centrifugal analyzer.