WO2017122485A1 - Component measuring device, component measuring method and component measuring program - Google Patents

Component measuring device, component measuring method and component measuring program Download PDF

Info

Publication number
WO2017122485A1
WO2017122485A1 PCT/JP2016/087145 JP2016087145W WO2017122485A1 WO 2017122485 A1 WO2017122485 A1 WO 2017122485A1 JP 2016087145 W JP2016087145 W JP 2016087145W WO 2017122485 A1 WO2017122485 A1 WO 2017122485A1
Authority
WO
WIPO (PCT)
Prior art keywords
function
component
value
blood glucose
unit
Prior art date
Application number
PCT/JP2016/087145
Other languages
French (fr)
Japanese (ja)
Inventor
杉山隆行
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2017561552A priority Critical patent/JP6811729B2/en
Priority to CN201680078662.8A priority patent/CN108474794B/en
Publication of WO2017122485A1 publication Critical patent/WO2017122485A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/1459Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters invasive, e.g. introduced into the body by a catheter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/66Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood sugars, e.g. galactose

Definitions

  • the present invention relates to a component measuring apparatus, a component measuring method, and a component measuring program for measuring a component in a liquid.
  • a blood glucose meter that measures the amount of glucose components (blood glucose level) in blood is known.
  • Japanese Patent Application Laid-Open No. 2004-555 discloses a blood glucose meter that takes blood into a sensor case (chip) and obtains a current value corresponding to a glucose component in blood from an internal reagent layer to calculate a blood glucose level. ing.
  • the blood glucose meter disclosed in Japanese Patent Application Laid-Open No. 2004-555 is configured as a medical device for ward examination (POCT: Point Of Care Testing) used in a medical facility.
  • POCT Point Of Care Testing
  • the blood glucose meter is different from a large analyzer that is installed in the laboratory and the inspection process after the transport of the test sample is performed in a separate room. It can be implemented and reflected in treatment, and contributes to quick examinations in emergency departments, OPE rooms, dialysis rooms, etc. in addition to bedside. Therefore, a blood glucose meter for POCT (POCT device) is required to have the same accuracy as a large analyzer even if it is a simple type, and accurate measurement values are always obtained through accuracy control such as QC (Quality Control). It is important to be managed so as to calculate.
  • QC Quality Control
  • the POCT device contributes to the work efficiency of medical personnel such as doctors and nurses, the POCT device is configured to be small and easy to carry.
  • the POCT device can identify medical workers and patients, and is provided with a function for automatically transmitting measurement values by communicating with a hospital server (electronic medical chart). It is required that the relevance can be recorded and referenced.
  • a hospital server electronic medical chart
  • the POCT device is required to calculate measurement values with high accuracy even in the high blood glucose level range, blood conditions, and measurement items that have been frequently excluded from the measurement.
  • the blood glucose meter (component measurement device) for POCT has a wide blood glucose level measurement range for measuring patients in various states, and further has a self-measuring (SMBG: Self-Monitoring-of-Blood-Glucose) device. It is required that the blood glucose level can be measured with higher accuracy than the above.
  • SMBG Self-Monitoring-of-Blood-Glucose
  • Ht concentration of red blood cells in the blood
  • therapeutic agent ambient temperature
  • ambient temperature etc. Processing that takes into account environmental factors. In this case, it is known that the degree of influence of the calculation error factor changes for each factor.
  • the blood glucose level when the blood glucose level is low, the blood color error ratio increases. Further, when the calculated value is adjusted to match the actual blood glucose level on the low blood glucose side, the calculated value may deviate from the actual blood glucose level if the blood glucose level is high. That is, by setting a wide range of measurable objects or widening the measurement range of the component amount, there has been a disadvantage that the reliability (followability) of the output characteristics with respect to the detected value is lowered.
  • the present invention has been made in order to solve the above-described problems, and provides a component measuring apparatus, a component measuring method, and a component measuring method that can obtain high measurement accuracy even when the measurement range is wide and can be used more favorably.
  • the purpose is to provide a program.
  • the present invention calculates a component measurement information based on a detection unit that detects a component amount of a component in a liquid and a detection value related to the component amount detected by the detection unit.
  • a control unit that includes: a measurement information calculation unit that applies a predetermined function to calculate the measurement information from the detection value; and the detection value or the detection value.
  • a function setting unit configured to set the predetermined function used by the measurement information calculation unit from a plurality of functions held in advance based on the calculated value to be calculated.
  • the component measuring device includes the function setting unit that sets a predetermined function from a plurality of functions based on the detected value or the calculated value calculated from the detected value, so that the component amount measurement range is wide.
  • the function setting unit has a wide component amount measurement range, so even if the measurement information deviates from the actual component amount in one function, the function setting unit actually uses different functions to measure the measurement information. Can be close to the amount of ingredients. Therefore, the component measuring apparatus can be used favorably as a blood glucose meter for POCT that measures blood glucose levels of various patients in a medical facility, for example.
  • control unit calculates a first value that is the calculated value from the detected value by the first function that is the predetermined function, compares the first value with a predetermined threshold value, and compares the first value with the predetermined value. It may be determined whether a single value is used as the measurement information, or whether the second value is calculated from the detection value using the second function that is the predetermined function and is different from the first function, and is used as the measurement information.
  • the component measuring apparatus calculates the first value by the first function and determines the application function based on the first value, thereby effectively utilizing the first value to obtain highly accurate measurement information. Obtainable. Further, if the frequency of use of the first function is high, the calculated first value is used as measurement information, so that internal processing is simplified. Therefore, measurement information can be obtained without significantly reducing the processing speed.
  • the detection unit detects a glucose component in blood, which is a component in the liquid, and outputs the detection value.
  • the function setting unit has a hematocrit as the first value. It can be set as the structure which discriminate
  • the component measuring apparatus can perform highly accurate detection in a wide measurement range when measuring the amount of the glucose component in the blood.
  • the measured blood glucose level corrected by hematocrit is used as the first value, that is, the applied function is determined according to the measured blood glucose level that is the most downstream in the calculation process, it is ensured that the measured blood glucose level is separated from the actual blood glucose level. Can be determined. As a result, the blood glucose level with the highest accuracy can be finally obtained.
  • the detection unit detects a glucose component in blood that is a component in the liquid and outputs the detection value
  • the function setting unit calculates the first value from the absorbance and corrects hematocrit.
  • a configuration may be used in which application of the first function or the second function is discriminated using a provisional blood glucose level before being performed.
  • the component measuring apparatus can determine the applied function at the stage before performing the hematocrit correction by using the temporary blood glucose level calculated from the absorbance as the first value. Therefore, even if it changes to a 2nd function, calculation of measurement information can be accelerated more.
  • control unit compares the calculation process value or the detection value, which is the calculation value calculated from the detection value by a function other than the predetermined function, with a predetermined threshold value, and uses the predetermined function.
  • Application of a certain first function or a second function that is the predetermined function and is different from the first function may be determined.
  • the component measuring device compares the calculation process value or detection value with a predetermined threshold value, and determines the application of the first function or the second function, thereby applying the first function at an early stage without using the first function. Function discrimination can be performed. Therefore, calculation of measurement information can be further accelerated.
  • the detection unit detects a glucose component in blood, which is a component in the liquid, and outputs the detection value, and the function setting unit calculates from the detection value as the calculation process value.
  • the applied absorbance can be used to determine application of the first function or the second function.
  • the component measuring apparatus can further improve the processing speed by determining the application of the first function or the second function using the absorbance as the calculation process value.
  • the detection unit detects a glucose component in blood that is a component in the liquid and outputs the detection value
  • the function setting unit uses the detection value acquired from the detection unit. It may be used to determine application of the first function or the second function.
  • the function setting unit can immediately set the applied function as the detected value is acquired, and the processing speed is maximized. be able to.
  • the function setting unit may be configured to change the timing for determining application of the predetermined function according to the processing speed of the measurement information calculation unit when calculating the measurement information.
  • the function can be set based on the calculated value in the later stage of the calculation process, and the accuracy of the measurement information to be calculated is improved.
  • a function can be set based on the detection value or a calculated value at an early stage of the calculation process, and the processing speed can be improved.
  • the present invention provides a component measurement method for measuring the component amount of a component in a liquid, the step of detecting the component amount by a detection unit, and a measurement information calculation unit, A step of calculating measurement information based on a detection value related to the component amount detected by the detection unit by applying a predetermined function, and a function setting unit, based on the detection value or a calculation value calculated from the detection value, And setting the predetermined function used by the measurement information calculation unit from a plurality of functions held in advance.
  • the component measurement program includes a step of detecting the component amount by a detection unit in a component measurement device that measures the component amount of the component in the liquid, and a measurement information calculation Calculating a measurement information based on a detection value related to the component amount detected by the detection unit by applying a predetermined function in the unit, and a calculated value calculated from the detection value or the detection value in the function setting unit And a step of setting the predetermined function used by the measurement information calculation unit from among a plurality of functions held in advance.
  • the component measuring device, the component measuring method, and the component measuring program can obtain high measurement accuracy even when the measurement range is wide, and can be used better.
  • the component measuring apparatus 10 detects a glucose component in blood (liquid), and measures a blood glucose level (a component amount of the glucose component) based on the detected value.
  • the blood glucose meter 10 is configured (hereinafter also referred to as a blood glucose meter 10).
  • the blood glucose meter 10 is configured as a POCT device mainly used by medical workers (users) such as doctors and nurses in medical facilities. It has a function of recording and calling blood glucose level data.
  • the blood glucose meter 10 may be used as an SMBG device in which the patient himself / herself measures his / her blood glucose level.
  • the blood glucose meter 10 includes a chip 12 that takes in blood, and an apparatus main body 14 that obtains a blood sugar level by optical measurement by mounting the chip 12.
  • the chip 12 is configured as a disposable type that is discarded after each measurement, while the apparatus main body 14 is configured as a portable and robust device so that the user can repeatedly measure the blood glucose level. .
  • the chip 12 includes a cylindrical mounting portion 16 that is inserted and fixed in the apparatus main body 14 and a nozzle 18 that protrudes from the mounting portion 16 to the tip.
  • a blood introduction path 18 a that extends linearly from the tip portion toward the inside of the attachment portion 16 is provided, and a test paper 20 is accommodated in the attachment portion 16.
  • the chip body 19 including the mounting portion 16 and the nozzle 18 is made of a rigid material having a predetermined rigidity.
  • a highly hydrophilic material such as an acrylic resin or various resin materials subjected to a hydrophilic treatment is preferable, and it is more preferable that a treatment not allowing ambient light to pass through is performed.
  • the test paper 20 is obtained by carrying (impregnating) a reagent (coloring reagent) on a carrier capable of absorbing blood (specimen).
  • This carrier is preferably composed of a porous membrane (sheet-like porous substrate).
  • the porous membrane preferably has a pore size that can filter out red blood cells in blood.
  • the carrier of the test paper 20 include, in addition to the porous film, a sheet-like porous substrate such as a nonwoven fabric, a woven fabric, and a stretched sheet.
  • Examples of the constituent material of the carrier such as the porous membrane include polyesters, polyamides, polyolefins, polysulfones, and celluloses, but it is impregnated with an aqueous solution in which a reagent is dissolved.
  • a hydrophilic material or a material that has been subjected to a hydrophilic treatment is preferable.
  • an enzyme reagent such as glucose oxidase (GOD) or peroxidase (POD), and 4-aminoantipyrine, N-ethyl N- ( And a coloring reagent such as 2-hydroxy-3-sulfopropyl) -m-toluidine, and the others are appropriately selected according to the measurement component.
  • GOD glucose oxidase
  • POD peroxidase
  • 4-aminoantipyrine N-ethyl N-
  • a coloring reagent such as 2-hydroxy-3-sulfopropyl
  • the chip 12 is stored in a state of being enclosed in a dedicated container in order to reduce the change over time of the reagent carried inside the test paper 20.
  • the user When measuring the blood glucose level with the blood glucose meter 10, the user attaches the chip 12 to the attachment portion 24, and then drops the patient's blood on the tip of the nozzle 18.
  • the spotted blood is guided to the test paper 20 through the blood introduction path 18a based on the capillary phenomenon, developed in the test paper 20, and then colored by reacting with the reagent carried in the test paper 20. To do.
  • the color reaction since the color concentration changes according to the amount of glucose contained in the blood, the change amount of the color concentration is detected and calculated as a blood glucose level.
  • a correction calculation is added to a factor that may cause a calculation error, and a correction step is provided so that the calculated value is close to the plasma glucose concentration value.
  • Factors to be corrected include blood concentration (hematocrit value), measurement temperature, test paper lot, patient medication, and the like.
  • the apparatus main body 14 has a housing 22 that constitutes the appearance.
  • the housing 22 is slightly elongated so that the user can easily hold it with one hand, and a mounting portion 24 to which the chip 12 is attached is formed on the distal end side of the housing 22.
  • the tip part of the POCT device is slightly bent downward while becoming narrower toward the tip direction, so that even a POCT device that is multifunctional and easy to enlarge can be easily spotted with blood with the same accuracy as the SMBG device. It is formed as follows. Further, an ejector 26 for removing the chip 12 mounted on the mounted portion 24, a monitor 28, and an operation button group 30 are provided on the upper surface of the housing 22, and a barcode reader 32 is provided on the base end surface of the housing 22. Is provided.
  • the housing 22 may have water resistance when water or chemicals are submerged for cleaning when blood adheres, and may have a structure that can be easily wiped off, such as eliminating surface processing and gaps as much as possible.
  • the mounted portion 24 is formed at the distal end portion of the blood glucose meter 10 and is formed in a cylindrical shape on which the above-described chip 12 can be mounted.
  • a cap 24a that protects the distal end portion when carrying and can be attached and detached at the time of measurement may be attached to the attachment portion 24 together with the fall prevention holder 24b.
  • the ejector 26 is connected to the eject pin 26a in the housing 22, and pushes the tip 12 mounted on the mounted portion 24 forward and separates in accordance with the forward pressing operation by the user.
  • the user can easily remove the chip 12 attached so as to be in close contact, and the chip 12 can be discarded without touching the chip 12 to which blood has adhered after measurement of the blood glucose level. Therefore, the user's work efficiency can be improved, and at the same time, the risk of infection due to contaminated blood generated in the hospital can be reduced.
  • the monitor 28 provided in the apparatus main body 14 is composed of a liquid crystal, an organic EL, or the like, and provides information to be provided to the user in blood glucose level measurement such as blood glucose level, date and time, or other information (for example, error or measurement procedure). indicate.
  • the operation button group 30 includes a power button 30a, a movement button 30b, a selection button 30c, an LED display section 30d, and a data reading button 30e.
  • the move button 30b has a function of moving the selection frame with respect to the item displayed on the monitor 28 or scrolling the screen in accordance with the operation.
  • the selection button 30c has a function of selecting a function of an item on which the selection frame is positioned on the monitor 28 or canceling the selection and returning to the screen before the selection in accordance with the user's pressing operation.
  • the LED display unit 30d is lit or blinked in various colors by the LED to notify the state of the blood glucose meter 10.
  • the data reading button 30e is provided between the monitor 28 and the mounted portion 24, and operates reading of the bar code reader 32.
  • the power-on is not limited to when the power button 30a is pressed, but can be set to change to a power-on state upon sensing the mounting of the chip 12 or the removal of the cap 24a. It is not limited to the time of pressing, but includes a state change due to interruption of signal communication or removal of the chip 12.
  • the barcode reader 32 has a function of reading a barcode (not shown) by laser scanning.
  • the barcode to be read is attached or pasted in advance to, for example, a patient, a medical worker, a package of the chip 12, and the like.
  • the blood glucose meter 10 reads patient barcode data, obtains patient identification data, measurer identification data, and chip identification data and stores them in a predetermined database (not shown).
  • the apparatus main body 14 includes a detection unit 34, an A / D converter 36, a temperature sensor 38, and a control circuit 40 inside the housing 22.
  • the detection unit 34 is a structural unit that optically detects blood collected in the chip 12.
  • the detection unit 34 includes a block body 42, a lens 44, a substrate 46, a light emitting unit 48, and a light receiving unit 50.
  • the block body 42 of the detection unit 34 is fixed inside the front end side of the housing 22, holds the lens 44 at the front end side, and holds the substrate 46 at the base end side. Inside the base end side of the block body 42, a light emitting unit 48 and a light receiving unit 50 mounted on the substrate 46 are inserted and arranged. Further, in the block body 42, a measurement light optical path 42 a for guiding the measurement light projected by the light emitting unit 48 to the lens 44, a space 42 b from the lens 44 to the test paper 20, and a reflection reflected from the test paper 20. A reflected light optical path 42c for guiding light from the lens 44 to the light receiving unit 50 is provided.
  • the light emitting unit 48 is a light source that irradiates light onto the test paper 20 as an irradiation means.
  • the light emitting surface is adjusted so as to face the test paper 20 and attached to the housing 22, and is condensed and irradiated by the lens 44.
  • the light emitting unit 48 is selected from light wavelengths absorbed by the color of the test paper 20, and is set in a wavelength range of about 500 to 720 nm, for example.
  • the measurement light is configured by two light emitting elements (first light emitting element 48a and second light emitting element 48b).
  • the first light emitting element 48a emits measurement light at a wavelength (for example, red light of 620 to 640 nm) for detecting the color density of the reagent according to the component amount of the glucose component.
  • the second light emitting element 48b emits measurement light at a wavelength for detecting the concentration of red blood cells in blood (for example, green light of 510 to 540 nm).
  • the first and second light emitting elements 48a and 48b for example, LED elements, organic EL elements, inorganic EL elements, LD elements, and the like can be used.
  • the wavelength region used for the measurement is selected according to the wavelength characteristics of the measurement reagent, and is set within a range not affected by the wavelength region of the inhibition factor.
  • the light receiving unit 50 includes one or a plurality of light receiving elements 50a that receive the reflected light reflected by the test paper 20 and output a current related to the reflected light (according to the intensity of the reflected light).
  • the light receiving element 50a for example, a PD element, a CCD element, a CMOS element or the like can be used.
  • the A / D converter 36 is electrically connected to the substrate 46 of the detection unit 34, and appropriately amplifies the current signal (analog signal) output from the light receiving unit 50 and converts it into a voltage signal (digital signal). , And output as a detected value d (current information).
  • the temperature sensor 38 is provided at a predetermined location (for example, the base end side) in the housing 22 and detects the ambient temperature T (atmosphere temperature) where the blood glucose meter 10 is used. This temperature sensor 38 outputs the detected ambient temperature T to the control circuit 40 as temperature information.
  • the control circuit 40 is configured as a computer (control unit) having an input / output I / F 52, a processor 54, a memory 56, and the like, and has a function of controlling the overall operation of the blood glucose meter 10. For example, the control circuit 40 controls the driving of the detection unit 34 and receives the detection value d detected by the detection unit 34 and converted by the A / D converter 36 to measure the blood sugar level. In addition, the control circuit 40 stores the measured blood glucose level in the database in association with the patient identification data, and displays it on the monitor 28.
  • the control circuit 40 reads out and executes the component measurement program 56a stored in the memory 56, thereby constructing a measurement processing unit 58 that measures a blood glucose level as shown in FIG.
  • the measurement processing unit 58 includes, for example, a detection unit drive unit 60, a detection value acquisition unit 62, a temperature acquisition unit 64, a blood glucose level calculation unit 66 (measurement information calculation unit), and a function setting unit 68.
  • the detection unit driving unit 60 is operated by a signal from the control circuit 40 and emits pulsed light at a predetermined time interval.
  • This pulsed light has a period of about 0.5 to 3.0 msec and an irradiation time of one pulse of about 0.05 to 0.3 msec.
  • measurement of glucose concentration using red light by the first light emitting element 48a
  • measurement of correction hematocrit value using green light by the second light emitting element 48b
  • the alternate irradiation of red light and green light is started.
  • the detection value acquisition unit 62 receives the detection value d (current information) transmitted from the detection unit 34 via the A / D converter 36 and temporarily stores it in the memory 56.
  • the detection value acquisition unit 62 is activated immediately after power-on or measurement mode switching, and automatically records the amount of reflected light from the surface of the test paper 20.
  • the recording time is determined in consideration of the amount of data that can be stored in the memory 56, but it is desirable that the recording time be performed a plurality of times per second. In addition, the number of times may vary depending on the amount of change in the amount of reflected light, and the larger the amount of change, the more measurement points per unit time can be secured, while saving the number of used memories. it can.
  • the temperature acquisition unit 64 receives information on the ambient temperature T transmitted from the temperature sensor 38 and temporarily stores it in the memory 56.
  • the temperature sensor 38 is installed so as to reflect the temperature of the test paper portion while avoiding a portion that is susceptible to temperature change such as a grip portion.
  • the ambient temperature T is preferably updated sequentially, and the measurement time when the temperature sensor 38 is stabilized is adopted for calculation correction and stored in the memory 56.
  • the blood glucose level calculation unit 66 is a functional unit that calculates a blood glucose level based on the detection value d (current value) acquired by the detection value acquisition unit 62 and displays it on the monitor 28.
  • the blood glucose level calculation unit 66 includes an absorbance calculation unit 70, a provisional blood glucose level calculation unit 72, a hematocrit correction unit 74, and a measurement result processing unit 76 according to the blood glucose level calculation process and the control process.
  • the absorbance calculation unit 70 calculates the absorbance AL based on the acquired detection value d.
  • the method for calculating the absorbance AL is not particularly limited. For example, a ratio between a white AD value that is a reference current value and a detected current value (color AD value) is taken, and a predetermined constant (the number of bits that facilitates processing). An expression for multiplying is given.
  • the absorbance AL is the amount of reflected light in the state in which the test paper 20 is colored by glucose in the blood compared to the reflected light in the state in which the test paper 20 is not colored as measured immediately after the power is turned on. It shows whether it has changed.
  • the measurement point adopted as the absorbance AL should be determined by the time after the reagent reaction is sufficiently completed, and may be determined each time from the amount of change per unit time or set in advance.
  • the absorbance calculation unit 70 reads a preset absorbance function and a white AD value obtained by reflected light from the test paper 20 before measurement (or stored in the memory 56 as a reference value), and obtained detection value Absorbance AL is calculated from d and output to provisional blood glucose level calculator 72.
  • the temporary blood glucose level calculation unit 72 calculates the temporary blood glucose level PB from the absorbance AL using the calibration function set by the function setting unit 68.
  • the “provisional blood glucose level PB” is a calculated value before performing a hematocrit correction described later.
  • a plurality of calibration functions are prepared according to the ambient temperature T of the blood glucose meter 10 and the measurement range of the blood glucose level, and are appropriately selected by the function setting unit 68.
  • the provisional blood sugar level calculation unit 72 calculates the provisional blood sugar level PB using the selected calibration function, and outputs it to the hematocrit correction unit 74.
  • the hematocrit correction unit 74 corrects the temporary blood glucose level PB based on the calculation result of the hematocrit value, which is the volume occupied by red blood cells in the blood, and calculates the measured blood glucose level MB, which is final blood glucose level measurement information.
  • the detector 34 and the control circuit 40 project the hematocrit value based on the reflected light by projecting the test light 20 colored with measurement light having a predetermined wavelength by the second light emitting element 48b.
  • the hematocrit correction unit 74 calculates the measured blood glucose level MB using the obtained hematocrit value
  • the hematocrit correction unit 74 outputs it to the measurement result processing unit 76.
  • the measurement result processing unit 76 generates the calculated measured blood sugar level MB as display information and transmits it to the monitor 28. Thereby, the monitor 28 displays the patient's blood glucose level (measured blood glucose level MB) in an appropriate display form. Further, the measurement result processing unit 76 stores the measured blood glucose level MB in the memory 56 in association with the patient identification data and the measurer identification data. Thereby, the blood glucose meter 10 can read and display the past measured blood glucose level MB for each patient. Or the blood glucose meter 10 transmits these data automatically (or according to a user's operation) to the server which has an electronic medical record in a hospital.
  • the function setting unit 68 is a functional unit that sets a function when the blood sugar level calculating unit 66 calculates the measured blood sugar level MB from the detected value d.
  • the function setting unit 68 includes an applied function selection unit 78 and a function change determination unit 80.
  • the applied function selection unit 78 selects a calibration function according to the processing content from a plurality of function data FD stored in the memory 56 (function storage unit) as shown in FIG. It has a function to do.
  • the function setting unit 68 may be configured to read out the absorbance function and the hematocrit function for performing hematocrit correction from the memory 56 and provide them to the blood sugar level calculation unit 66.
  • the blood glucose meter 10 is intended for use in a medical facility as described above, and the measurement range of the blood glucose level (measured blood glucose level MB) is set wider than the conventional SMBG device.
  • the blood glucose level can be measured with high accuracy for a wide blood glucose range (for example, 0 to 1000 mg / dL) and a wide range of blood hematocrit patients (for example, Ht 10 to 70%).
  • a wide blood glucose range for example, 0 to 1000 mg / dL
  • a wide range of blood hematocrit patients for example, Ht 10 to 70%.
  • the measurement value range that affects each factor may differ. For example, when the blood sugar level is low (50 mg / dL or less), the blood color error ratio is high.
  • the blood sugar level When correction is performed according to the blood sugar level on the low blood sugar side, the blood sugar level is relatively high (200 to 600 mg / d). In dL), the calculated value may deviate from the actual blood glucose level. Further, when the blood sugar level becomes high (600 mg / dL or more), since the reagent reaction time is long, correction that requires a long measurement time is required. Similarly, also in the hematocrit value, the plasma ratio is different even in the same amount of blood in the low value range (Ht20%) and the high value range (Ht60%), and there is a difference in the blood permeation rate and the reagent reaction rate.
  • the calibration function is one as in the conventional apparatus, the blood glucose level is low, and even if the blood glucose level is high, it can reflect a highly accurate value by following the patient's actual blood glucose level. There is a possibility of calculating a value deviating from the blood glucose level.
  • the application function selection unit 78 is configured to select a plurality (two) of calibration functions according to the measurement range. That is, as shown in FIG. 4, the memory 56 calculates the first calibration function f (x) for calculating the temporary blood glucose level PB when the blood glucose level is low and the temporary blood glucose level PB when the blood glucose level is high. And a second calibration function g (x).
  • the first calibration function f (x) indicated by the solid line and the second calibration function g (x) indicated by the alternate long and short dash line are drawn as curves for the sake of easy understanding of the invention.
  • the actual calibration function has various shapes depending on the design of the test paper structure, reagent composition, reagent amount, and the like.
  • the temporary blood sugar level calculating unit 72 calculates the temporary blood sugar level PB from the absorbance AL
  • the first calibration function f (x) is obtained when the absorbance AL that is the X axis is a1 in FIG.
  • Th the actual blood glucose level and the provisional blood glucose level PB follow well.
  • the second calibration function g (x) is applied.
  • the Y-axis blood glucose level provisional blood glucose level PB
  • c1 provisional blood glucose level PB
  • the ambient temperature T is one of the error factors when calculating the measurement value, and is particularly affected. This is because the reagent on the test paper 20 contains an enzyme reaction, the temperature dependence of the reagent reaction is high, and the blood developability inside the test paper 20 changes greatly according to the ambient temperature T, This is because it affects the reaction. Therefore, the memory 56 has a plurality of calibrations according to a predetermined temperature range (for example, a range of 5 ° C. such as T ⁇ 0 ° C., 0 ° C. ⁇ T ⁇ 5 ° C.,. Function is stored.
  • a predetermined temperature range for example, a range of 5 ° C. such as T ⁇ 0 ° C., 0 ° C. ⁇ T ⁇ 5 ° C.
  • the application function selection unit 78 selects a function corresponding to the ambient temperature T acquired by the temperature acquisition unit 64 from the above function group during the processing of the temporary blood glucose level calculation unit 72. Further, the applied function selection unit 78 selects one of the first calibration function f (x) or the second calibration function g (x) based on an instruction from the function change determination unit 80 and outputs the selected one to the temporary blood glucose level calculation unit 72. To do.
  • the function change discriminating unit 80 is a functional unit that discriminates application of either the first calibration function f (x) or the second calibration function g (x) that is an application function.
  • the function change determination unit 80 has a predetermined threshold value for distinguishing application of the first calibration function f (x) and the second calibration function g (x).
  • the threshold value is a detection value d detected by the detection unit 34 or a calculated value calculated in the calculation process of the blood glucose level calculation unit 66 (measured blood glucose level MB, temporary Those corresponding to blood glucose level PB, absorbance AL) are applied.
  • the application function discrimination timing and threshold value will be described, and the operation (processing flow) and effect of the control circuit 40 in measuring the blood glucose level will be described.
  • the blood glucose meter 10 is configured to determine application of the first calibration function f (x) and the second calibration function g (x) based on the measured blood glucose level MB calculated by the hematocrit correction unit 74. ing. That is, the blood sugar level calculation unit 66 calculates the temporary blood sugar level PB based on the first calibration function f (x), and further calculates the measured blood sugar level MB once by the hematocrit correction unit 74. The function setting unit 68 takes out the calculated measured blood glucose level MB as a parameter and uses it to determine the applied function.
  • the function change determination unit 80 of the function setting unit 68 has a measured blood sugar level threshold corresponding to the measured blood sugar level MB.
  • the measured blood sugar level threshold value may be appropriately set according to the range in which the first calibration function f (x) can sufficiently follow the actual blood sugar level in the blood sugar level measurement range, and examples include 50, 200, and 600 mg. / DL.
  • the function change determination unit 80 receives the measured blood glucose level MB corrected by the hematocrit correction unit 74, the function change determination unit 80 compares the measured blood glucose level with the threshold value of the measured blood glucose level and determines the first calibration function f (x) or the second calibration function g (x). Determine which application is appropriate.
  • the user attaches the chip 12 to the blood glucose meter 10 and takes the blood of the patient from the tip of the nozzle 18.
  • the glucose component reacts with the reagent, and the test paper 20 is colored according to the amount of the component.
  • the control circuit 40 of the blood glucose meter 10 operates (drives) the detection unit 34 by the detection unit drive unit 60 after a predetermined time from the start of coloration of the test paper 20 (step S1).
  • the detection unit 34 emits measurement light from the first and second light emitting elements 48 a and 48 b at different timings, and the reflected light reflected on the test paper 20 is received by the light receiving unit 50.
  • the light receiving unit 50 outputs a detection value d (current signal) corresponding to the intensity of reflected light when the first and second light emitting elements 48a and 48b project light.
  • This detection value d is transmitted to the control circuit 40 via the A / D converter 36.
  • the detection value acquisition unit 62 acquires the detection value d (step S ⁇ b> 2), and the detection value d is temporarily stored in the memory 56.
  • the control circuit 40 starts the operation of the blood sugar level calculation unit 66 based on the acquisition of the detection value d by the detection value acquisition unit 62.
  • the absorbance calculation unit 70 reads the detection value d when the first light emitting element 48a projects measurement light, and calculates the absorbance AL using the absorbance function (step S3).
  • the calculated absorbance AL is output to the temporary blood glucose level calculation unit 72.
  • the temporary blood glucose level calculation unit 72 calculates the temporary blood glucose level PB from the absorbance AL using the first calibration function f (x) set by the function setting unit 68 (step S4).
  • the calculated provisional blood glucose level PB is output to the hematocrit correction unit 74.
  • the hematocrit correction unit 74 corrects the temporary blood glucose level PB based on the hematocrit value, and calculates a measured blood glucose level MB that is a first value (step S5).
  • the hematocrit value is calculated in advance by the hematocrit correction unit 74 based on the detection value d when the second light emitting element 48b projects measurement light.
  • the calculated measured blood glucose level MB is stored in the memory 56 and output to the function setting unit 68.
  • control circuit 40 operates the function change determination unit 80 of the function setting unit 68 to compare the measured blood glucose level MB received from the hematocrit correction unit 74 with the measured blood glucose level threshold (step S6). Then, when the measured blood sugar level MB is equal to or less than the measured blood sugar level threshold value, the process proceeds to step S7, and when the measured blood sugar level MB is larger than the measured blood sugar level threshold value, the process proceeds to step S8.
  • the measurement result processing unit 76 of the control circuit 40 reads the measured blood glucose level MB (first value) based on the first calibration function f (x) from the memory 56, and displays the measured blood glucose level MB as display information. Is displayed on the monitor.
  • the measurement result processing unit 76 stores the patient identification data and the measured blood glucose level MB in the memory 56 in association with each other.
  • the function setting unit 68 reads the second calibration function g (x) from the memory 56 by the application function selection unit 78 and sends it to the temporary blood glucose level calculation unit 72.
  • the provisional blood glucose level calculation unit 72 Upon receiving the second calibration function g (x), the provisional blood glucose level calculation unit 72 once again calculates the provisional blood glucose level PB (second value) from the absorbance AL using the second calibration function g (x) in step S8. To do. Thereby, the temporary blood glucose level PB corresponding to a high blood glucose level is obtained.
  • the temporary blood glucose level PB calculated by the second calibration function g (x) is subjected to the hematocrit correction again by the hematocrit correction unit 74, and the measured blood glucose level MB based on the second calibration function g (x) is newly calculated. It is stored in the memory 56 (step S9). Thereafter, the process of step S7 is performed, and the measured blood glucose level MB based on the second calibration function g (x) is displayed on the monitor 28.
  • the blood glucose meter 10, the component measurement method, and the component measurement program 56a according to the first embodiment are based on the measured blood glucose level MB calculated from the detected value d, the first calibration function f (x) and the second calibration function g.
  • the function setting unit 68 has a wide blood glucose level measurement range, so that even if the blood glucose level deviates from the actual component amount in the first calibration function f (x), the second calibration function g
  • the blood glucose level can be brought close to the actual component amount. Therefore, the blood glucose meter 10 can be favorably used as a POCT device that measures blood glucose levels of various patients in a medical facility or the like.
  • the blood glucose meter 10 compares the measured blood glucose level MB with the measured blood glucose level threshold by the function setting unit 68 to determine the first calibration function f (x) or the second calibration function g (x). No information is required, and internal processing is simplified. Therefore, the blood sugar level can be obtained without significantly reducing the processing speed.
  • the blood glucose meter 10 is configured to determine an appropriate function using the measured blood glucose level MB corrected by hematocrit as a calculated value. That is, since the application function is determined according to the measured blood glucose level MB that is the most downstream side (final value) in the calculation process, it is possible to reliably determine that the measured blood glucose level MB is away from the actual blood glucose level. Finally, the blood glucose level with the highest accuracy can be obtained.
  • the blood glucose meter 10 calculates the second calibration function g (x) by calculating the first temporary blood glucose level PB using the first calibration function f (x) having a high use probability (frequency). The opportunity to redo is reduced, and the decrease in processing speed can be suppressed.
  • the blood glucose meter 10 is not limited to the configuration of the above-described embodiment, and can take various modifications.
  • the blood glucose meter 10 is not limited to the use of two calibration functions as described above, and may be configured to calculate a blood glucose level using three or more calibration functions.
  • the blood glucose meter 10 calculates the blood glucose level easily and early using an initial calibration function different from the first calibration function f (x) and the second calibration function g (x) for easily calculating the blood glucose level. Then, application of the first calibration function f (x) and the second calibration function g (x) may be determined from the calculated value.
  • the blood glucose meter 10 uses the second calibration function g (x) as a calibration function used when the temporary blood glucose level PB is first calculated according to the patient's state (past measurement information, etc.). Also good.
  • the blood glucose meter 10 may have different timings for determining application of the first calibration function f (x) and the second calibration function g (x). I will explain.
  • the blood glucose meter 10A has a first calibration function f (x) and a second calibration function g (x) based on the temporary blood glucose level PB before the hematocrit correction calculated by the temporary blood glucose level calculation unit 72. It is the structure which discriminate
  • the configuration of the blood glucose meter 10A is basically the same as that of the blood glucose meter 10 referred to in FIGS.
  • the function change determination unit 80 takes out the calculated temporary blood glucose level PB, and compares and determines the stored temporary blood sugar level threshold and the extracted temporary blood sugar level PB.
  • the temporary blood sugar level threshold is set to 600 mg / dL, for example, as in the first embodiment.
  • the function change determination unit 80 instructs the application of the first calibration function f (x) if the temporary blood glucose level PB is equal to or less than the temporary blood glucose level threshold, and if the temporary blood glucose level PB is larger than the temporary blood glucose level threshold.
  • the application of the second calibration function g (x) is instructed.
  • steps S11 to S14 are the same as steps S1 to S4 in the first embodiment.
  • the blood sugar level calculating unit 66 temporarily stores the calculated temporary blood sugar level PB in the memory 56 and outputs it to the function setting unit 68.
  • the function setting unit 68 receives the temporary blood glucose level PB (first value) calculated by the temporary blood glucose level calculation unit 72, and compares the temporary blood glucose level PB with the temporary blood glucose level threshold in step S15. If the temporary blood glucose level PB is equal to or lower than the temporary blood glucose level threshold value, the process proceeds to step S16. If the temporary blood glucose level PB is larger than the temporary blood glucose level threshold value, the process proceeds to step S18.
  • the hematocrit correction unit 74 corrects the temporary blood glucose level PB to calculate the measured blood glucose level MB (step S16). Furthermore, the same processing flow as step S7 of the first embodiment is performed, and the measured blood glucose level MB is displayed (step S17).
  • the function setting unit 68 reads the second calibration function g (x) from the memory 56 by the application function selection unit 78 and sends it to the temporary blood glucose level calculation unit 72.
  • the provisional blood glucose level calculation unit 72 Upon receiving the second calibration function g (x), the provisional blood glucose level calculation unit 72 once again calculates the provisional blood glucose level PB (second value) from the absorbance AL using the second calibration function g (x) in step S18. To do.
  • step S19 the same processing flow as in step S9 of the first embodiment is performed, and the process proceeds to step S17 to display the measured blood glucose level MB based on the second calibration function g (x).
  • the blood glucose meter 10A according to the second embodiment can also achieve the same effects as those of the first embodiment.
  • the blood glucose meter 10A uses the provisional blood glucose level PB calculated from the absorbance AL in the calculation process, the first calibration function f (x) and the second calibration function g (x) are in a stage before hematocrit correction is performed. Application discrimination can be made. Therefore, even when the second calibration function g (x) is used, the measurement blood glucose level MB can be calculated more quickly.
  • the blood glucose meter 10B according to the third example is configured to discriminate application of the first calibration function f (x) or the second calibration function g (x) when the absorbance calculation unit 70 calculates the absorbance AL using the absorbance function. It has become.
  • the configuration of the blood glucose meter 10B is basically the same as that of the blood glucose meter 10 referred to in FIGS.
  • the function change determination unit 80 of the blood glucose meter 10B receives the absorbance AL (calculation process value) calculated by the absorbance calculation unit 70, the function change determination unit 80 performs comparison determination with the absorbance threshold value held. If the absorbance AL is equal to or less than the absorbance threshold, the application of the first calibration function f (x) is instructed, and if the absorbance AL is larger than the absorbance value threshold, the application of the second calibration function g (x) is instructed.
  • steps S21 to S23 are the same as steps S1 to S3 of the first embodiment.
  • the absorbance calculation unit 70 temporarily stores the calculated absorbance AL (calculation process value) in the memory 56 and outputs it to the function setting unit 68.
  • step S24 the function setting unit 68 compares the absorbance AL with the absorbance threshold value. If the absorbance AL is equal to or less than the absorbance threshold, the process proceeds to step S25, and if the absorbance AL is greater than the absorbance threshold, the process proceeds to step S28.
  • the first calibration function f (x) can be said to be an optimal function. Therefore, thereafter, the temporary blood glucose level PB is calculated by the temporary blood glucose level calculation unit 72 using the first calibration function f (x) (step S25), and the hematocrit correction unit 74 corrects the temporary blood glucose level PB.
  • the measured blood glucose level MB is calculated (step S26). Furthermore, the same processing flow as step S7 of the first embodiment is performed, and the measured blood glucose level MB is displayed (step S27).
  • the function setting unit 68 reads the second calibration function g (x) from the memory 56 by the application function selection unit 78 and sends it to the temporary blood glucose level calculation unit 72.
  • the provisional blood glucose level calculation unit 72 calculates the provisional blood glucose level PB from the absorbance AL using the second calibration function g (x) in step S28. Thereafter, in step S29, the same processing flow as in step S9 of the first embodiment is performed, and the process proceeds to step S27 to display the measured blood glucose level MB based on the second calibration function g (x).
  • the blood glucose meter 10B according to the third embodiment can also obtain the same effects as those of the first embodiment.
  • the blood glucose meter 10B applies the first calibration function f (x) and the second calibration function g (x) using the absorbance AL, which is a calculation process value at an earlier stage than the first and second embodiments. Since the determination is made, the processing speed can be further improved.
  • the blood glucose meter 10C is configured to determine application of the first calibration function f (x) and the second calibration function g (x) immediately after the detection value acquisition unit 62 acquires the detection value d. It has become.
  • the configuration of the blood glucose meter 10C is basically the same as that of the blood glucose meter 10 referred to in FIGS.
  • the function change determination unit 80 performs comparison determination with the current value threshold value held. If the detected value d is larger than the current value threshold, the application of the first calibration function f (x) is instructed. If the detected value d is equal to or less than the current value threshold, the application of the second calibration function g (x) is instructed. Instruct.
  • steps S31 and S32 are the same as steps S1 and S2 in the first embodiment.
  • the function setting unit 68 reads the detection value d acquired by the detection value acquisition unit 62, and compares the detection value d with the current value threshold value in step S33. If the detected value d is larger than the current value threshold value, the process proceeds to step S34. If the detected value d is equal to or smaller than the current value threshold value, the process proceeds to step S38.
  • the absorbance AL becomes small (in other words, the measured blood glucose level MB to be calculated becomes small) based on the above-described absorbance function, and the first calibration function f. (X) is estimated as an optimal function. Therefore, thereafter, the absorbance AL is calculated from the detection value d by the absorbance calculation unit 70 (step S34), and the temporary blood glucose level PB is calculated by the temporary blood glucose level calculation unit 72 using the first calibration function f (x). (Step S35). Further, the hematocrit correction unit 74 corrects the temporary blood glucose level PB to calculate the measured blood glucose level MB (step S36), and further performs the same processing flow as step S7 in the first embodiment to display the measured blood glucose level MB. (Step S37).
  • the absorbance AL increases (in other words, the measured blood glucose level MB to be calculated increases) based on the absorbance function described above, and the first calibration function f.
  • the second calibration function g (x) is estimated to be an optimal function rather than (x). Therefore, thereafter, the absorbance AL is calculated from the detection value d by the absorbance calculation unit 70 (step S38), and the temporary blood glucose level PB is calculated by the temporary blood glucose level calculation unit 72 using the second calibration function g (x) ( Step S39).
  • the hematocrit correction unit 74 corrects the temporary blood glucose level PB to calculate the measured blood glucose level MB (step S40), and further proceeds to step S37 to calculate the measured blood glucose level MB based on the second calibration function g (x). indicate.
  • the blood glucose meter 10C can also obtain the same effects as those of the first embodiment.
  • the blood glucose meter 10C uses a current signal that is the detection value d, that is, the function setting unit 68 immediately obtains the first calibration function f (x) and the second calibration function g (x) as the detection value d is acquired. Since the application is discriminated, the processing speed can be maximized.
  • the blood glucose meters 10, 10A to 10C may have a function of making it possible to perform all the discrimination timings of the first to fourth embodiments described above and switching the discrimination timing.
  • the function setting unit 68 can include a processing speed determination unit 82 that determines the processing speed of the control circuit 40, as indicated by a dotted line in FIG.
  • the processing speed discriminating unit 82 discriminates processing speeds of a plurality of stages (four stages) from a pattern with a high processing speed of the control circuit 40 at the time of blood glucose level measurement to a slow pattern, and outputs the discrimination result to the function change discriminating unit 80 To do.
  • the processing speed determination unit 82 estimates that the processing speed is fast when the information amount handled by the control circuit 40 is small, and the processing speed is slow when the information amount is large.
  • the function change discriminating unit 80 can discriminate the applied function at any timing described in the first to fourth embodiments in accordance with the processing speed stage determined by the processing speed determining unit 82.
  • the blood glucose meters 10, 10A to 10C have a first range in the vicinity of the boundary where it is difficult to determine switching of the application function with respect to the detection value d (for example, a range where the calculated blood glucose level MB to be calculated is 500 to 700 mg / dL). ) And a second range (for example, a range in which the measured blood glucose level MB to be calculated is 0 to 500, 700 to 1000 mg / dL) that is far away from the vicinity of the boundary and that makes it easy to determine the switching of the applied function, When the detection value d is acquired, it may be determined whether it belongs to the first or second range.
  • a first range in the vicinity of the boundary where it is difficult to determine switching of the application function with respect to the detection value d for example, a range where the calculated blood glucose level MB to be calculated is 500 to 700 mg / dL.
  • a second range for example, a range in which the measured blood glucose level MB to be calculated is 0 to 500, 700 to 1000 mg /
  • the determination of the application function is performed on the basis of the measured blood glucose level MB by using the determination timing of the first embodiment, thereby improving the accuracy. If the detection value d is in the second range, the measured blood glucose level MB can be obtained without reducing the processing speed by taking the discrimination timing of the fourth embodiment.
  • Sample liquids that can be obtained from the living body such as blood, urine, interstitial liquid, saliva, etc. are applied as sample liquids that are targeted at medical sites. It may be a product.
  • Measurement targets include saccharides, lactic acid, various cholesterols, nucleic acids, antibodies, antigens, proteins, hormones, bacteria, enzymes, drugs, constituents, medical products, tissue markers, metabolites, chemical substances, etc. Applicable to quantitative determination.
  • the component measuring device 10 is not limited to a single type of POCT device, but a POCT device capable of performing simultaneous measurement of other items and a large inspection device, or a component measuring device for measuring components such as waste water and industrial samples. It can also be applied to a device. Furthermore, as a simple measuring device, not only a blood glucose meter (SMBG device for self blood glucose measurement) that measures the amount of a glucose component in blood but also various devices that measure the amount of a predetermined component in a liquid. Can be applied.
  • the component measuring apparatus is not limited to detection by optical means when detecting the component amount, and for example, the detected value of the component amount may be obtained by electrical means, magnetic means, or antibody reaction means.
  • Examples thereof include a blood glucose level measuring apparatus to which an enzyme electrode method is applied, and a component measuring apparatus for measuring urine components (such as ketone bodies).
  • a blood glucose level measuring apparatus to which an enzyme electrode method is applied
  • a component measuring apparatus for measuring urine components such as ketone bodies.
  • the correction calculation process for the hematocrit value has been described, but other factors may be used, and in the case of a multi-item simultaneous measuring device, other items that have been measured simultaneously may be used. Good.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Diabetes (AREA)
  • Food Science & Technology (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

A blood glucose meter (10), which is a component measuring device, is provided with a detecting unit (34) which detects a component amount of a glucose component, and a control circuit (40) which calculates a measured blood glucose level (MB) on the basis of a detected value (d) from the detecting unit (34). The control circuit (40) is provided with: a blood glucose level calculating unit (66) which applies a calibration function to calculate the blood glucose level from the detected value (d); and a function setting unit (68) which, on the basis of the measured blood glucose level (MB) calculated from the detected value (d), sets the calibration function to be used by the blood glucose level calculating unit (66), from among a plurality of items of function data (FD) stored in advance.

Description

成分測定装置、成分測定方法及び成分測定プログラムComponent measuring device, component measuring method and component measuring program
 本発明は、液体中の成分を測定する成分測定装置、成分測定方法及び成分測定プログラムに関する。 The present invention relates to a component measuring apparatus, a component measuring method, and a component measuring program for measuring a component in a liquid.
 液体中の成分を測定する成分測定装置の一形態として、血液中のグルコース成分の成分量(血糖値)を測定する血糖計が知られている。例えば、特開2004-555号公報には、センサケース(チップ)に血液を取り込み、内部の試薬層から血液中のグルコース成分に応じた電流値を得て血糖値を算出する血糖計が開示されている。 As a form of a component measuring apparatus that measures components in a liquid, a blood glucose meter that measures the amount of glucose components (blood glucose level) in blood is known. For example, Japanese Patent Application Laid-Open No. 2004-555 discloses a blood glucose meter that takes blood into a sensor case (chip) and obtains a current value corresponding to a glucose component in blood from an internal reagent layer to calculate a blood glucose level. ing.
 また、特開2004-555号公報に開示の血糖計は、医療施設内で使用する病棟用検査(POCT:Point Of Care Testing)用の医療機器として構成されている。この場合、血糖計は、検査室に設置されて検査サンプルの運搬以降の検査工程が別室で実施される大型分析機とは異なり、採血、検査、測定値確認までの一連の動作を患者近傍で実施し、治療に反映させることができ、ベットサイド以外にも、救急外来、OPE室、透析室等での迅速な検査に貢献する。そのため、POCT用の血糖計(POCT器)においては、簡易型であっても大型分析機と同等の正確性が求められており、QC(Quality Control)等の精度管理によって、常に正確な測定値を算出するように管理されることが重要視される。 In addition, the blood glucose meter disclosed in Japanese Patent Application Laid-Open No. 2004-555 is configured as a medical device for ward examination (POCT: Point Of Care Testing) used in a medical facility. In this case, the blood glucose meter is different from a large analyzer that is installed in the laboratory and the inspection process after the transport of the test sample is performed in a separate room. It can be implemented and reflected in treatment, and contributes to quick examinations in emergency departments, OPE rooms, dialysis rooms, etc. in addition to bedside. Therefore, a blood glucose meter for POCT (POCT device) is required to have the same accuracy as a large analyzer even if it is a simple type, and accurate measurement values are always obtained through accuracy control such as QC (Quality Control). It is important to be managed so as to calculate.
 さらに、POCT器は、医師や看護士等の医療従事者の作業効率に貢献するため、携帯し易いように小型に構成される。またPOCT器は、医療従事者や患者を識別可能とし、さらに病院内のサーバ(電子カルテ)と通信を行って測定値を自動的に送信する機能等が設けられ、測定値データと医療行為の関連性についても記録、参照できることが求められている。近年、このようなPOCT器を活用することにより、医療の効率向上及び省コスト化の動きが高まっており、測定可能条件の広範囲化が期待されている。また、POCT器は、これまで測定対象外とされることが多かった、発生頻度の低い高血糖値範囲、血液条件、測定項目においても精度の高い測定値計算が求められている。 Furthermore, since the POCT device contributes to the work efficiency of medical personnel such as doctors and nurses, the POCT device is configured to be small and easy to carry. In addition, the POCT device can identify medical workers and patients, and is provided with a function for automatically transmitting measurement values by communicating with a hospital server (electronic medical chart). It is required that the relevance can be recorded and referenced. In recent years, by using such a POCT device, movements for improving medical efficiency and cost reduction are increasing, and a wide range of measurable conditions is expected. In addition, the POCT device is required to calculate measurement values with high accuracy even in the high blood glucose level range, blood conditions, and measurement items that have been frequently excluded from the measurement.
 上記のように、POCT用の血糖計(成分測定装置)は、様々な状態の患者を測定対象とするため、血糖値の測定範囲が広く、さらに自己測定(SMBG:Self Monitoring of Blood Glucose)器よりも高精度に血糖値を測定可能であることが求められる。ところで、血糖計は、従来の電流値(検出値)から血糖値を算出する算出処理において、血液色以外にも、血液中の赤血球濃度(ヘマトクリット値:Ht)、治療薬、又は雰囲気温度等の環境要因影響を加味した処理を行っている。この場合、計算誤差要因については、要因毎に影響の程度が変化することが分かっており、例えば、血糖値が低い場合には血液色の誤差比率が高くなる。また、算出値を低血糖側の実際の血糖値に合うように調整すると、血糖値が高い場合には算出値が実際の血糖値から外れる可能性があった。すなわち、測定可能対象を広く設定したり、成分量の測定範囲を広くしたりすることで、検出値に対する出力特性の信頼性(追従性)が低下する不都合が生じていた。 As described above, the blood glucose meter (component measurement device) for POCT has a wide blood glucose level measurement range for measuring patients in various states, and further has a self-measuring (SMBG: Self-Monitoring-of-Blood-Glucose) device. It is required that the blood glucose level can be measured with higher accuracy than the above. By the way, in the blood glucose meter, in the calculation process for calculating the blood glucose level from the conventional current value (detected value), in addition to the blood color, the concentration of red blood cells in the blood (hematocrit value: Ht), therapeutic agent, ambient temperature, etc. Processing that takes into account environmental factors. In this case, it is known that the degree of influence of the calculation error factor changes for each factor. For example, when the blood glucose level is low, the blood color error ratio increases. Further, when the calculated value is adjusted to match the actual blood glucose level on the low blood glucose side, the calculated value may deviate from the actual blood glucose level if the blood glucose level is high. That is, by setting a wide range of measurable objects or widening the measurement range of the component amount, there has been a disadvantage that the reliability (followability) of the output characteristics with respect to the detected value is lowered.
 本発明は、上記の課題を解決するためになされたものであって、測定範囲が広くても高い測定精度が得られ、より良好に使用することができる成分測定装置、成分測定方法及び成分測定プログラムを提供することを目的とする。 The present invention has been made in order to solve the above-described problems, and provides a component measuring apparatus, a component measuring method, and a component measuring method that can obtain high measurement accuracy even when the measurement range is wide and can be used more favorably. The purpose is to provide a program.
 前記の目的を達成するために、本発明は、液体中の成分の成分量を検出する検出部と、前記検出部が検出した前記成分量に関わる検出値に基づき、前記成分の測定情報を算出する制御部と、を備える成分測定装置であって、前記制御部は、所定の関数を適用して前記検出値から前記測定情報を算出する測定情報算出部と、前記検出値又は前記検出値から算出する算出値に基づき、予め保有している複数の関数の中から前記測定情報算出部が使用する前記所定の関数を設定する関数設定部と、を備えることを特徴とする。 In order to achieve the above object, the present invention calculates a component measurement information based on a detection unit that detects a component amount of a component in a liquid and a detection value related to the component amount detected by the detection unit. A control unit that includes: a measurement information calculation unit that applies a predetermined function to calculate the measurement information from the detection value; and the detection value or the detection value. A function setting unit configured to set the predetermined function used by the measurement information calculation unit from a plurality of functions held in advance based on the calculated value to be calculated.
 上記によれば、成分測定装置は、検出値又は検出値から算出する算出値に基づき、複数の関数の中から所定の関数を設定する関数設定部を備えることで、成分量の測定範囲が広くても高い測定精度を得ることができる。すなわち、関数設定部は、成分量の測定範囲が広いことで、1つの関数では測定情報が実際の成分量から乖離してしまう場合であっても、異なる関数を使用することで測定情報を実際の成分量に近づけることができる。従って、成分測定装置は、例えば、医療施設内等で様々な患者の血糖値を測定するPOCT用の血糖計として良好に使用することができる。 According to the above, the component measuring device includes the function setting unit that sets a predetermined function from a plurality of functions based on the detected value or the calculated value calculated from the detected value, so that the component amount measurement range is wide. However, high measurement accuracy can be obtained. In other words, the function setting unit has a wide component amount measurement range, so even if the measurement information deviates from the actual component amount in one function, the function setting unit actually uses different functions to measure the measurement information. Can be close to the amount of ingredients. Therefore, the component measuring apparatus can be used favorably as a blood glucose meter for POCT that measures blood glucose levels of various patients in a medical facility, for example.
 この場合、前記制御部は、前記所定の関数である第1関数により前記検出値から前記算出値である第1値を算出し、前記第1値と所定の閾値とを比較して、前記第1値を前記測定情報とするか、前記所定の関数であり前記第1関数と異なる第2関数により前記検出値から第2値を算出して前記測定情報とするかを判別するとよい。 In this case, the control unit calculates a first value that is the calculated value from the detected value by the first function that is the predetermined function, compares the first value with a predetermined threshold value, and compares the first value with the predetermined value. It may be determined whether a single value is used as the measurement information, or whether the second value is calculated from the detection value using the second function that is the predetermined function and is different from the first function, and is used as the measurement information.
 このように、成分測定装置は、第1関数により第1値を算出してこの第1値に基づき、適用関数を判別することで、第1値を有効に活用して高精度な測定情報を得ることができる。また、第1関数の使用頻度が高ければ、算出した第1値を測定情報とするので、内部での処理が簡単化する。よって、処理速度を大幅に落とすことなく、測定情報を得ることができる。 As described above, the component measuring apparatus calculates the first value by the first function and determines the application function based on the first value, thereby effectively utilizing the first value to obtain highly accurate measurement information. Obtainable. Further, if the frequency of use of the first function is high, the calculated first value is used as measurement information, so that internal processing is simplified. Therefore, measurement information can be obtained without significantly reducing the processing speed.
 上記の構成に加えて、前記検出部は、前記液体中の成分である血液中のグルコース成分を検出し、前記検出値を出力するものであり、前記関数設定部は、前記第1値としてヘマトクリット補正した測定血糖値を用いて、前記第1関数又は前記第2関数の適用を判別する構成とすることができる。 In addition to the above configuration, the detection unit detects a glucose component in blood, which is a component in the liquid, and outputs the detection value. The function setting unit has a hematocrit as the first value. It can be set as the structure which discriminate | determines application of the said 1st function or the said 2nd function using the correct | amended measured blood glucose level.
 これにより、成分測定装置は、血液中のグルコース成分の成分量を測定する際に、広い測定範囲で高精度な検出を行うことができる。また、第1値としてヘマトクリット補正した測定血糖値を用いる、つまり、算出過程において最も下流側である測定血糖値に応じて適用関数を判別するので、測定血糖値が実血糖値から離れることを確実に判別することができる。その結果、最終的には最も精度が高い血糖値を得ることができる。 Thereby, the component measuring apparatus can perform highly accurate detection in a wide measurement range when measuring the amount of the glucose component in the blood. In addition, since the measured blood glucose level corrected by hematocrit is used as the first value, that is, the applied function is determined according to the measured blood glucose level that is the most downstream in the calculation process, it is ensured that the measured blood glucose level is separated from the actual blood glucose level. Can be determined. As a result, the blood glucose level with the highest accuracy can be finally obtained.
 或いは、前記検出部は、前記液体中の成分である血液中のグルコース成分を検出し、前記検出値を出力するものであり、前記関数設定部は、前記第1値として吸光度から算出しヘマトクリット補正する前の仮血糖値を用いて、前記第1関数又は前記第2関数の適用を判別する構成でもよい。 Alternatively, the detection unit detects a glucose component in blood that is a component in the liquid and outputs the detection value, and the function setting unit calculates the first value from the absorbance and corrects hematocrit. A configuration may be used in which application of the first function or the second function is discriminated using a provisional blood glucose level before being performed.
 このように、成分測定装置は、第1値として吸光度から算出した仮血糖値を用いることで、ヘマトクリット補正を行う前の段階で、適用関数の判別を行うことができる。そのため、仮に第2関数に変更したとしても、測定情報の算出をより速めることができる。 In this way, the component measuring apparatus can determine the applied function at the stage before performing the hematocrit correction by using the temporary blood glucose level calculated from the absorbance as the first value. Therefore, even if it changes to a 2nd function, calculation of measurement information can be accelerated more.
 また、前記制御部は、前記所定の関数以外の関数により前記検出値から算出される前記算出値である算出過程値又は前記検出値と、所定の閾値とを比較して、前記所定の関数である第1関数、又は前記所定の関数であり前記第1関数と異なる第2関数の適用を判別してもよい。 Further, the control unit compares the calculation process value or the detection value, which is the calculation value calculated from the detection value by a function other than the predetermined function, with a predetermined threshold value, and uses the predetermined function. Application of a certain first function or a second function that is the predetermined function and is different from the first function may be determined.
 このように、成分測定装置は、算出過程値又は検出値と所定の閾値とを比較して、第1関数又は第2関数の適用を判別することで、第1関数を使用しない早い段階で適用関数の判別を行うことができる。よって、測定情報の算出をさらに速めることができる。 In this way, the component measuring device compares the calculation process value or detection value with a predetermined threshold value, and determines the application of the first function or the second function, thereby applying the first function at an early stage without using the first function. Function discrimination can be performed. Therefore, calculation of measurement information can be further accelerated.
 この場合、前記検出部は、前記液体中の成分である血液中のグルコース成分を検出し、前記検出値を出力するものであり、前記関数設定部は、前記算出過程値として前記検出値から算出した吸光度を用いて、前記第1関数又は前記第2関数の適用を判別することができる。 In this case, the detection unit detects a glucose component in blood, which is a component in the liquid, and outputs the detection value, and the function setting unit calculates from the detection value as the calculation process value. The applied absorbance can be used to determine application of the first function or the second function.
 このように、成分測定装置は、算出過程値として吸光度を用いて第1関数又は第2関数の適用を判別することで、処理速度を一層向上することができる。 As described above, the component measuring apparatus can further improve the processing speed by determining the application of the first function or the second function using the absorbance as the calculation process value.
 また例えば、前記検出部は、前記液体中の成分である血液中のグルコース成分を検出し、前記検出値を出力するものであり、前記関数設定部は、前記検出部から取得した前記検出値を用いて、前記第1関数又は前記第2関数の適用を判別してもよい。 For example, the detection unit detects a glucose component in blood that is a component in the liquid and outputs the detection value, and the function setting unit uses the detection value acquired from the detection unit. It may be used to determine application of the first function or the second function.
 このように、検出値を用いて第1関数又は第2関数の適用を判別することで、関数設定部は検出値の取得に伴い直ちに適用関数を設定することができ、処理速度を最も速くすることができる。 In this way, by determining whether the first function or the second function is applied using the detected value, the function setting unit can immediately set the applied function as the detected value is acquired, and the processing speed is maximized. be able to.
 さらに、前記関数設定部は、前記測定情報を算出する際の前記測定情報算出部の処理速度に応じて、前記所定の関数の適用を判別するタイミングを変更する構成としてもよい。 Furthermore, the function setting unit may be configured to change the timing for determining application of the predetermined function according to the processing speed of the measurement information calculation unit when calculating the measurement information.
 これにより、例えば、測定情報算出部の処理速度が速い場合には、算出過程の遅い段階の算出値に基づき関数を設定することができ、算出する測定情報の精度が向上する。また例えば、測定情報算出部の処理速度が遅い場合には、検出値や算出過程の早い段階の算出値に基づき関数を設定することができ、処理速度を向上することができる。 Thereby, for example, when the processing speed of the measurement information calculation unit is fast, the function can be set based on the calculated value in the later stage of the calculation process, and the accuracy of the measurement information to be calculated is improved. Further, for example, when the processing speed of the measurement information calculation unit is slow, a function can be set based on the detection value or a calculated value at an early stage of the calculation process, and the processing speed can be improved.
 また、前記の目的を達成するために本発明は、液体中の成分の成分量を測定する成分測定方法であって、検出部により前記成分量の検出を行うステップと、測定情報算出部において、所定の関数を適用して前記検出部が検出した前記成分量に関わる検出値に基づき測定情報を算出するステップと、関数設定部において、前記検出値又は前記検出値から算出する算出値に基づき、予め保有している複数の関数の中から前記測定情報算出部が使用する前記所定の関数を設定するステップと、を含むことを特徴とする。 In order to achieve the above object, the present invention provides a component measurement method for measuring the component amount of a component in a liquid, the step of detecting the component amount by a detection unit, and a measurement information calculation unit, A step of calculating measurement information based on a detection value related to the component amount detected by the detection unit by applying a predetermined function, and a function setting unit, based on the detection value or a calculation value calculated from the detection value, And setting the predetermined function used by the measurement information calculation unit from a plurality of functions held in advance.
 さらに、前記の目的を達成するために本発明に係る成分測定プログラムは、液体中の成分の成分量を測定する成分測定装置に、検出部により前記成分量の検出を行うステップと、測定情報算出部において、所定の関数を適用して前記検出部が検出した前記成分量に関わる検出値に基づき測定情報を算出するステップと、関数設定部において、前記検出値又は前記検出値から算出する算出値に基づき、予め保有している複数の関数の中から前記測定情報算出部が使用する前記所定の関数を設定するステップと、を実行させることを特徴とする。 Furthermore, in order to achieve the above object, the component measurement program according to the present invention includes a step of detecting the component amount by a detection unit in a component measurement device that measures the component amount of the component in the liquid, and a measurement information calculation Calculating a measurement information based on a detection value related to the component amount detected by the detection unit by applying a predetermined function in the unit, and a calculated value calculated from the detection value or the detection value in the function setting unit And a step of setting the predetermined function used by the measurement information calculation unit from among a plurality of functions held in advance.
 本発明によれば、成分測定装置、成分測定方法及び成分測定プログラムは、測定範囲が広くても高い測定精度が得られ、より良好に使用することができる。 According to the present invention, the component measuring device, the component measuring method, and the component measuring program can obtain high measurement accuracy even when the measurement range is wide, and can be used better.
本発明の一実施形態に係る血糖計の全体構成を示す斜視図である。It is a perspective view showing the whole blood glucose meter composition concerning one embodiment of the present invention. 図1の血糖計の内部構造を示す断面及びブロック図である。It is a cross section and block diagram which show the internal structure of the blood glucose meter of FIG. 図2の制御回路による血糖値を測定する機能部を示すブロック図である。It is a block diagram which shows the function part which measures the blood glucose level by the control circuit of FIG. 第1検量関数f(x)と第2検量関数g(x)の関係を概略的に示すグラフである。It is a graph which shows roughly the relation between the 1st calibration function f (x) and the 2nd calibration function g (x). 第1実施例に係る血糖計の血糖値を測定する際の処理フローを示すフローチャートである。It is a flowchart which shows the processing flow at the time of measuring the blood glucose level of the blood glucose meter which concerns on 1st Example. 第2実施例に係る血糖計の血糖値を測定する際の処理フローを示すフローチャートである。It is a flowchart which shows the processing flow at the time of measuring the blood glucose level of the blood glucose meter which concerns on 2nd Example. 第3実施例に係る血糖計の血糖値を測定する際の処理フローを示すフローチャートである。It is a flowchart which shows the processing flow at the time of measuring the blood glucose level of the blood glucose meter which concerns on 3rd Example. 第4実施例に係る血糖計の血糖値を測定する際の処理フローを示すフローチャートである。It is a flowchart which shows the processing flow at the time of measuring the blood glucose level of the blood glucose meter which concerns on 4th Example.
 以下、本発明に係る成分測定装置、成分測定方法及び成分測定プログラムについて好適な実施形態をあげ、添付の図面を参照して詳細に説明する。 Hereinafter, preferred embodiments of a component measuring apparatus, a component measuring method, and a component measuring program according to the present invention will be described and described in detail with reference to the accompanying drawings.
 本発明の一実施形態に係る成分測定装置10は、図1に示すように、血液(液体)中のグルコース成分を検出し、その検出値に基づき血糖値(グルコース成分の成分量)を測定する血糖計10として構成されている(以下、血糖計10ともいう)。また、血糖計10は、主に医療施設内で医師や看護士等の医療従事者(ユーザ)が使用するPOCT用の装置として構成されており、医療従事者や患者を識別する機能や患者毎の血糖値データの記録や呼び出しを行う機能を有している。なお、血糖計10は、患者自身が自己の血糖値を測定するSMBG器として使用されてもよい。 As shown in FIG. 1, the component measuring apparatus 10 according to an embodiment of the present invention detects a glucose component in blood (liquid), and measures a blood glucose level (a component amount of the glucose component) based on the detected value. The blood glucose meter 10 is configured (hereinafter also referred to as a blood glucose meter 10). The blood glucose meter 10 is configured as a POCT device mainly used by medical workers (users) such as doctors and nurses in medical facilities. It has a function of recording and calling blood glucose level data. Note that the blood glucose meter 10 may be used as an SMBG device in which the patient himself / herself measures his / her blood glucose level.
 血糖計10は、血液を取り込むチップ12と、チップ12を装着して光学的な測定により血糖値を得る装置本体14とを含む。チップ12は、1回の測定毎に廃棄するディスポーザブルタイプに構成される一方で、装置本体14は、ユーザが血糖値の測定を繰り返すことができるように、携帯可能且つ頑強な機器に構成される。 The blood glucose meter 10 includes a chip 12 that takes in blood, and an apparatus main body 14 that obtains a blood sugar level by optical measurement by mounting the chip 12. The chip 12 is configured as a disposable type that is discarded after each measurement, while the apparatus main body 14 is configured as a portable and robust device so that the user can repeatedly measure the blood glucose level. .
 チップ12は、図1及び図2に示すように、装置本体14内に挿入固定がなされる円筒状の取付部16と、取付部16から先端に突出するノズル18とを含む。ノズル18の中心には、先端部から取付部16内に向かって直線状に延びる血液導入路18aが設けられ、取付部16内には試験紙20が収容されている。取付部16、ノズル18を含むチップ本体19は所定の剛性を有する剛性材料で構成されている。このような剛性材料としては、例えば、アクリル系樹脂等の親水性の高い材料又は親水化処理された各種樹脂材料が好ましく、外乱光を通過させない処理がされていることがより好ましい。 As shown in FIGS. 1 and 2, the chip 12 includes a cylindrical mounting portion 16 that is inserted and fixed in the apparatus main body 14 and a nozzle 18 that protrudes from the mounting portion 16 to the tip. At the center of the nozzle 18, a blood introduction path 18 a that extends linearly from the tip portion toward the inside of the attachment portion 16 is provided, and a test paper 20 is accommodated in the attachment portion 16. The chip body 19 including the mounting portion 16 and the nozzle 18 is made of a rigid material having a predetermined rigidity. As such a rigid material, for example, a highly hydrophilic material such as an acrylic resin or various resin materials subjected to a hydrophilic treatment is preferable, and it is more preferable that a treatment not allowing ambient light to pass through is performed.
 試験紙20は、血液(検体)を吸収可能な担体に、試薬(発色試薬)を担持(含浸)させたものである。この担体は、好ましくは多孔性膜(シート状多孔質基材)で構成されている。この場合、多孔性膜は、血液中の赤血球を濾過できる程度の孔径を有するものが好ましい。試験紙20の担体としては、多孔性膜の他に、例えば、不織布、織布、延伸処理したシート等のシート状多孔質基材があげられる。 The test paper 20 is obtained by carrying (impregnating) a reagent (coloring reagent) on a carrier capable of absorbing blood (specimen). This carrier is preferably composed of a porous membrane (sheet-like porous substrate). In this case, the porous membrane preferably has a pore size that can filter out red blood cells in blood. Examples of the carrier of the test paper 20 include, in addition to the porous film, a sheet-like porous substrate such as a nonwoven fabric, a woven fabric, and a stretched sheet.
 多孔性膜等の担体の構成材料としては、ポリエステル類、ポリアミド類、ポリオレフィン類、ポリスルホン類又はセルロース類等があげられるが、試薬を溶解した水溶液を含浸させたり、血液の採取時には血液の吸収・展開を迅速に行うため、親水性を有する材料又は、親水化処理されたものが好ましい。 Examples of the constituent material of the carrier such as the porous membrane include polyesters, polyamides, polyolefins, polysulfones, and celluloses, but it is impregnated with an aqueous solution in which a reagent is dissolved. In order to rapidly develop, a hydrophilic material or a material that has been subjected to a hydrophilic treatment is preferable.
 担体(多孔性膜)に含浸する試薬としては、血糖値測定用の場合、例えば、グルコースオキシダーゼ(GOD)、ペルオキシダーゼ(POD)等の酵素試薬と、例えば4-アミノアンチピリン、N-エチルN-(2-ヒドロキシ-3-スルホプロピル)-m-トルイジンのような発色試薬とがあげられ、その他、測定成分に応じて適宜選択される。 As a reagent for impregnating the carrier (porous membrane), in the case of blood glucose measurement, for example, an enzyme reagent such as glucose oxidase (GOD) or peroxidase (POD), and 4-aminoantipyrine, N-ethyl N- ( And a coloring reagent such as 2-hydroxy-3-sulfopropyl) -m-toluidine, and the others are appropriately selected according to the measurement component.
 チップ12は、試験紙20の内部に担持された試薬の経時変化を低減すべく、専用の容器内に封入した状態で保管される。 The chip 12 is stored in a state of being enclosed in a dedicated container in order to reduce the change over time of the reagent carried inside the test paper 20.
 血糖計10により血糖値を測定する際には、ユーザが被装着部24にチップ12を装着した後、ノズル18の先端部に患者の血液を点着する。点着された血液は、毛細管現象に基づき血液導入路18aを介して試験紙20に導かれ、試験紙20内部で展開した後、試験紙20内に担持された試薬と反応することで呈色する。呈色反応は、血液内に含まれたグルコース量に応じて色濃度が変化するため、色濃度の変化量を検知し、血糖値として算出する。この時、計算誤差となりうる要因に対して補正計算が追加され、血漿中グルコース濃度値に近い計算値となるよう補正工程が設けられる。補正される要因としては、血液濃度(ヘマトクリット値)、測定温度、試験紙ロット、患者の服用薬等があげられる。 When measuring the blood glucose level with the blood glucose meter 10, the user attaches the chip 12 to the attachment portion 24, and then drops the patient's blood on the tip of the nozzle 18. The spotted blood is guided to the test paper 20 through the blood introduction path 18a based on the capillary phenomenon, developed in the test paper 20, and then colored by reacting with the reagent carried in the test paper 20. To do. In the color reaction, since the color concentration changes according to the amount of glucose contained in the blood, the change amount of the color concentration is detected and calculated as a blood glucose level. At this time, a correction calculation is added to a factor that may cause a calculation error, and a correction step is provided so that the calculated value is close to the plasma glucose concentration value. Factors to be corrected include blood concentration (hematocrit value), measurement temperature, test paper lot, patient medication, and the like.
 一方、装置本体14は、外観を構成する筐体22を有する。筐体22は、ユーザが片手で把持し易いようにやや細長く、この筐体22の先端側には、チップ12が取り付けられる被装着部24が形成されている。その先端部が先端方向に向かって細くなりつつ下側に若干屈曲することで、多機能で大型化し易いPOCT器であってもSMBG器と同様の精度で、血液の点着操作が容易になるように形成されている。また、筐体22の上面には、被装着部24に装着されたチップ12を取り外すイジェクタ26、モニタ28及び操作ボタン群30が設けられ、筐体22の基端面には、バーコードリーダ32が設けられている。筐体22は、血液が付着した際の洗浄用に、水や薬品の浸水時耐水性があってもよく、表面加工や隙間をできるだけ排除する等、拭き取り易い構造とされてもよい。 On the other hand, the apparatus main body 14 has a housing 22 that constitutes the appearance. The housing 22 is slightly elongated so that the user can easily hold it with one hand, and a mounting portion 24 to which the chip 12 is attached is formed on the distal end side of the housing 22. The tip part of the POCT device is slightly bent downward while becoming narrower toward the tip direction, so that even a POCT device that is multifunctional and easy to enlarge can be easily spotted with blood with the same accuracy as the SMBG device. It is formed as follows. Further, an ejector 26 for removing the chip 12 mounted on the mounted portion 24, a monitor 28, and an operation button group 30 are provided on the upper surface of the housing 22, and a barcode reader 32 is provided on the base end surface of the housing 22. Is provided. The housing 22 may have water resistance when water or chemicals are submerged for cleaning when blood adheres, and may have a structure that can be easily wiped off, such as eliminating surface processing and gaps as much as possible.
 被装着部24は、血糖計10の先端部に形成され、上述したチップ12を装着可能な円筒型に形成されている。被装着部24には、携帯時に先端部を保護し、測定時に脱着可能なキャップ24aが落下防止持具24bと共に装着されていてもよい。イジェクタ26は、筐体22内でイジェクトピン26aに連結しており、ユーザによる前方への押圧動作に応じて、被装着部24に装着されたチップ12を前方に押し出して離脱させる。これによりユーザは、密着するように装着したチップ12を容易に取り外すことができ、さらに血糖値の測定後に血液の付着したチップ12に触れることなくチップ12の廃棄が可能となる。よって、ユーザの作業効率が向上されると同時に、病院内で発生する汚染血液による感染リスクを低減させ得る。 The mounted portion 24 is formed at the distal end portion of the blood glucose meter 10 and is formed in a cylindrical shape on which the above-described chip 12 can be mounted. A cap 24a that protects the distal end portion when carrying and can be attached and detached at the time of measurement may be attached to the attachment portion 24 together with the fall prevention holder 24b. The ejector 26 is connected to the eject pin 26a in the housing 22, and pushes the tip 12 mounted on the mounted portion 24 forward and separates in accordance with the forward pressing operation by the user. As a result, the user can easily remove the chip 12 attached so as to be in close contact, and the chip 12 can be discarded without touching the chip 12 to which blood has adhered after measurement of the blood glucose level. Therefore, the user's work efficiency can be improved, and at the same time, the risk of infection due to contaminated blood generated in the hospital can be reduced.
 また、装置本体14に設けられるモニタ28は、液晶や有機EL等により構成され、血糖値、日時又はその他の情報(例えば、エラーや測定手順)等、血糖値の測定においてユーザに提供する情報を表示する。 The monitor 28 provided in the apparatus main body 14 is composed of a liquid crystal, an organic EL, or the like, and provides information to be provided to the user in blood glucose level measurement such as blood glucose level, date and time, or other information (for example, error or measurement procedure). indicate.
 操作ボタン群30は、図1に示すように、電源ボタン30a、移動ボタン30b、選択ボタン30c、LED表示部30d及びデータ読取ボタン30eを含む。移動ボタン30bは、モニタ28に表示される項目に対し選択枠を移動させる、或いは操作に伴い画面をスクロールさせる機能を有する。選択ボタン30cは、ユーザの押圧操作に伴い、モニタ28上において選択枠が位置する項目の機能を選択する、又は選択を解除して選択前の画面に戻る等の機能を有する。LED表示部30dは、LEDにより種々の色で点灯又は点滅して、血糖計10の状態を報知する。データ読取ボタン30eは、モニタ28と被装着部24との間に設けられ、バーコードリーダ32の読み取りを操作する。なお、電源投入においては電源ボタン30aの押圧時に限定されず、チップ12の装着、キャップ24aの取り外し等を感知して電源の入った状態へ変化する設定になり得、電源切断についても電源ボタン30aの押圧時に限定されず、シグナル通信の中断やチップ12の除去によって状態が変化することを含む。 As shown in FIG. 1, the operation button group 30 includes a power button 30a, a movement button 30b, a selection button 30c, an LED display section 30d, and a data reading button 30e. The move button 30b has a function of moving the selection frame with respect to the item displayed on the monitor 28 or scrolling the screen in accordance with the operation. The selection button 30c has a function of selecting a function of an item on which the selection frame is positioned on the monitor 28 or canceling the selection and returning to the screen before the selection in accordance with the user's pressing operation. The LED display unit 30d is lit or blinked in various colors by the LED to notify the state of the blood glucose meter 10. The data reading button 30e is provided between the monitor 28 and the mounted portion 24, and operates reading of the bar code reader 32. The power-on is not limited to when the power button 30a is pressed, but can be set to change to a power-on state upon sensing the mounting of the chip 12 or the removal of the cap 24a. It is not limited to the time of pressing, but includes a state change due to interruption of signal communication or removal of the chip 12.
 バーコードリーダ32は、図示しないバーコードをレーザスキャンによって読み取る機能を有している。読み取られるバーコードは、例えば、患者、医療従事者及びチップ12の包装体等に予め装着又は貼付されている。血糖計10は、それぞれのバーコードを読み取ることで、患者識別データ、計測者識別データ及びチップ識別データを取得して所定のデータベース(図示せず)に保存する。 The barcode reader 32 has a function of reading a barcode (not shown) by laser scanning. The barcode to be read is attached or pasted in advance to, for example, a patient, a medical worker, a package of the chip 12, and the like. The blood glucose meter 10 reads patient barcode data, obtains patient identification data, measurer identification data, and chip identification data and stores them in a predetermined database (not shown).
 また、装置本体14は、図2に示すように、検出部34、A/D変換器36、温度センサ38及び制御回路40を筐体22の内部に備える。検出部34は、チップ12に採取した血液に対して光学的な検出を行う構造部である。この検出部34は、ブロック体42、レンズ44、基板46、発光部48及び受光部50を備えている。 Further, as shown in FIG. 2, the apparatus main body 14 includes a detection unit 34, an A / D converter 36, a temperature sensor 38, and a control circuit 40 inside the housing 22. The detection unit 34 is a structural unit that optically detects blood collected in the chip 12. The detection unit 34 includes a block body 42, a lens 44, a substrate 46, a light emitting unit 48, and a light receiving unit 50.
 検出部34のブロック体42は、筐体22の先端側内部に固定され、その先端側においてレンズ44を保持すると共に、基端側において基板46を保持している。ブロック体42の基端側内部には、基板46に実装された発光部48及び受光部50が挿入配置される。また、ブロック体42内には、発光部48が投光した測定光をレンズ44まで導く測定光用光路42aと、レンズ44から試験紙20までの空間部42bと、試験紙20から反射した反射光をレンズ44から受光部50まで導く反射光用光路42cとが設けられる。 The block body 42 of the detection unit 34 is fixed inside the front end side of the housing 22, holds the lens 44 at the front end side, and holds the substrate 46 at the base end side. Inside the base end side of the block body 42, a light emitting unit 48 and a light receiving unit 50 mounted on the substrate 46 are inserted and arranged. Further, in the block body 42, a measurement light optical path 42 a for guiding the measurement light projected by the light emitting unit 48 to the lens 44, a space 42 b from the lens 44 to the test paper 20, and a reflection reflected from the test paper 20. A reflected light optical path 42c for guiding light from the lens 44 to the light receiving unit 50 is provided.
 発光部48は、照射手段として試験紙20上に光を照射する光源である。発光面が試験紙20を向くように調整して筐体22に取り付けられ、レンズ44によって集光、照射される。発光部48は、試験紙20の呈色によって吸収される光波長から選択され、例えば500~720nm程度の波長範囲で設定される。本実施形態では、異なる波長の測定光を出射するため、2つの発光素子(第1発光素子48a、第2発光素子48b)によって構成される。第1発光素子48aは、グルコース成分の成分量に応じた試薬の呈色濃度を検出する波長(例えば、620~640nmの赤色光)で測定光を出射する。第2発光素子48bは、血液中の赤血球濃度を検出する波長(例えば、510~540nmの緑色光)で測定光を出射する。第1及び第2発光素子48a、48bとしては、例えば、LED素子、有機EL素子、無機EL素子、LD素子等を用いることができる。測定に用いる波長領域は、測定試薬の波長特性に応じて選択され、阻害要因の波長領域の影響を受けない範囲で設定される。 The light emitting unit 48 is a light source that irradiates light onto the test paper 20 as an irradiation means. The light emitting surface is adjusted so as to face the test paper 20 and attached to the housing 22, and is condensed and irradiated by the lens 44. The light emitting unit 48 is selected from light wavelengths absorbed by the color of the test paper 20, and is set in a wavelength range of about 500 to 720 nm, for example. In the present embodiment, in order to emit measurement light having different wavelengths, the measurement light is configured by two light emitting elements (first light emitting element 48a and second light emitting element 48b). The first light emitting element 48a emits measurement light at a wavelength (for example, red light of 620 to 640 nm) for detecting the color density of the reagent according to the component amount of the glucose component. The second light emitting element 48b emits measurement light at a wavelength for detecting the concentration of red blood cells in blood (for example, green light of 510 to 540 nm). As the first and second light emitting elements 48a and 48b, for example, LED elements, organic EL elements, inorganic EL elements, LD elements, and the like can be used. The wavelength region used for the measurement is selected according to the wavelength characteristics of the measurement reagent, and is set within a range not affected by the wavelength region of the inhibition factor.
 受光部50は、試験紙20により反射した反射光を受光し、この反射光に関わる(反射光強度に応じた)電流を出力する1又は複数の受光素子50aによって構成される。受光素子50aとしては、例えば、PD素子、CCD素子、CMOS素子等を用いることができる。 The light receiving unit 50 includes one or a plurality of light receiving elements 50a that receive the reflected light reflected by the test paper 20 and output a current related to the reflected light (according to the intensity of the reflected light). As the light receiving element 50a, for example, a PD element, a CCD element, a CMOS element or the like can be used.
 また、A/D変換器36は、検出部34の基板46に電気的に接続され、受光部50が出力する電流信号(アナログ信号)を、適宜増幅すると共に電圧信号(デジタル信号)に変換し、検出値d(電流の情報)として出力する。 The A / D converter 36 is electrically connected to the substrate 46 of the detection unit 34, and appropriately amplifies the current signal (analog signal) output from the light receiving unit 50 and converts it into a voltage signal (digital signal). , And output as a detected value d (current information).
 さらに、温度センサ38は、筐体22内の所定箇所(例えば、基端側)に設けられ、血糖計10が使用される場所の周囲温度T(雰囲気温度)を検出する。この温度センサ38は、検出した周囲温度Tを温度情報として制御回路40に出力する。 Furthermore, the temperature sensor 38 is provided at a predetermined location (for example, the base end side) in the housing 22 and detects the ambient temperature T (atmosphere temperature) where the blood glucose meter 10 is used. This temperature sensor 38 outputs the detected ambient temperature T to the control circuit 40 as temperature information.
 制御回路40は、入出力I/F52、プロセッサ54、メモリ56等を有するコンピュータ(制御部)として構成されており、血糖計10全体の動作を制御する機能を有している。例えば、制御回路40は、検出部34の駆動を制御すると共に、検出部34が検出してA/D変換器36により変換された検出値dを受信して血糖値を測定する。また、制御回路40は、測定した血糖値を患者識別データに紐付けてデータベースに記憶すると共に、モニタ28に表示させる。 The control circuit 40 is configured as a computer (control unit) having an input / output I / F 52, a processor 54, a memory 56, and the like, and has a function of controlling the overall operation of the blood glucose meter 10. For example, the control circuit 40 controls the driving of the detection unit 34 and receives the detection value d detected by the detection unit 34 and converted by the A / D converter 36 to measure the blood sugar level. In addition, the control circuit 40 stores the measured blood glucose level in the database in association with the patient identification data, and displays it on the monitor 28.
 制御回路40は、メモリ56に記憶されている成分測定プログラム56aをプロセッサ54が読み出して実行することで、図3に示すように血糖値を測定する測定処理部58を構築する。測定処理部58は、例えば、検出部駆動部60、検出値取得部62、温度取得部64、血糖値算出部66(測定情報算出部)及び関数設定部68を含んで構成される。 The control circuit 40 reads out and executes the component measurement program 56a stored in the memory 56, thereby constructing a measurement processing unit 58 that measures a blood glucose level as shown in FIG. The measurement processing unit 58 includes, for example, a detection unit drive unit 60, a detection value acquisition unit 62, a temperature acquisition unit 64, a blood glucose level calculation unit 66 (measurement information calculation unit), and a function setting unit 68.
 検出部駆動部60は、制御回路40からの信号により作動し、所定の時間間隔でパルス光を発する。このパルス光は、周期が0.5~3.0msec程度、1パルスの照射時間が0.05~0.3msec程度とされる。本実施形態では、2つの異なる波長を用いて、グルコース濃度の測定(第1発光素子48aによる赤色光を使用)と補正用のヘマトクリット値の測定(第2発光素子48bによる緑色光を使用)を実施するため、電源の投入後、赤色光と緑色光の交互照射を開始する。 The detection unit driving unit 60 is operated by a signal from the control circuit 40 and emits pulsed light at a predetermined time interval. This pulsed light has a period of about 0.5 to 3.0 msec and an irradiation time of one pulse of about 0.05 to 0.3 msec. In the present embodiment, measurement of glucose concentration (using red light by the first light emitting element 48a) and measurement of correction hematocrit value (using green light by the second light emitting element 48b) are performed using two different wavelengths. In order to implement, after turning on the power, the alternate irradiation of red light and green light is started.
 検出値取得部62は、検出部34からA/D変換器36を介して送信される検出値d(電流の情報)を受信して、メモリ56に一時的に記憶させる。検出値取得部62は電源投入もしくは測定モード切替の直後に起動し、試験紙20の表面からの反射光量値を自動的に記録する。この記録時間はメモリ56に記憶可能なデータ量を考慮して決定されるが、1秒間に複数回行われることが望ましい。また、測定した反射光量の変化量に応じて回数を変動してもよく、変化量が多いほど単位時間あたりの測定点を多くして計算精度を確保しつつ、使用メモリ数を節約することができる。 The detection value acquisition unit 62 receives the detection value d (current information) transmitted from the detection unit 34 via the A / D converter 36 and temporarily stores it in the memory 56. The detection value acquisition unit 62 is activated immediately after power-on or measurement mode switching, and automatically records the amount of reflected light from the surface of the test paper 20. The recording time is determined in consideration of the amount of data that can be stored in the memory 56, but it is desirable that the recording time be performed a plurality of times per second. In addition, the number of times may vary depending on the amount of change in the amount of reflected light, and the larger the amount of change, the more measurement points per unit time can be secured, while saving the number of used memories. it can.
 温度取得部64は、温度センサ38から送信される周囲温度Tの情報を受信して、メモリ56に一時的に記憶させる。温度センサ38は把持部等の温度変化の受けやすい部分を避けつつ、試験紙部温度を反映するよう設置する。周囲温度Tは逐次更新されることが好ましく、温度センサ38が安定した時の測定時が計算時補正用に採用され、メモリ56に記憶される。 The temperature acquisition unit 64 receives information on the ambient temperature T transmitted from the temperature sensor 38 and temporarily stores it in the memory 56. The temperature sensor 38 is installed so as to reflect the temperature of the test paper portion while avoiding a portion that is susceptible to temperature change such as a grip portion. The ambient temperature T is preferably updated sequentially, and the measurement time when the temperature sensor 38 is stabilized is adopted for calculation correction and stored in the memory 56.
 血糖値算出部66は、検出値取得部62が取得した検出値d(電流値)に基づき、血糖値を算出してモニタ28に表示させる機能部である。この血糖値算出部66は、血糖値の算出過程及び制御過程に応じて、吸光度算出部70、仮血糖値算出部72、ヘマトクリット補正部74及び測定結果処理部76を有している。 The blood glucose level calculation unit 66 is a functional unit that calculates a blood glucose level based on the detection value d (current value) acquired by the detection value acquisition unit 62 and displays it on the monitor 28. The blood glucose level calculation unit 66 includes an absorbance calculation unit 70, a provisional blood glucose level calculation unit 72, a hematocrit correction unit 74, and a measurement result processing unit 76 according to the blood glucose level calculation process and the control process.
 吸光度算出部70は、取得した検出値dに基づき吸光度ALを算出する。吸光度ALの算出方法は、特に限定されないが、例えば、基準の電流値である白AD値と検出した電流値(色AD値)の比をとり、所定の定数(処理が容易となるビット数)を乗算する式があげられる。 The absorbance calculation unit 70 calculates the absorbance AL based on the acquired detection value d. The method for calculating the absorbance AL is not particularly limited. For example, a ratio between a white AD value that is a reference current value and a detected current value (color AD value) is taken, and a predetermined constant (the number of bits that facilitates processing). An expression for multiplying is given.
 換言すれば、吸光度ALは、電源投入直後に測定した試験紙20が呈色していない状態の反射光量に対し、血液中のグルコースにより試験紙20が呈色した状態において、反射光量がどの程度変化したかを示すものである。吸光度ALとして採用する測定点は、試薬反応が充分完了した後の時間で判断されるべきであり、単位時間あたりの変化量から都度判断されても、事前に設定されてもよい。吸光度算出部70は、予め設定された吸光度関数と、測定前に試験紙20の反射光により得られた(又は基準値としてメモリ56に記憶された)白AD値とを読み出し、取得した検出値dから吸光度ALを算出し仮血糖値算出部72に出力する。 In other words, the absorbance AL is the amount of reflected light in the state in which the test paper 20 is colored by glucose in the blood compared to the reflected light in the state in which the test paper 20 is not colored as measured immediately after the power is turned on. It shows whether it has changed. The measurement point adopted as the absorbance AL should be determined by the time after the reagent reaction is sufficiently completed, and may be determined each time from the amount of change per unit time or set in advance. The absorbance calculation unit 70 reads a preset absorbance function and a white AD value obtained by reflected light from the test paper 20 before measurement (or stored in the memory 56 as a reference value), and obtained detection value Absorbance AL is calculated from d and output to provisional blood glucose level calculator 72.
 仮血糖値算出部72は、関数設定部68が設定した検量関数を用いて、吸光度ALから仮血糖値PBを算出する。「仮血糖値PB」とは、後述するヘマトクリット補正を行う前の算出値である。検量関数は、実験等により、吸光度ALと実際の血糖値(実血糖値)との相関を求めることで規定される。例えば、検量関数は、吸光度ALをX軸の変数、仮血糖値PBをY軸の変数とした場合、3次関数式y=f(x)を適用することができる(図4も参照)。検量関数は、血糖計10の周囲温度T及び血糖値の測定範囲に応じて複数用意され、関数設定部68により適宜選択される。仮血糖値算出部72は、選択された検量関数により仮血糖値PBを算出すると、ヘマトクリット補正部74に出力する。 The temporary blood glucose level calculation unit 72 calculates the temporary blood glucose level PB from the absorbance AL using the calibration function set by the function setting unit 68. The “provisional blood glucose level PB” is a calculated value before performing a hematocrit correction described later. The calibration function is defined by obtaining the correlation between the absorbance AL and the actual blood glucose level (actual blood glucose level) through experiments or the like. For example, the cubic function y = f (x) can be applied to the calibration function when the absorbance AL is an X-axis variable and the temporary blood glucose level PB is a Y-axis variable (see also FIG. 4). A plurality of calibration functions are prepared according to the ambient temperature T of the blood glucose meter 10 and the measurement range of the blood glucose level, and are appropriately selected by the function setting unit 68. The provisional blood sugar level calculation unit 72 calculates the provisional blood sugar level PB using the selected calibration function, and outputs it to the hematocrit correction unit 74.
 ヘマトクリット補正部74は、血液中で赤血球が占める体積であるヘマトクリット値の算出結果に基づき仮血糖値PBの補正を行い、最終的な血糖値の測定情報である測定血糖値MBを算出する。検出部34及び制御回路40は、第2発光素子48bにより所定波長の測定光を呈色した試験紙20に投光し、その反射光に基づきヘマトクリット値を算出する。ヘマトクリット補正部74は、得られたヘマトクリット値を利用して測定血糖値MBを算出すると、測定結果処理部76に出力する。 The hematocrit correction unit 74 corrects the temporary blood glucose level PB based on the calculation result of the hematocrit value, which is the volume occupied by red blood cells in the blood, and calculates the measured blood glucose level MB, which is final blood glucose level measurement information. The detector 34 and the control circuit 40 project the hematocrit value based on the reflected light by projecting the test light 20 colored with measurement light having a predetermined wavelength by the second light emitting element 48b. When the hematocrit correction unit 74 calculates the measured blood glucose level MB using the obtained hematocrit value, the hematocrit correction unit 74 outputs it to the measurement result processing unit 76.
 測定結果処理部76は、算出された測定血糖値MBを表示情報に生成してモニタ28に送信する。これにより、モニタ28は、患者の血糖値(測定血糖値MB)を適切な表示形態で表示する。また、測定結果処理部76は、測定血糖値MBを患者識別データ及び計測者識別データと紐付けてメモリ56に記憶する。これにより、血糖計10は、患者毎の過去の測定血糖値MBを読み出して表示することができる。或いは、血糖計10は、病院内で電子カルテを有しているサーバに自動的に(又はユーザの操作に応じて)、これらのデータを送信する。 The measurement result processing unit 76 generates the calculated measured blood sugar level MB as display information and transmits it to the monitor 28. Thereby, the monitor 28 displays the patient's blood glucose level (measured blood glucose level MB) in an appropriate display form. Further, the measurement result processing unit 76 stores the measured blood glucose level MB in the memory 56 in association with the patient identification data and the measurer identification data. Thereby, the blood glucose meter 10 can read and display the past measured blood glucose level MB for each patient. Or the blood glucose meter 10 transmits these data automatically (or according to a user's operation) to the server which has an electronic medical record in a hospital.
 一方、関数設定部68は、血糖値算出部66が検出値dから測定血糖値MBを算出する際の関数を設定する機能部である。この関数設定部68は、適用関数選択部78及び関数変更判別部80を備える。 On the other hand, the function setting unit 68 is a functional unit that sets a function when the blood sugar level calculating unit 66 calculates the measured blood sugar level MB from the detected value d. The function setting unit 68 includes an applied function selection unit 78 and a function change determination unit 80.
 適用関数選択部78は、図3に示すようにメモリ56(関数格納部)に記憶された複数の関数データFDの中から処理内容に応じて検量関数を選択し、血糖値算出部66に提供する機能を有している。なお、関数設定部68は、吸光度関数やヘマトクリット補正を行うヘマトクリット関数もメモリ56から読み出し、血糖値算出部66に提供する構成でもよい。 The applied function selection unit 78 selects a calibration function according to the processing content from a plurality of function data FD stored in the memory 56 (function storage unit) as shown in FIG. It has a function to do. The function setting unit 68 may be configured to read out the absorbance function and the hematocrit function for performing hematocrit correction from the memory 56 and provide them to the blood sugar level calculation unit 66.
 ここで、血糖計10は、既述したように医療施設内での使用を目的としており、血糖値(測定血糖値MB)の測定範囲として、従来のSMBG器よりも測定可能対象を広く設定し、広い血糖値範囲(例えば0~1000mg/dL)や広範囲の血液ヘマトクリット患者(例えば、Ht10~70%)を対象として、高い正確性で血糖値を測定し得るように構成される。しかしながら、前述の通り、測定値への影響要因は複数あり、要因ごとに影響する測定値範囲が異なることがある。例えば、血糖値が低い場合(50mg/dL以下)には血液色の誤差比率が高くなり、低血糖側の血糖値に合わせた補正を行うと、比較的血糖値が高い場合(200~600mg/dL)には算出値が実際の血糖値から外れる可能性がある。さらに高血糖になると(600mg/dL以上)、試薬反応の時間が長いため、測定時間を長く想定した補正が必要となる。同様に、ヘマトクリット値においても、低値範囲(Ht20%)と高値範囲(Ht60%)では、同量の血液であっても血漿比率が異なり、血液染み込み速度や試薬の反応速度に差が生じる。このように、測定可能対象を広くすることで、検出値に対する出力特性の信頼性(追従性)が低下する不都合が生じていた。よって、従来装置のように検量関数が1つであると、血糖値が低い場合には患者の実血糖値に追従して高精度な値を反映できるとしても、血糖値が高い場合には実血糖値から乖離した値を算出する可能性がある。 Here, the blood glucose meter 10 is intended for use in a medical facility as described above, and the measurement range of the blood glucose level (measured blood glucose level MB) is set wider than the conventional SMBG device. The blood glucose level can be measured with high accuracy for a wide blood glucose range (for example, 0 to 1000 mg / dL) and a wide range of blood hematocrit patients (for example, Ht 10 to 70%). However, as described above, there are a plurality of factors that influence the measurement value, and the measurement value range that affects each factor may differ. For example, when the blood sugar level is low (50 mg / dL or less), the blood color error ratio is high. When correction is performed according to the blood sugar level on the low blood sugar side, the blood sugar level is relatively high (200 to 600 mg / d). In dL), the calculated value may deviate from the actual blood glucose level. Further, when the blood sugar level becomes high (600 mg / dL or more), since the reagent reaction time is long, correction that requires a long measurement time is required. Similarly, also in the hematocrit value, the plasma ratio is different even in the same amount of blood in the low value range (Ht20%) and the high value range (Ht60%), and there is a difference in the blood permeation rate and the reagent reaction rate. As described above, by widening the measurable target, there is a disadvantage that the reliability (followability) of the output characteristic with respect to the detected value is lowered. Therefore, if the calibration function is one as in the conventional apparatus, the blood glucose level is low, and even if the blood glucose level is high, it can reflect a highly accurate value by following the patient's actual blood glucose level. There is a possibility of calculating a value deviating from the blood glucose level.
 そのため、適用関数選択部78は、測定範囲に応じて複数(2つ)の検量関数を選択する構成としている。つまり、メモリ56は、図4に示すように、血糖値が低い場合の仮血糖値PBを算出するための第1検量関数f(x)と、血糖値が高い場合の仮血糖値PBを算出するための第2検量関数g(x)とを有している。なお、図4中において、実線で示す第1検量関数f(x)及び1点鎖線で示す第2検量関数g(x)は、発明の理解の容易化のためイメージ化した曲線を描いたものであり、実際の検量関数は試験紙構造、試薬組成、試薬量等の設計に応じて多様な形状を呈する。 Therefore, the application function selection unit 78 is configured to select a plurality (two) of calibration functions according to the measurement range. That is, as shown in FIG. 4, the memory 56 calculates the first calibration function f (x) for calculating the temporary blood glucose level PB when the blood glucose level is low and the temporary blood glucose level PB when the blood glucose level is high. And a second calibration function g (x). In FIG. 4, the first calibration function f (x) indicated by the solid line and the second calibration function g (x) indicated by the alternate long and short dash line are drawn as curves for the sake of easy understanding of the invention. The actual calibration function has various shapes depending on the design of the test paper structure, reagent composition, reagent amount, and the like.
 すなわち、仮血糖値算出部72が吸光度ALから仮血糖値PBを算出する際に、第1検量関数f(x)は、X軸である吸光度ALが図4中のa1である場合に、Y軸である血糖値(仮血糖値PB)はb1[=f(a1)]を算出する。このb1が閾値Th以下の場合には、実血糖値と仮血糖値PBとが良好に追従している。しかしながら、閾値Thを超えた第1検量関数f(x)が算出したb2[=f(a2)]では、実血糖値と仮血糖値の乖離が大きくなる。このため、閾値Thを超えた場合には、第2検量関数g(x)を適用する。これにより、Y軸の血糖値(仮血糖値PB)は、吸光度ALが同じa2でも、c1[=g(a2)]を算出し、このc1は、実血糖値に良好に追従することができる。 That is, when the temporary blood sugar level calculating unit 72 calculates the temporary blood sugar level PB from the absorbance AL, the first calibration function f (x) is obtained when the absorbance AL that is the X axis is a1 in FIG. For the blood glucose level (provisional blood glucose level PB) as the axis, b1 [= f (a1)] is calculated. When b1 is equal to or less than the threshold Th, the actual blood glucose level and the provisional blood glucose level PB follow well. However, in b2 [= f (a2)] calculated by the first calibration function f (x) exceeding the threshold Th, the difference between the actual blood glucose level and the temporary blood glucose level becomes large. For this reason, when the threshold value Th is exceeded, the second calibration function g (x) is applied. As a result, the Y-axis blood glucose level (provisional blood glucose level PB) is calculated as c1 [= g (a2)] even when the absorbance AL is the same, and this c1 can follow the actual blood glucose level well. .
 また、血糖値の測定においては、周囲温度Tは測定値計算時の誤差要因の一つであり、特に影響が大きい。これは試験紙20上での試薬に酵素反応が含まれており、試薬反応の温度依存性が高いことと、試験紙20内部の血液展開性が周囲温度Tに応じて大きく変化し、試薬の反応に影響するためである。このため、メモリ56には、所定の温度範囲(例えば、T<0℃、0℃≦T<5℃、…、35℃≦T等のように5℃単位の範囲)に応じて複数の検量関数が記憶されている。詳細には、第1検量関数f(x)に適用可能な関数群として、所定の温度範囲毎に異なるfT1(a)、fT2(a)、…、fTn(a)を有する。また第2検量関数g(x)に適用可能な関数群として、所定の温度範囲毎に異なるgT1(a)、gT2(a)、…、gTn(a)を有する。なお、周囲温度Tの実測値が検量線とずれている場合、周囲温度Tを囲む検量線によって直線補間を実施してより精度の高い計算を行う。 In the measurement of blood glucose level, the ambient temperature T is one of the error factors when calculating the measurement value, and is particularly affected. This is because the reagent on the test paper 20 contains an enzyme reaction, the temperature dependence of the reagent reaction is high, and the blood developability inside the test paper 20 changes greatly according to the ambient temperature T, This is because it affects the reaction. Therefore, the memory 56 has a plurality of calibrations according to a predetermined temperature range (for example, a range of 5 ° C. such as T <0 ° C., 0 ° C. ≦ T <5 ° C.,. Function is stored. Specifically, as a function group applicable to the first calibration function f (x), f T1 (a), f T2 (a),..., F Tn (a) that differ for each predetermined temperature range are included. Further, as a group of functions applicable to the second calibration function g (x), g T1 (a), g T2 (a),..., G Tn (a) differing for each predetermined temperature range. When the actual measurement value of the ambient temperature T is different from the calibration curve, linear interpolation is performed using the calibration curve surrounding the ambient temperature T, and calculation with higher accuracy is performed.
 適用関数選択部78は、仮血糖値算出部72の処理時に、上記の関数群の中から温度取得部64が取得した周囲温度Tに対応する関数を選ぶ。さらに、適用関数選択部78は、関数変更判別部80からの指示に基づき、第1検量関数f(x)又は第2検量関数g(x)の一方を選び、仮血糖値算出部72に出力する。 The application function selection unit 78 selects a function corresponding to the ambient temperature T acquired by the temperature acquisition unit 64 from the above function group during the processing of the temporary blood glucose level calculation unit 72. Further, the applied function selection unit 78 selects one of the first calibration function f (x) or the second calibration function g (x) based on an instruction from the function change determination unit 80 and outputs the selected one to the temporary blood glucose level calculation unit 72. To do.
 関数変更判別部80は、適用関数である第1検量関数f(x)と第2検量関数g(x)のうちいずれかの適用を判別する機能部である。この関数変更判別部80は、第1検量関数f(x)と第2検量関数g(x)の適用を区別するための所定の閾値を保有している。閾値としては、後述する第1~第4実施例で説明するように、検出部34が検出した検出値dや血糖値算出部66の算出過程で算出される算出値(測定血糖値MB、仮血糖値PB、吸光度AL)に対応するものを適用する。以下、第1~第4実施例毎に、適用関数の判別タイミングと閾値を説明すると共に、血糖値の測定における制御回路40の動作(処理フロー)及び効果を述べていく。 The function change discriminating unit 80 is a functional unit that discriminates application of either the first calibration function f (x) or the second calibration function g (x) that is an application function. The function change determination unit 80 has a predetermined threshold value for distinguishing application of the first calibration function f (x) and the second calibration function g (x). As described in the first to fourth embodiments, which will be described later, the threshold value is a detection value d detected by the detection unit 34 or a calculated value calculated in the calculation process of the blood glucose level calculation unit 66 (measured blood glucose level MB, temporary Those corresponding to blood glucose level PB, absorbance AL) are applied. Hereinafter, for each of the first to fourth embodiments, the application function discrimination timing and threshold value will be described, and the operation (processing flow) and effect of the control circuit 40 in measuring the blood glucose level will be described.
〔第1実施例〕
 第1実施例に係る血糖計10は、ヘマトクリット補正部74が算出した測定血糖値MBに基づき、第1検量関数f(x)と第2検量関数g(x)の適用を判別する構成となっている。すなわち、血糖値算出部66は、第1検量関数f(x)に基づき仮血糖値PBを算出し、さらにヘマトクリット補正部74により測定血糖値MBを一旦算出する。関数設定部68は、この算出した測定血糖値MBをパラメータとして取り出し、適用関数を判別するために使用する。
[First embodiment]
The blood glucose meter 10 according to the first embodiment is configured to determine application of the first calibration function f (x) and the second calibration function g (x) based on the measured blood glucose level MB calculated by the hematocrit correction unit 74. ing. That is, the blood sugar level calculation unit 66 calculates the temporary blood sugar level PB based on the first calibration function f (x), and further calculates the measured blood sugar level MB once by the hematocrit correction unit 74. The function setting unit 68 takes out the calculated measured blood glucose level MB as a parameter and uses it to determine the applied function.
 この場合、関数設定部68の関数変更判別部80は、測定血糖値MBに対応する測定血糖値閾値を保有している。測定血糖値閾値は、血糖値の測定範囲のうち第1検量関数f(x)が実血糖値に充分に追従し得る範囲に応じて適宜設定されるとよく、一例としては50、200、600mg/dLがあげられる。関数変更判別部80は、ヘマトクリット補正部74が補正した測定血糖値MBを受けると、測定血糖値閾値との比較を行い、第1検量関数f(x)又は第2検量関数g(x)のいずれかの適用がよいかを判別する。 In this case, the function change determination unit 80 of the function setting unit 68 has a measured blood sugar level threshold corresponding to the measured blood sugar level MB. The measured blood sugar level threshold value may be appropriately set according to the range in which the first calibration function f (x) can sufficiently follow the actual blood sugar level in the blood sugar level measurement range, and examples include 50, 200, and 600 mg. / DL. When the function change determination unit 80 receives the measured blood glucose level MB corrected by the hematocrit correction unit 74, the function change determination unit 80 compares the measured blood glucose level with the threshold value of the measured blood glucose level and determines the first calibration function f (x) or the second calibration function g (x). Determine which application is appropriate.
 以下、図5のフローチャートを参照して、具体的な血糖値の測定に基づき、第1実施例の動作を詳述する。ユーザは、血糖値の測定において、チップ12を血糖計10に装着して患者の血液をノズル18の先端部から取り込む。血液は、チップ12内で試験紙20に染み込むと、グルコース成分が試薬と反応して、その成分量に応じて試験紙20を呈色させる。 Hereinafter, the operation of the first embodiment will be described in detail with reference to the flowchart of FIG. In measuring the blood glucose level, the user attaches the chip 12 to the blood glucose meter 10 and takes the blood of the patient from the tip of the nozzle 18. When blood soaks into the test paper 20 in the chip 12, the glucose component reacts with the reagent, and the test paper 20 is colored according to the amount of the component.
 そして、血糖計10の制御回路40は、試験紙20の呈色開始から所定時間後に、検出部駆動部60により検出部34を動作(駆動)させる(ステップS1)。検出部34は、第1及び第2発光素子48a、48bから別々のタイミングで測定光を出射し、試験紙20に反射したそれぞれの反射光を受光部50にて受光する。受光部50は、第1及び第2発光素子48a、48bが投光した際の反射光強度に応じた検出値d(電流信号)を出力する。この検出値dはA/D変換器36を介して制御回路40に送信される。これにより、検出値取得部62が検出値dを取得し(ステップS2)、この検出値dはメモリ56に一旦記憶される。 Then, the control circuit 40 of the blood glucose meter 10 operates (drives) the detection unit 34 by the detection unit drive unit 60 after a predetermined time from the start of coloration of the test paper 20 (step S1). The detection unit 34 emits measurement light from the first and second light emitting elements 48 a and 48 b at different timings, and the reflected light reflected on the test paper 20 is received by the light receiving unit 50. The light receiving unit 50 outputs a detection value d (current signal) corresponding to the intensity of reflected light when the first and second light emitting elements 48a and 48b project light. This detection value d is transmitted to the control circuit 40 via the A / D converter 36. As a result, the detection value acquisition unit 62 acquires the detection value d (step S <b> 2), and the detection value d is temporarily stored in the memory 56.
 そして、制御回路40は、検出値取得部62による検出値dの取得に基づき、血糖値算出部66の動作を開始する。まず、吸光度算出部70は、第1発光素子48aが測定光を投光した際の検出値dを読み出し、吸光度関数を使用して吸光度ALを算出する(ステップS3)。算出された吸光度ALは、仮血糖値算出部72に出力される。 Then, the control circuit 40 starts the operation of the blood sugar level calculation unit 66 based on the acquisition of the detection value d by the detection value acquisition unit 62. First, the absorbance calculation unit 70 reads the detection value d when the first light emitting element 48a projects measurement light, and calculates the absorbance AL using the absorbance function (step S3). The calculated absorbance AL is output to the temporary blood glucose level calculation unit 72.
 次に、仮血糖値算出部72は、関数設定部68が設定した第1検量関数f(x)を用いて、吸光度ALから仮血糖値PBを算出する(ステップS4)。算出された仮血糖値PBは、ヘマトクリット補正部74に出力される。 Next, the temporary blood glucose level calculation unit 72 calculates the temporary blood glucose level PB from the absorbance AL using the first calibration function f (x) set by the function setting unit 68 (step S4). The calculated provisional blood glucose level PB is output to the hematocrit correction unit 74.
 ヘマトクリット補正部74は、仮血糖値PBをヘマトクリット値に基づき補正し、第1値である測定血糖値MBを算出する(ステップS5)。なお、ヘマトクリット値は、第2発光素子48bが測定光を投光した際の検出値dに基づき、ヘマトクリット補正部74にて予め算出される。算出された測定血糖値MBは、メモリ56に記憶されると共に、関数設定部68に出力される。 The hematocrit correction unit 74 corrects the temporary blood glucose level PB based on the hematocrit value, and calculates a measured blood glucose level MB that is a first value (step S5). The hematocrit value is calculated in advance by the hematocrit correction unit 74 based on the detection value d when the second light emitting element 48b projects measurement light. The calculated measured blood glucose level MB is stored in the memory 56 and output to the function setting unit 68.
 次に、制御回路40は、関数設定部68の関数変更判別部80を動作させ、ヘマトクリット補正部74から受け取った測定血糖値MBと、測定血糖値閾値とを比較する(ステップS6)。そして、測定血糖値MBが測定血糖値閾値以下の場合にはステップS7に進み、測定血糖値MBが測定血糖値閾値よりも大きい場合にはステップS8に進む。 Next, the control circuit 40 operates the function change determination unit 80 of the function setting unit 68 to compare the measured blood glucose level MB received from the hematocrit correction unit 74 with the measured blood glucose level threshold (step S6). Then, when the measured blood sugar level MB is equal to or less than the measured blood sugar level threshold value, the process proceeds to step S7, and when the measured blood sugar level MB is larger than the measured blood sugar level threshold value, the process proceeds to step S8.
 測定血糖値MBが測定血糖値閾値以下であれば、仮血糖値PBの算出に使用した第1検量関数f(x)が最適な関数であることになる。そのため、ステップS7において、制御回路40の測定結果処理部76は、第1検量関数f(x)に基づく測定血糖値MB(第1値)をメモリ56から読み出し、その測定血糖値MBを表示情報としてモニタ28に表示する。また測定結果処理部76は、患者識別データと測定血糖値MBを紐付けてメモリ56に記憶する。 If the measured blood glucose level MB is less than or equal to the measured blood glucose level threshold, the first calibration function f (x) used for calculating the temporary blood glucose level PB is an optimal function. Therefore, in step S7, the measurement result processing unit 76 of the control circuit 40 reads the measured blood glucose level MB (first value) based on the first calibration function f (x) from the memory 56, and displays the measured blood glucose level MB as display information. Is displayed on the monitor. The measurement result processing unit 76 stores the patient identification data and the measured blood glucose level MB in the memory 56 in association with each other.
 一方、測定血糖値MBが測定血糖値閾値よりも大きければ、第1検量関数f(x)よりも第2検量関数g(x)の方が最適な関数となる。そのため、関数設定部68は、適用関数選択部78により第2検量関数g(x)をメモリ56から読み出し、仮血糖値算出部72に送る。仮血糖値算出部72は、第2検量関数g(x)を受け取ると、ステップS8において、第2検量関数g(x)を用いて吸光度ALから仮血糖値PB(第2値)をもう一度算出する。これにより、高い血糖値に対応した仮血糖値PBが得られることになる。 On the other hand, if the measured blood glucose level MB is larger than the measured blood glucose level threshold, the second calibration function g (x) is an optimal function rather than the first calibration function f (x). Therefore, the function setting unit 68 reads the second calibration function g (x) from the memory 56 by the application function selection unit 78 and sends it to the temporary blood glucose level calculation unit 72. Upon receiving the second calibration function g (x), the provisional blood glucose level calculation unit 72 once again calculates the provisional blood glucose level PB (second value) from the absorbance AL using the second calibration function g (x) in step S8. To do. Thereby, the temporary blood glucose level PB corresponding to a high blood glucose level is obtained.
 第2検量関数g(x)により算出された仮血糖値PBは、ヘマトクリット補正部74によりヘマトクリット補正が再び実施され、第2検量関数g(x)に基づく測定血糖値MBが新たに算出されてメモリ56に記憶される(ステップS9)。その後は、上記のステップS7の処理が行われて、第2検量関数g(x)に基づく測定血糖値MBがモニタ28に表示される。 The temporary blood glucose level PB calculated by the second calibration function g (x) is subjected to the hematocrit correction again by the hematocrit correction unit 74, and the measured blood glucose level MB based on the second calibration function g (x) is newly calculated. It is stored in the memory 56 (step S9). Thereafter, the process of step S7 is performed, and the measured blood glucose level MB based on the second calibration function g (x) is displayed on the monitor 28.
 以上のように第1実施例に係る血糖計10、成分測定方法及び成分測定プログラム56aは、検出値dから算出する測定血糖値MBに基づき第1検量関数f(x)及び第2検量関数g(x)のうち一方を設定することで、血糖値の測定範囲が広くても高い測定精度を得ることができる。すなわち、関数設定部68は、血糖値の測定範囲が広いことで、第1検量関数f(x)では血糖値が実際の成分量から乖離してしまう場合であっても、第2検量関数g(x)を使用することで血糖値を実際の成分量に近づけることができる。従って、血糖計10は、医療施設内等で様々な患者の血糖値を測定するPOCT器として良好に使用することができる。 As described above, the blood glucose meter 10, the component measurement method, and the component measurement program 56a according to the first embodiment are based on the measured blood glucose level MB calculated from the detected value d, the first calibration function f (x) and the second calibration function g. By setting one of (x), high measurement accuracy can be obtained even if the blood glucose level measurement range is wide. That is, the function setting unit 68 has a wide blood glucose level measurement range, so that even if the blood glucose level deviates from the actual component amount in the first calibration function f (x), the second calibration function g By using (x), the blood glucose level can be brought close to the actual component amount. Therefore, the blood glucose meter 10 can be favorably used as a POCT device that measures blood glucose levels of various patients in a medical facility or the like.
 この場合、血糖計10は、関数設定部68により測定血糖値MBと測定血糖値閾値を比較して第1検量関数f(x)又は第2検量関数g(x)を判別するため、他の情報を必要とすることがなく、内部での処理が簡単化する。よって、処理速度を大幅に落とすことなく、血糖値を得ることができる。また、血糖計10は、算出値としてヘマトクリット補正した測定血糖値MBを用いて適正関数の判別を行う構成となっている。つまり、算出過程において最も下流側(最終的な値)である測定血糖値MBに応じて適用関数を判別しているので、測定血糖値MBが実血糖値から離れることを確実に判別することができ、最終的には最も精度が高い血糖値を得ることができる。 In this case, the blood glucose meter 10 compares the measured blood glucose level MB with the measured blood glucose level threshold by the function setting unit 68 to determine the first calibration function f (x) or the second calibration function g (x). No information is required, and internal processing is simplified. Therefore, the blood sugar level can be obtained without significantly reducing the processing speed. In addition, the blood glucose meter 10 is configured to determine an appropriate function using the measured blood glucose level MB corrected by hematocrit as a calculated value. That is, since the application function is determined according to the measured blood glucose level MB that is the most downstream side (final value) in the calculation process, it is possible to reliably determine that the measured blood glucose level MB is away from the actual blood glucose level. Finally, the blood glucose level with the highest accuracy can be obtained.
 さらに、血糖計10は、最初の仮血糖値PBの算出時に、使用確率(頻度)が高い第1検量関数f(x)を用いて算出することにより、第2検量関数g(x)の計算をやり直す機会が少なくなり、処理速度の低下を抑えることができる。 Furthermore, the blood glucose meter 10 calculates the second calibration function g (x) by calculating the first temporary blood glucose level PB using the first calibration function f (x) having a high use probability (frequency). The opportunity to redo is reduced, and the decrease in processing speed can be suppressed.
 なお、血糖計10は、上記の実施例の構成に限定されず、種々の変形例をとり得る。例えば、血糖計10は、上述したように2つの検量関数の使用に限定されず、3以上の検量関数により血糖値を算出する構成でもよい。また例えば、血糖計10は、血糖値を簡単に算出する第1検量関数f(x)及び第2検量関数g(x)とは異なる初期検量関数を用いて、簡易且つ早期に血糖値を算出し、その算出値から第1検量関数f(x)と第2検量関数g(x)の適用を判断してもよい。さらに、血糖計10は、患者の状態(過去の測定情報等)に応じて、仮血糖値PBを最初に算出する際に使用する検量関数として、第2検量関数g(x)を使用してもよい。 In addition, the blood glucose meter 10 is not limited to the configuration of the above-described embodiment, and can take various modifications. For example, the blood glucose meter 10 is not limited to the use of two calibration functions as described above, and may be configured to calculate a blood glucose level using three or more calibration functions. Further, for example, the blood glucose meter 10 calculates the blood glucose level easily and early using an initial calibration function different from the first calibration function f (x) and the second calibration function g (x) for easily calculating the blood glucose level. Then, application of the first calibration function f (x) and the second calibration function g (x) may be determined from the calculated value. Furthermore, the blood glucose meter 10 uses the second calibration function g (x) as a calibration function used when the temporary blood glucose level PB is first calculated according to the patient's state (past measurement information, etc.). Also good.
 そして、血糖計10は、第1検量関数f(x)と第2検量関数g(x)の適用を判別するタイミングが異なってもよく、以下、別のタイミングで判別を行う実施例について幾つか説明していく。 The blood glucose meter 10 may have different timings for determining application of the first calibration function f (x) and the second calibration function g (x). I will explain.
〔第2実施例〕
 第2実施例に係る血糖計10Aは、仮血糖値算出部72が算出したヘマトクリット補正を行う前の仮血糖値PBに基づき、第1検量関数f(x)と第2検量関数g(x)の適用を判別する構成となっている。つまり、血糖計10Aの関数設定部68は、仮血糖値算出部72にて第1検量関数f(x)に基づき仮血糖値PBを算出した段階で、この仮血糖値PBを用いて適用関数を判別する。なお、血糖計10Aの構成は、図1~図3で参照する血糖計10と基本的に同一である。
[Second Embodiment]
The blood glucose meter 10A according to the second embodiment has a first calibration function f (x) and a second calibration function g (x) based on the temporary blood glucose level PB before the hematocrit correction calculated by the temporary blood glucose level calculation unit 72. It is the structure which discriminate | determines application. That is, the function setting unit 68 of the blood glucose meter 10A calculates the provisional blood glucose level PB based on the first calibration function f (x) by the provisional blood glucose level calculation unit 72, and uses the provisional blood glucose level PB to apply the function. Is determined. The configuration of the blood glucose meter 10A is basically the same as that of the blood glucose meter 10 referred to in FIGS.
 具体的には、関数変更判別部80は、算出した仮血糖値PBを取り出して、保有する仮血糖値閾値と、取り出した仮血糖値PBとの比較判別を行う。仮血糖値閾値は、例えば、第1実施例と同様に600mg/dLに設定される。そして、関数変更判別部80は、仮血糖値PBが仮血糖値閾値以下であれば、第1検量関数f(x)の適用を指示し、仮血糖値PBが仮血糖値閾値よりも大きければ第2検量関数g(x)の適用を指示する。 Specifically, the function change determination unit 80 takes out the calculated temporary blood glucose level PB, and compares and determines the stored temporary blood sugar level threshold and the extracted temporary blood sugar level PB. The temporary blood sugar level threshold is set to 600 mg / dL, for example, as in the first embodiment. The function change determination unit 80 instructs the application of the first calibration function f (x) if the temporary blood glucose level PB is equal to or less than the temporary blood glucose level threshold, and if the temporary blood glucose level PB is larger than the temporary blood glucose level threshold. The application of the second calibration function g (x) is instructed.
 以下、図6のフローチャートを参照して、第2実施例の動作を詳述する。図6中においてステップS11~S14までは第1実施例のステップS1~S4までの処理と同じ処理を行う。ステップS14の後、血糖値算出部66は、算出した仮血糖値PBを、メモリ56に一時的に記憶すると共に、関数設定部68に出力する。 Hereinafter, the operation of the second embodiment will be described in detail with reference to the flowchart of FIG. In FIG. 6, steps S11 to S14 are the same as steps S1 to S4 in the first embodiment. After step S <b> 14, the blood sugar level calculating unit 66 temporarily stores the calculated temporary blood sugar level PB in the memory 56 and outputs it to the function setting unit 68.
 関数設定部68は、仮血糖値算出部72が算出した仮血糖値PB(第1値)を受け取ると、ステップS15において、仮血糖値PBと仮血糖値閾値とを比較する。そして、仮血糖値PBが仮血糖値閾値以下の場合にはステップS16に進み、仮血糖値PBが仮血糖値閾値よりも大きい場合にはステップS18に進む。 The function setting unit 68 receives the temporary blood glucose level PB (first value) calculated by the temporary blood glucose level calculation unit 72, and compares the temporary blood glucose level PB with the temporary blood glucose level threshold in step S15. If the temporary blood glucose level PB is equal to or lower than the temporary blood glucose level threshold value, the process proceeds to step S16. If the temporary blood glucose level PB is larger than the temporary blood glucose level threshold value, the process proceeds to step S18.
 仮血糖値PBが仮血糖値閾値以下であれば、第1検量関数f(x)が最適な関数であることになる。このため、その後の処理フローとして、ヘマトクリット補正部74により仮血糖値PBの補正を行って測定血糖値MBを算出する(ステップS16)。さらに第1実施例のステップS7と同様の処理フローを行い、測定血糖値MBを表示する(ステップS17)。 If the temporary blood glucose level PB is equal to or lower than the temporary blood glucose level threshold, the first calibration function f (x) is an optimal function. For this reason, as a subsequent processing flow, the hematocrit correction unit 74 corrects the temporary blood glucose level PB to calculate the measured blood glucose level MB (step S16). Furthermore, the same processing flow as step S7 of the first embodiment is performed, and the measured blood glucose level MB is displayed (step S17).
 一方、仮血糖値PBが仮血糖値閾値よりも大きければ、第1検量関数f(x)よりも第2検量関数g(x)の方が最適な関数となる。そのため、関数設定部68は、適用関数選択部78により第2検量関数g(x)をメモリ56から読み出し、仮血糖値算出部72に送る。仮血糖値算出部72は、第2検量関数g(x)を受け取ると、ステップS18において、第2検量関数g(x)を用いて吸光度ALから仮血糖値PB(第2値)をもう一度算出する。その後は、ステップS19において、第1実施例のステップS9と同様の処理フローを行い、さらにステップS17に移行して、第2検量関数g(x)に基づく測定血糖値MBを表示する。 On the other hand, if the temporary blood glucose level PB is larger than the temporary blood glucose level threshold, the second calibration function g (x) is more optimal than the first calibration function f (x). Therefore, the function setting unit 68 reads the second calibration function g (x) from the memory 56 by the application function selection unit 78 and sends it to the temporary blood glucose level calculation unit 72. Upon receiving the second calibration function g (x), the provisional blood glucose level calculation unit 72 once again calculates the provisional blood glucose level PB (second value) from the absorbance AL using the second calibration function g (x) in step S18. To do. After that, in step S19, the same processing flow as in step S9 of the first embodiment is performed, and the process proceeds to step S17 to display the measured blood glucose level MB based on the second calibration function g (x).
 以上のように第2実施例に係る血糖計10Aも、第1実施例と同様の効果を得ることができる。特に、血糖計10Aは、算出過程において吸光度ALから算出した仮血糖値PBを用いるので、ヘマトクリット補正を行う前の段階で、第1検量関数f(x)と第2検量関数g(x)の適用の判別を行うことができる。そのため、第2検量関数g(x)を使用する場合でも、測定血糖値MBの算出をより速めることができる。 As described above, the blood glucose meter 10A according to the second embodiment can also achieve the same effects as those of the first embodiment. In particular, since the blood glucose meter 10A uses the provisional blood glucose level PB calculated from the absorbance AL in the calculation process, the first calibration function f (x) and the second calibration function g (x) are in a stage before hematocrit correction is performed. Application discrimination can be made. Therefore, even when the second calibration function g (x) is used, the measurement blood glucose level MB can be calculated more quickly.
〔第3実施例〕
 第3実施例に係る血糖計10Bは、吸光度算出部70が吸光度関数により吸光度ALを算出した段階で、第1検量関数f(x)又は第2検量関数g(x)の適用を判別する構成となっている。なお、血糖計10Bの構成は、図1~図3で参照する血糖計10と基本的に同一である。
[Third embodiment]
The blood glucose meter 10B according to the third example is configured to discriminate application of the first calibration function f (x) or the second calibration function g (x) when the absorbance calculation unit 70 calculates the absorbance AL using the absorbance function. It has become. The configuration of the blood glucose meter 10B is basically the same as that of the blood glucose meter 10 referred to in FIGS.
 血糖計10Bの関数変更判別部80は、吸光度算出部70が算出した吸光度AL(算出過程値)を受け取ると、保有する吸光度閾値との比較判別を行う。そして、吸光度ALが吸光度閾値以下であれば、第1検量関数f(x)の適用を指示し、吸光度ALが吸光度値閾値よりも大きければ第2検量関数g(x)の適用を指示する。 When the function change determination unit 80 of the blood glucose meter 10B receives the absorbance AL (calculation process value) calculated by the absorbance calculation unit 70, the function change determination unit 80 performs comparison determination with the absorbance threshold value held. If the absorbance AL is equal to or less than the absorbance threshold, the application of the first calibration function f (x) is instructed, and if the absorbance AL is larger than the absorbance value threshold, the application of the second calibration function g (x) is instructed.
 以下、図7のフローチャートを参照して、第3実施例の動作を詳述する。図7中においてステップS21~S23までは第1実施例のステップS1~S3までの処理と同じ処理を行う。なお、ステップS23の後、吸光度算出部70は、算出した吸光度AL(算出過程値)をメモリ56に一時的に記憶すると共に、関数設定部68に出力する。 Hereinafter, the operation of the third embodiment will be described in detail with reference to the flowchart of FIG. In FIG. 7, steps S21 to S23 are the same as steps S1 to S3 of the first embodiment. After step S23, the absorbance calculation unit 70 temporarily stores the calculated absorbance AL (calculation process value) in the memory 56 and outputs it to the function setting unit 68.
 関数設定部68は、吸光度算出部70が算出した吸光度ALを受け取ると、ステップS24において、吸光度ALと吸光度閾値とを比較する。そして、吸光度ALが吸光度閾値以下の場合にはステップS25に進み、吸光度ALが吸光度閾値よりも大きい場合にはステップS28に進む。 When the function setting unit 68 receives the absorbance AL calculated by the absorbance calculation unit 70, in step S24, the function setting unit 68 compares the absorbance AL with the absorbance threshold value. If the absorbance AL is equal to or less than the absorbance threshold, the process proceeds to step S25, and if the absorbance AL is greater than the absorbance threshold, the process proceeds to step S28.
 吸光度ALが吸光度閾値以下であれば、第1検量関数f(x)が最適な関数と言える。このため、その後は、仮血糖値算出部72により第1検量関数f(x)を用いて仮血糖値PBを算出し(ステップS25)、ヘマトクリット補正部74により仮血糖値PBの補正を行って測定血糖値MBを算出する(ステップS26)。さらに第1実施例のステップS7と同様の処理フローを行い、測定血糖値MBを表示する(ステップS27)。 If the absorbance AL is equal to or less than the absorbance threshold, the first calibration function f (x) can be said to be an optimal function. Therefore, thereafter, the temporary blood glucose level PB is calculated by the temporary blood glucose level calculation unit 72 using the first calibration function f (x) (step S25), and the hematocrit correction unit 74 corrects the temporary blood glucose level PB. The measured blood glucose level MB is calculated (step S26). Furthermore, the same processing flow as step S7 of the first embodiment is performed, and the measured blood glucose level MB is displayed (step S27).
 一方、吸光度ALが吸光度閾値よりも大きければ、第1検量関数f(x)よりも第2検量関数g(x)の方が最適な関数と言える。そのため、関数設定部68は、適用関数選択部78により第2検量関数g(x)をメモリ56から読み出し、仮血糖値算出部72に送る。仮血糖値算出部72は、第2検量関数g(x)を受け取ると、ステップS28において、第2検量関数g(x)を用いて吸光度ALから仮血糖値PBを算出する。その後は、ステップS29において、第1実施例のステップS9と同様の処理フローを行い、さらにステップS27に移行して、第2検量関数g(x)に基づく測定血糖値MBを表示する。 On the other hand, if the absorbance AL is larger than the absorbance threshold, it can be said that the second calibration function g (x) is more optimal than the first calibration function f (x). Therefore, the function setting unit 68 reads the second calibration function g (x) from the memory 56 by the application function selection unit 78 and sends it to the temporary blood glucose level calculation unit 72. Upon receipt of the second calibration function g (x), the provisional blood glucose level calculation unit 72 calculates the provisional blood glucose level PB from the absorbance AL using the second calibration function g (x) in step S28. Thereafter, in step S29, the same processing flow as in step S9 of the first embodiment is performed, and the process proceeds to step S27 to display the measured blood glucose level MB based on the second calibration function g (x).
 以上のように第3実施例に係る血糖計10Bも、第1実施例と同様の効果を得ることができる。特に、血糖計10Bは、第1及び第2実施例よりも早い段階の算出過程値である、吸光度ALを用いて第1検量関数f(x)と第2検量関数g(x)の適用を判別するため、処理速度を一層向上することができる。 As described above, the blood glucose meter 10B according to the third embodiment can also obtain the same effects as those of the first embodiment. In particular, the blood glucose meter 10B applies the first calibration function f (x) and the second calibration function g (x) using the absorbance AL, which is a calculation process value at an earlier stage than the first and second embodiments. Since the determination is made, the processing speed can be further improved.
〔第4実施例〕
 第4実施例に係る血糖計10Cは、検出値取得部62が検出値dを取得した直後に、第1検量関数f(x)と第2検量関数g(x)の適用を判別する構成となっている。なお、血糖計10Cの構成は、図1~図3で参照する血糖計10と基本的に同一である。
[Fourth embodiment]
The blood glucose meter 10C according to the fourth embodiment is configured to determine application of the first calibration function f (x) and the second calibration function g (x) immediately after the detection value acquisition unit 62 acquires the detection value d. It has become. The configuration of the blood glucose meter 10C is basically the same as that of the blood glucose meter 10 referred to in FIGS.
 そのため、関数変更判別部80は、検出値取得部62が取得した検出値dを受けると、保有する電流値閾値との比較判別を行う。そして、検出値dが電流値閾値よりも大きければ、第1検量関数f(x)の適用を指示し、検出値dが電流値閾値以下であれば第2検量関数g(x)の適用を指示する。 Therefore, when receiving the detection value d acquired by the detection value acquisition unit 62, the function change determination unit 80 performs comparison determination with the current value threshold value held. If the detected value d is larger than the current value threshold, the application of the first calibration function f (x) is instructed. If the detected value d is equal to or less than the current value threshold, the application of the second calibration function g (x) is instructed. Instruct.
 以下、図8のフローチャートを参照して、第4実施例の動作を詳述する。図8中においてステップS31及びS32までは第1実施例のステップS1及びS2までの処理と同じ処理を行う。 Hereinafter, the operation of the fourth embodiment will be described in detail with reference to the flowchart of FIG. In FIG. 8, steps S31 and S32 are the same as steps S1 and S2 in the first embodiment.
 その後、関数設定部68は、検出値取得部62が取得した検出値dを読み出し、ステップS33において、検出値dと電流値閾値とを比較する。そして、検出値dが電流値閾値よりも大きい場合にはステップS34に進み、検出値dが電流値閾値以下の場合にはステップS38に進む。 Thereafter, the function setting unit 68 reads the detection value d acquired by the detection value acquisition unit 62, and compares the detection value d with the current value threshold value in step S33. If the detected value d is larger than the current value threshold value, the process proceeds to step S34. If the detected value d is equal to or smaller than the current value threshold value, the process proceeds to step S38.
 検出値dが電流値閾値よりも大きい場合には、上述した吸光度関数に基づき、吸光度ALが小さくなる(換言すれば、算出する測定血糖値MBが小さくなる)ことになり、第1検量関数f(x)が最適な関数と推定される。このため、その後は、吸光度算出部70により検出値dから吸光度ALを算出し(ステップS34)、仮血糖値算出部72により第1検量関数f(x)を用いて仮血糖値PBを算出する(ステップS35)。またヘマトクリット補正部74により仮血糖値PBの補正を行って測定血糖値MBを算出し(ステップS36)、さらに第1実施例のステップS7と同様の処理フローを行い、測定血糖値MBを表示する(ステップS37)。 When the detected value d is larger than the current value threshold, the absorbance AL becomes small (in other words, the measured blood glucose level MB to be calculated becomes small) based on the above-described absorbance function, and the first calibration function f. (X) is estimated as an optimal function. Therefore, thereafter, the absorbance AL is calculated from the detection value d by the absorbance calculation unit 70 (step S34), and the temporary blood glucose level PB is calculated by the temporary blood glucose level calculation unit 72 using the first calibration function f (x). (Step S35). Further, the hematocrit correction unit 74 corrects the temporary blood glucose level PB to calculate the measured blood glucose level MB (step S36), and further performs the same processing flow as step S7 in the first embodiment to display the measured blood glucose level MB. (Step S37).
 一方、検出値dが電流値閾値以下の場合には、上述した吸光度関数に基づき、吸光度ALが大きくなる(換言すれば、算出する測定血糖値MBが大きくなる)ことになり第1検量関数f(x)よりも第2検量関数g(x)のほうが最適な関数と推定される。そのため、その後は、吸光度算出部70により検出値dから吸光度ALを算出し(ステップS38)、仮血糖値算出部72により第2検量関数g(x)を用いて仮血糖値PBを算出する(ステップS39)。またヘマトクリット補正部74により仮血糖値PBの補正を行って測定血糖値MBを算出し(ステップS40)、さらにステップS37に移行して、第2検量関数g(x)に基づく測定血糖値MBを表示する。 On the other hand, when the detected value d is less than or equal to the current value threshold, the absorbance AL increases (in other words, the measured blood glucose level MB to be calculated increases) based on the absorbance function described above, and the first calibration function f. The second calibration function g (x) is estimated to be an optimal function rather than (x). Therefore, thereafter, the absorbance AL is calculated from the detection value d by the absorbance calculation unit 70 (step S38), and the temporary blood glucose level PB is calculated by the temporary blood glucose level calculation unit 72 using the second calibration function g (x) ( Step S39). Further, the hematocrit correction unit 74 corrects the temporary blood glucose level PB to calculate the measured blood glucose level MB (step S40), and further proceeds to step S37 to calculate the measured blood glucose level MB based on the second calibration function g (x). indicate.
 以上のように第4実施例に係る血糖計10Cも、第1実施例と同様の効果を得ることができる。そして、この血糖計10Cは、検出値dである電流信号を用いる、すなわち関数設定部68は検出値dの取得に伴い直ちに第1検量関数f(x)と第2検量関数g(x)の適用を判別するため、処理速度を最も速くすることができる。 As described above, the blood glucose meter 10C according to the fourth embodiment can also obtain the same effects as those of the first embodiment. The blood glucose meter 10C uses a current signal that is the detection value d, that is, the function setting unit 68 immediately obtains the first calibration function f (x) and the second calibration function g (x) as the detection value d is acquired. Since the application is discriminated, the processing speed can be maximized.
 なお、血糖計10、10A~10Cは、上述した第1~第4実施例の判別タイミングを全て実施可能とし、判別タイミングを切り換える機能を有していてもよい。例えば、関数設定部68は、図3中の点線で示すように、制御回路40の処理速度を判別する処理速度判別部82を備えることができる。処理速度判別部82は、血糖値の測定時における制御回路40の処理速度が速いパターンから遅いパターンまで複数段階(4段階)の処理速度を判別し、その判別結果を関数変更判別部80に出力する。例えば、処理速度判別部82は、制御回路40が扱う情報量が少ない場合に処理速度が速く、情報量が多くなった場合に処理速度が遅くなることを推定する。関数変更判別部80は、処理速度判別部82が判別した処理速度の段階に応じて、第1~第4実施例で説明したいずれかのタイミングで適用関数の判別を行うことができる。 The blood glucose meters 10, 10A to 10C may have a function of making it possible to perform all the discrimination timings of the first to fourth embodiments described above and switching the discrimination timing. For example, the function setting unit 68 can include a processing speed determination unit 82 that determines the processing speed of the control circuit 40, as indicated by a dotted line in FIG. The processing speed discriminating unit 82 discriminates processing speeds of a plurality of stages (four stages) from a pattern with a high processing speed of the control circuit 40 at the time of blood glucose level measurement to a slow pattern, and outputs the discrimination result to the function change discriminating unit 80 To do. For example, the processing speed determination unit 82 estimates that the processing speed is fast when the information amount handled by the control circuit 40 is small, and the processing speed is slow when the information amount is large. The function change discriminating unit 80 can discriminate the applied function at any timing described in the first to fourth embodiments in accordance with the processing speed stage determined by the processing speed determining unit 82.
 また、血糖計10、10A~10Cは、検出値dに対して適用関数の切換の判断が難しくなる境界付近の第1範囲(例えば、算出する測定血糖値MBが500~700mg/dLとなる範囲)と、境界付近から大きく離れて適用関数の切換の判断が容易となる第2範囲(例えば、算出する測定血糖値MBが0~500、700~1000mg/dLとなる範囲)とを設定し、検出値dの取得時に第1又は第2範囲のうちいずれに属するかを判別してもよい。そして、検出値dが第1範囲であれば第1実施例の判別タイミングを採ることで、測定血糖値MBに基づき適用関数の判別を行うことで精度を高めることができる。検出値dが第2範囲であれば第4実施例の判別タイミングを採ることで、処理速度を落とすことなく測定血糖値MBを得ることができる。 In addition, the blood glucose meters 10, 10A to 10C have a first range in the vicinity of the boundary where it is difficult to determine switching of the application function with respect to the detection value d (for example, a range where the calculated blood glucose level MB to be calculated is 500 to 700 mg / dL). ) And a second range (for example, a range in which the measured blood glucose level MB to be calculated is 0 to 500, 700 to 1000 mg / dL) that is far away from the vicinity of the boundary and that makes it easy to determine the switching of the applied function, When the detection value d is acquired, it may be determined whether it belongs to the first or second range. If the detection value d is in the first range, the determination of the application function is performed on the basis of the measured blood glucose level MB by using the determination timing of the first embodiment, thereby improving the accuracy. If the detection value d is in the second range, the measured blood glucose level MB can be obtained without reducing the processing speed by taking the discrimination timing of the fourth embodiment.
 なお、本発明は、POCT器、特に血液中のグルコース濃度を測定する機器を中心に記述したが、上記の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々の改変が可能なことは言うまでもない。医療現場で対象となる試料液としては、血液、尿、間質液、唾液等、実質的に生体から得られるサンプルの溶液が適応され、これは原液であっても化学処理等を行った実験生成物であってもよい。測定対象物としては、糖類、乳酸、各種コレステロール、核酸、抗体、抗原、蛋白質、ホルモン、菌、酵素、薬物、構成物質、医療生成物、組織マーカー、代謝物、化学物質等、サンプル中の発現、定量へ適応可能である。成分測定装置10は、測定対象が1種限定のPOCT器に限らず、他項目同時測定を実施可能なPOCT器、及び大型検査装置、或いは、排水や工業用試料等の成分測定を行う成分測定装置に適用することもできる。さらに、簡易型測定装置としては、血液中のグルコース成分の成分量を測定する血糖計(自己血糖測定用のSMBG器)だけでなく、液体中の所定成分の成分量を測定する種々の装置に適用することができる。また、成分測定装置は、成分量の検出時に光学的手段による検出に限定されず、例えば、電気的手段又は磁気的手段、抗体反応による手段によって成分量の検出値を得てもよい。その一例として、酵素電極法を適用した血糖値測定装置、尿の成分(ケトン体等)の測定する成分測定装置があげられる。また、計算誤差要因に対する補正に関しては、ヘマトクリット値に対する補正計算過程をあげたが、他の要因であってもよく、複数項目同時測定器の場合には同時測定を行った他項目であってもよい。 Although the present invention has been described with a focus on a POCT device, particularly a device for measuring glucose concentration in blood, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention. Needless to say, modification is possible. Sample liquids that can be obtained from the living body, such as blood, urine, interstitial liquid, saliva, etc. are applied as sample liquids that are targeted at medical sites. It may be a product. Measurement targets include saccharides, lactic acid, various cholesterols, nucleic acids, antibodies, antigens, proteins, hormones, bacteria, enzymes, drugs, constituents, medical products, tissue markers, metabolites, chemical substances, etc. Applicable to quantitative determination. The component measuring device 10 is not limited to a single type of POCT device, but a POCT device capable of performing simultaneous measurement of other items and a large inspection device, or a component measuring device for measuring components such as waste water and industrial samples. It can also be applied to a device. Furthermore, as a simple measuring device, not only a blood glucose meter (SMBG device for self blood glucose measurement) that measures the amount of a glucose component in blood but also various devices that measure the amount of a predetermined component in a liquid. Can be applied. In addition, the component measuring apparatus is not limited to detection by optical means when detecting the component amount, and for example, the detected value of the component amount may be obtained by electrical means, magnetic means, or antibody reaction means. Examples thereof include a blood glucose level measuring apparatus to which an enzyme electrode method is applied, and a component measuring apparatus for measuring urine components (such as ketone bodies). In addition, regarding the correction for the calculation error factor, the correction calculation process for the hematocrit value has been described, but other factors may be used, and in the case of a multi-item simultaneous measuring device, other items that have been measured simultaneously may be used. Good.

Claims (10)

  1.  液体中の成分の成分量を検出する検出部(34)と、
     前記検出部(34)が検出した前記成分量に関わる検出値に基づき、前記成分の測定情報を算出する制御部(40)と、を備える成分測定装置(10、10A~10C)であって、
     前記制御部(40)は、所定の関数を適用して前記検出値から前記測定情報を算出する測定情報算出部(66)と、
     前記検出値又は前記検出値から算出する算出値に基づき、予め保有している複数の関数の中から前記測定情報算出部(66)が使用する前記所定の関数を設定する関数設定部(68)と、を備える
     ことを特徴とする成分測定装置(10、10A~10C)。
    A detection unit (34) for detecting the component amount of the component in the liquid;
    A component measurement device (10, 10A to 10C) comprising a control unit (40) for calculating measurement information of the component based on a detection value related to the component amount detected by the detection unit (34),
    The control unit (40) applies a predetermined function to calculate the measurement information from the detection value, and a measurement information calculation unit (66).
    A function setting unit (68) for setting the predetermined function used by the measurement information calculation unit (66) from a plurality of functions held in advance based on the detection value or a calculation value calculated from the detection value. And a component measuring device (10, 10A to 10C).
  2.  請求項1記載の成分測定装置(10、10A)において、
     前記制御部(40)は、前記所定の関数である第1関数により前記検出値から前記算出値である第1値を算出し、前記第1値と所定の閾値とを比較して、前記第1値を前記測定情報とするか、前記所定の関数であり前記第1関数と異なる第2関数により前記検出値から第2値を算出して前記測定情報とするかを判別する
     ことを特徴とする成分測定装置(10、10A)。
    In the component measuring apparatus (10, 10A) according to claim 1,
    The control unit (40) calculates a first value that is the calculated value from the detected value by a first function that is the predetermined function, compares the first value with a predetermined threshold value, It is determined whether 1 value is used as the measurement information or whether the second value is calculated from the detected value by the second function which is the predetermined function and is different from the first function, and used as the measurement information. Component measuring device (10, 10A).
  3.  請求項2記載の成分測定装置(10)において、
     前記検出部(34)は、前記液体中の成分である血液中のグルコース成分を検出し、前記検出値を出力するものであり、
     前記関数設定部(68)は、前記第1値としてヘマトクリット補正した測定血糖値を用いて、前記第1関数又は前記第2関数の適用を判別する
     ことを特徴とする成分測定装置(10)。
    In the component measuring device (10) according to claim 2,
    The detection unit (34) detects a glucose component in blood, which is a component in the liquid, and outputs the detection value.
    The function setting unit (68) determines application of the first function or the second function using the measured blood sugar level corrected by hematocrit as the first value.
  4.  請求項2記載の成分測定装置(10A)において、
     前記検出部(34)は、前記液体中の成分である血液中のグルコース成分を検出し、前記検出値を出力するものであり、
     前記関数設定部(68)は、前記第1値として吸光度から算出しヘマトクリット補正する前の仮血糖値を用いて、前記第1関数又は前記第2関数の適用を判別する
     ことを特徴とする成分測定装置(10A)。
    In the component measuring device (10A) according to claim 2,
    The detection unit (34) detects a glucose component in blood, which is a component in the liquid, and outputs the detection value.
    The function setting unit (68) determines application of the first function or the second function using the temporary blood glucose level calculated from the absorbance as the first value and before hematocrit correction. Measuring device (10A).
  5.  請求項1記載の成分測定装置(10B、10C)において、
     前記制御部(40)は、前記所定の関数以外の関数により前記検出値から算出される前記算出値である算出過程値又は前記検出値と、所定の閾値とを比較して、前記所定の関数である第1関数、又は前記所定の関数であり前記第1関数と異なる第2関数の適用を判別する
     ことを特徴とする成分測定装置(10B、10C)。
    In the component measuring apparatus (10B, 10C) according to claim 1,
    The control unit (40) compares the calculation process value or the detection value, which is the calculation value calculated from the detection value by a function other than the predetermined function, with a predetermined threshold value, and compares the predetermined function. The component measurement device (10B, 10C) is characterized in that the application of the first function that is or the second function that is the predetermined function and is different from the first function is determined.
  6.  請求項5記載の成分測定装置(10B)において、
     前記検出部(34)は、前記液体中の成分である血液中のグルコース成分を検出し、前記検出値を出力するものであり、
     前記関数設定部(68)は、前記算出過程値として前記検出値から算出した吸光度を用いて、前記第1関数又は前記第2関数の適用を判別する
     ことを特徴とする成分測定装置(10B)。
    In the component measuring device (10B) according to claim 5,
    The detection unit (34) detects a glucose component in blood, which is a component in the liquid, and outputs the detection value.
    The function setting unit (68) uses the absorbance calculated from the detection value as the calculation process value to determine application of the first function or the second function. Component measurement apparatus (10B) .
  7.  請求項5記載の成分測定装置(10C)において、
     前記検出部(34)は、前記液体中の成分である血液中のグルコース成分を検出し、前記検出値を出力するものであり、
     前記関数設定部(68)は、前記検出部(34)から取得した前記検出値を用いて、前記第1関数又は前記第2関数の適用を判別する
     ことを特徴とする成分測定装置(10C)。
    In the component measuring device (10C) according to claim 5,
    The detection unit (34) detects a glucose component in blood, which is a component in the liquid, and outputs the detection value.
    The function setting unit (68) determines application of the first function or the second function using the detection value acquired from the detection unit (34). Component measurement apparatus (10C) .
  8.  請求項1~7のいずれか1項に記載の成分測定装置(10、10A~10C)において、
     前記関数設定部(68)は、前記測定情報を算出する際の前記測定情報算出部(66)の処理速度に応じて、前記所定の関数の適用を判別するタイミングを変更する
     ことを特徴とする成分測定装置(10、10A~10C)。
    In the component measuring apparatus (10, 10A to 10C) according to any one of claims 1 to 7,
    The function setting unit (68) changes timing for determining application of the predetermined function according to a processing speed of the measurement information calculation unit (66) when calculating the measurement information. Component measuring device (10, 10A to 10C).
  9.  液体中の成分の成分量を測定する成分測定方法であって、
     検出部(34)により前記成分量の検出を行うステップと、
     測定情報算出部(66)において、所定の関数を適用して前記検出部(34)が検出した前記成分量に関わる検出値に基づき測定情報を算出するステップと、
     関数設定部(68)において、前記検出値又は前記検出値から算出する算出値に基づき、予め保有している複数の関数の中から前記測定情報算出部(66)が使用する前記所定の関数を設定するステップと、を含む
     ことを特徴とする成分測定方法。
    A component measurement method for measuring a component amount of a component in a liquid,
    Detecting the amount of the component by a detection unit (34);
    In the measurement information calculation unit (66), a step of calculating measurement information based on a detection value related to the component amount detected by the detection unit (34) by applying a predetermined function;
    In the function setting unit (68), based on the detected value or a calculated value calculated from the detected value, the predetermined function used by the measurement information calculating unit (66) from among a plurality of functions held in advance. And a step of setting the component measurement method.
  10.  液体中の成分の成分量を測定する成分測定装置(10、10A~10C)に、
     検出部(34)により前記成分量の検出を行うステップと、
     測定情報算出部(66)において、所定の関数を適用して前記検出部(34)が検出した前記成分量に関わる検出値に基づき測定情報を算出するステップと、
     関数設定部(68)において、前記検出値又は前記検出値から算出する算出値に基づき、予め保有している複数の関数の中から前記測定情報算出部(66)が使用する前記所定の関数を設定するステップと、を実行させる
     ことを特徴とする成分測定プログラム。
    In the component measuring device (10, 10A to 10C) for measuring the component amount of the component in the liquid,
    Detecting the amount of the component by a detection unit (34);
    In the measurement information calculation unit (66), a step of calculating measurement information based on a detection value related to the component amount detected by the detection unit (34) by applying a predetermined function;
    In the function setting unit (68), based on the detected value or a calculated value calculated from the detected value, the predetermined function used by the measurement information calculating unit (66) from among a plurality of functions held in advance. And a step of setting the component measurement program.
PCT/JP2016/087145 2016-01-12 2016-12-14 Component measuring device, component measuring method and component measuring program WO2017122485A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017561552A JP6811729B2 (en) 2016-01-12 2016-12-14 Component measuring device, component measuring method and component measuring program
CN201680078662.8A CN108474794B (en) 2016-01-12 2016-12-14 Component measuring device, component measuring method, and computer-readable recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016003799 2016-01-12
JP2016-003799 2016-01-12

Publications (1)

Publication Number Publication Date
WO2017122485A1 true WO2017122485A1 (en) 2017-07-20

Family

ID=59311094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087145 WO2017122485A1 (en) 2016-01-12 2016-12-14 Component measuring device, component measuring method and component measuring program

Country Status (3)

Country Link
JP (1) JP6811729B2 (en)
CN (1) CN108474794B (en)
WO (1) WO2017122485A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020183916A1 (en) * 2019-03-11 2020-09-17 テルモ株式会社 Blood-sugar level calculation program, blood-sugar level calculation method, and blood-sugar level measurement device
US20210341343A1 (en) * 2020-04-30 2021-11-04 The Swatch Group Research And Development Ltd Method for calibrating at least one electronic temperature sensor
CN114137218A (en) * 2020-09-04 2022-03-04 百略医学科技股份有限公司 Blood glucose detection device capable of correcting measured value according to blood volume ratio

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194313A (en) * 1992-12-24 1994-07-15 Jeol Ltd Reactive measurement method
JPH09292387A (en) * 1996-04-25 1997-11-11 Kdk Corp Method and apparatus for measuring amount of component to be measured
JP2009168815A (en) * 2008-01-17 2009-07-30 Lifescan Inc System and method for measuring analyte in sample
WO2014049704A1 (en) * 2012-09-26 2014-04-03 テルモ株式会社 Measuring tip
JP2014108365A (en) * 2014-02-05 2014-06-12 Nec System Technologies Ltd Blood sugar level prediction device, measuring device, blood sugar level prediction method, and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194313A (en) * 1992-12-24 1994-07-15 Jeol Ltd Reactive measurement method
JPH09292387A (en) * 1996-04-25 1997-11-11 Kdk Corp Method and apparatus for measuring amount of component to be measured
JP2009168815A (en) * 2008-01-17 2009-07-30 Lifescan Inc System and method for measuring analyte in sample
WO2014049704A1 (en) * 2012-09-26 2014-04-03 テルモ株式会社 Measuring tip
JP2014108365A (en) * 2014-02-05 2014-06-12 Nec System Technologies Ltd Blood sugar level prediction device, measuring device, blood sugar level prediction method, and program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020183916A1 (en) * 2019-03-11 2020-09-17 テルモ株式会社 Blood-sugar level calculation program, blood-sugar level calculation method, and blood-sugar level measurement device
JPWO2020183916A1 (en) * 2019-03-11 2020-09-17
JP7372310B2 (en) 2019-03-11 2023-10-31 テルモ株式会社 Blood sugar level calculation program, blood sugar level calculation method, and blood sugar level measuring device
US20210341343A1 (en) * 2020-04-30 2021-11-04 The Swatch Group Research And Development Ltd Method for calibrating at least one electronic temperature sensor
US11686631B2 (en) * 2020-04-30 2023-06-27 The Swatch Group Research And Development Ltd Method for calibrating at least one electronic temperature sensor
CN114137218A (en) * 2020-09-04 2022-03-04 百略医学科技股份有限公司 Blood glucose detection device capable of correcting measured value according to blood volume ratio
CN114137218B (en) * 2020-09-04 2024-04-12 百略医学科技股份有限公司 Blood sugar detection device capable of correcting measured value according to blood volume ratio

Also Published As

Publication number Publication date
JP6811729B2 (en) 2021-01-13
CN108474794A (en) 2018-08-31
CN108474794B (en) 2022-02-11
JPWO2017122485A1 (en) 2018-11-08

Similar Documents

Publication Publication Date Title
JP3337670B2 (en) Specimen for analyzing body fluid samples and reading with a detector
EP0636880B1 (en) Quantitative analyzing apparatus
CA2506942C (en) Body fluid testing device
US7731900B2 (en) Body fluid testing device
US20120165626A1 (en) Devices, methods, and kits for determining analyte concentrations
US20060281187A1 (en) Analyte detection devices and methods with hematocrit/volume correction and feedback control
FR2786870A1 (en) Optical analysis of biological samples using test strips with built in calibration, specific to the strip used
TW200406580A (en) Apparatuses and methods for analyte concentration determination
US8068217B2 (en) Apparatus for testing component concentration of a test sample
WO2017122485A1 (en) Component measuring device, component measuring method and component measuring program
JP6691780B2 (en) Component measuring device, measuring mode setting method and program for this device
JP5426912B2 (en) Blood sugar level measuring device, blood sugar level measuring method and program
JP6130356B2 (en) Component measuring device
JP2018169306A (en) Medical measurement device and medical information processing system
WO2013002377A1 (en) Blood-sugar measurement device and blood-sugar measurement method
JP2018132410A (en) Component measuring device and method for examining component measuring device
JP2012211850A (en) Blood-sugar level measuring device and function selection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16885087

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017561552

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16885087

Country of ref document: EP

Kind code of ref document: A1