JPH09292333A - Surface plasmon sensor - Google Patents

Surface plasmon sensor

Info

Publication number
JPH09292333A
JPH09292333A JP10936596A JP10936596A JPH09292333A JP H09292333 A JPH09292333 A JP H09292333A JP 10936596 A JP10936596 A JP 10936596A JP 10936596 A JP10936596 A JP 10936596A JP H09292333 A JPH09292333 A JP H09292333A
Authority
JP
Japan
Prior art keywords
light
prism
light beam
surface plasmon
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10936596A
Other languages
Japanese (ja)
Other versions
JP3926409B2 (en
Inventor
Masayuki Naya
昌之 納谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP10936596A priority Critical patent/JP3926409B2/en
Priority to US08/847,359 priority patent/US5917607A/en
Publication of JPH09292333A publication Critical patent/JPH09292333A/en
Application granted granted Critical
Publication of JP3926409B2 publication Critical patent/JP3926409B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the surface plasmon sensor, which can perform the analysis of many samples all together at one time, can secure the amount of beam light sufficiently for each channel and can obtain high analysis accuracy. SOLUTION: This surface plasmon sensor is provided with and constituted of a prism 10, a metal film 12, which is formed on one surface of the prism and in contact with a sample 11, a light source, which generates a single light beam 13, an optical system 15, which passes the light beam 13 through the prism 10 and applies the beam into the interface between the prism 10 and the metal film 12 so as to obtain various values of incident angles, and photodetector means 16, which can detects the intensity of the light beam 13 totally reflected from the interface 10a at every incident angle of various values. In this case, a semiconductor laser array 14, which has a plurality of light emitting parts 14a and whose each light emitting part 14a emits light beam 13, is used as the light source.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、表面プラズモンの
発生を利用して試料中の物質を定量分析する表面プラズ
モンセンサーに関し、特に詳細には、一度に複数試料に
ついての分析を行なえるようにした表面プラズモンセン
サーに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface plasmon sensor for quantitatively analyzing a substance in a sample by utilizing the generation of surface plasmon, and more specifically, it enables to analyze a plurality of samples at one time. The present invention relates to a surface plasmon sensor.

【0002】[0002]

【従来の技術】金属中においては、自由電子が集団的に
振動して、プラズマ波と呼ばれる粗密波が生じる。そし
て、金属表面に生じるこの粗密波を量子化したものは、
表面プラズモンと呼ばれている。
2. Description of the Related Art In a metal, free electrons oscillate collectively to generate compression waves called plasma waves. And, the quantized compression wave generated on the metal surface is
It is called surface plasmon.

【0003】従来より、この表面プラズモンが光波によ
って励起される現象を利用して、試料中の物質を定量分
析する表面プラズモンセンサーが種々提案されている。
そして、それらの中で特に良く知られているものとし
て、 Kretschmann配置と称される系を用いるものが挙げ
られる(例えば特開平6−167443号参照)。
Conventionally, various surface plasmon sensors have been proposed for quantitatively analyzing a substance in a sample by utilizing the phenomenon that the surface plasmon is excited by a light wave.
Among them, one that is particularly well known is one that uses a system called Kretschmann arrangement (see, for example, JP-A-6-167443).

【0004】上記の系を用いる表面プラズモンセンサー
は基本的に、プリズムと、このプリズムの一面に形成さ
れて試料に接触させられる金属膜と、光ビームを発生さ
せる光源と、上記光ビームをプリズムに通し、該プリズ
ムと金属膜との界面に対して種々の入射角が得られるよ
うに入射させる光学系と、上記の界面で全反射した光ビ
ームの強度を種々の入射角毎に検出可能な光検出手段と
を備えてなるものである。
A surface plasmon sensor using the above system basically includes a prism, a metal film formed on one surface of the prism and brought into contact with a sample, a light source for generating a light beam, and the light beam to the prism. An optical system which passes through the interface between the prism and the metal film so as to obtain various angles of incidence, and a light which can detect the intensity of the light beam totally reflected at the interface at various angles of incidence. And a detecting means.

【0005】なお上述のように種々の入射角を得るため
には、比較的細い光ビームを偏向させて上記界面に入射
させてもよいし、あるいは光ビームに種々の角度で入射
する成分が含まれるように、比較的太い光ビームを上記
界面で集束するように入射させてもよい。前者の場合
は、光ビームの偏向にともなって反射角が変化する光ビ
ームを、光ビームの偏向に同期移動する小さな光検出器
によって検出したり、反射角の変化方向に沿って延びる
エリアセンサによって検出することができる。一方後者
の場合は、種々の反射角で反射した各光ビームを全て受
光できる方向に延びるエリアセンサによって検出するこ
とができる。
As described above, in order to obtain various incident angles, a relatively thin light beam may be deflected to be incident on the interface, or a component which is incident on the light beam at various angles may be included. As described above, a relatively thick light beam may be incident so as to be focused at the interface. In the former case, a light beam whose reflection angle changes with the deflection of the light beam can be detected by a small photodetector that moves synchronously with the deflection of the light beam, or by an area sensor extending along the direction of change of the reflection angle. Can be detected. On the other hand, in the latter case, each light beam reflected at various reflection angles can be detected by an area sensor extending in a direction in which all the light beams can be received.

【0006】上記構成の表面プラズモンセンサーにおい
て、光ビームを金属膜に対して全反射角以上の特定入射
角θSPで入射させると、該金属膜に接している試料中に
電界分布をもつエバネッセント波が生じ、このエバネッ
セント波によって金属膜と試料との界面に表面プラズモ
ンが励起される。エバネッセント光の波数ベクトルが表
面プラズモンの波数と等しくて波数整合が成立している
とき、両者は共鳴状態となり、光のエネルギーが表面プ
ラズモンに移行するので、プリズムと金属膜との界面で
全反射した光の強度が鋭く低下する。
In the surface plasmon sensor having the above structure, when a light beam is incident on the metal film at a specific incident angle θ SP which is equal to or greater than the total reflection angle, an evanescent wave having an electric field distribution in the sample in contact with the metal film. Is generated, and surface plasmons are excited at the interface between the metal film and the sample by this evanescent wave. When the wave number vector of the evanescent light is equal to the wave number of the surface plasmon and the wave number matching is established, the two become in a resonance state and the energy of the light shifts to the surface plasmon, so the light is totally reflected at the interface between the prism and the metal film. The intensity of light drops sharply.

【0007】この現象が生じる入射角θSPより表面プラ
ズモンの波数が分かると、試料の誘電率が求められる。
すなわち表面プラズモンの波数をKSP、表面プラズモン
の角周波数をω、cを真空中の光速、εm とεs をそれ
ぞれ金属、試料の誘電率とすると、以下の関係がある。
When the wave number of the surface plasmon is known from the incident angle θ SP at which this phenomenon occurs, the dielectric constant of the sample can be obtained.
That is, assuming that the wave number of the surface plasmon is K SP , the angular frequency of the surface plasmon is ω, c is the speed of light in a vacuum, ε m and ε s are each a metal, and the permittivity of the sample has the following relationship.

【0008】[0008]

【数1】 [Equation 1]

【0009】試料の誘電率εs が分かれば、所定の較正
曲線等に基づいて試料中の特定物質の濃度が分かるの
で、結局、上記反射光強度が低下する入射角θSPを知る
ことにより、試料中の特定物質を定量分析することがで
きる。
If the dielectric constant ε s of the sample is known, the concentration of the specific substance in the sample can be determined based on a predetermined calibration curve or the like. Therefore, by knowing the incident angle θ SP at which the reflected light intensity decreases, The specific substance in the sample can be quantitatively analyzed.

【0010】[0010]

【発明が解決しようとする課題】ところで、以上説明し
たタイプの表面プラズモンセンサーを使用する場合、作
業能率を高めるために、複数の試料についての分析を一
度にまとめて行ないたいという要求がある。そのため
に、1つの光源から発生させた光ビームを複数本に分割
し、それら複数本の光ビームをプリズムの金属膜形成面
に同時入射させてマルチチャンネル化することが考えら
れる。
By the way, in the case of using the surface plasmon sensor of the type described above, there is a demand to analyze a plurality of samples at once in order to improve work efficiency. Therefore, it is conceivable that the light beam generated from one light source is divided into a plurality of light beams, and the plurality of light beams are simultaneously incident on the metal film formation surface of the prism to form a multi-channel structure.

【0011】しかし、そのようにした場合は各チャンネ
ルの光量を十分に確保できず、光検出信号のS/Nが低
下し、分析精度が悪くなってしまうため、チャンネル数
を余り多く設定できない場合がある。
However, in such a case, the light quantity of each channel cannot be sufficiently secured, the S / N of the photodetection signal is lowered, and the analysis accuracy is deteriorated. There is.

【0012】本発明は上記の事情に鑑みてなされたもの
であり、多数の試料についての分析を一度にまとめて行
なうことができ、そして各チャンネルに対するビーム光
量を十分に確保して、高い分析精度を得ることができる
表面プラズモンセンサーを提供することを目的とするも
のである。
The present invention has been made in view of the above circumstances, and it is possible to collectively analyze a large number of samples at one time, and to secure a sufficient amount of beam light for each channel to achieve high analysis accuracy. An object of the present invention is to provide a surface plasmon sensor that can obtain

【0013】[0013]

【課題を解決するための手段】本発明による表面プラズ
モンセンサーは、前述したようなプリズムと、金属膜
と、光ビームを発生させる光源と、光学系と、光検出手
段とを備えてなる表面プラズモンセンサーにおいて、光
源として複数の発光部を備えた半導体レーザーアレイを
用い、そこから発せられた複数本の光ビームを利用して
複数チャンネルについての分析を同時に、あるいはほぼ
同時に行なえるようにしたものである。
A surface plasmon sensor according to the present invention comprises a prism as described above, a metal film, a light source for generating a light beam, an optical system, and a light detecting means. In the sensor, a semiconductor laser array having a plurality of light emitting portions is used as a light source, and a plurality of light beams emitted from the semiconductor laser array can be used to simultaneously or almost simultaneously analyze multiple channels. is there.

【0014】すなわち本発明の表面プラズモンセンサー
は、より具体的には、請求項1に記載の通り、プリズム
と、このプリズムの一面に形成されて、試料に接触させ
られる金属膜と、複数の発光部を有し、各発光部からそ
れぞれ光ビームを発する半導体レーザーアレイと、この
半導体レーザーアレイから発せられた複数本の光ビーム
を上記プリズムに通し、該プリズムと金属膜との界面に
対して、各光ビームの中で種々の入射角が得られるよう
に入射させる光学系と、上記界面で全反射した各光ビー
ムの強度を、上記種々の入射角毎に検出可能な光検出手
段とを備えてなるものである。
More specifically, the surface plasmon sensor of the present invention is, more specifically, as described in claim 1, a prism, a metal film formed on one surface of the prism and brought into contact with a sample, and a plurality of light emission. And a semiconductor laser array that emits a light beam from each light emitting portion, and a plurality of light beams emitted from this semiconductor laser array through the prism, with respect to the interface between the prism and the metal film, An optical system for making each light beam incident so that various incident angles are obtained, and a light detection means capable of detecting the intensity of each light beam totally reflected at the interface for each of the various incident angles are provided. It will be.

【0015】なお本発明の一つの実施の形態において
は、請求項2に記載のように、半導体レーザーアレイ
が、その複数の発光部から同時に光ビームを発するよう
に駆動され、上記光学系が、プリズムと金属膜との界面
で全反射した複数の光ビームを互いに別の位置に集光す
るように構成され、光検出手段として、集光された複数
の光ビームをそれぞれ別個に受光する、各光ビーム毎に
専用の受光部を有するものが用いられる。
In one embodiment of the present invention, as described in claim 2, the semiconductor laser array is driven so that light beams are simultaneously emitted from the plurality of light emitting portions, and the optical system is: The plurality of light beams totally reflected at the interface between the prism and the metal film are configured to be focused on different positions from each other, and the plurality of focused light beams are individually received as light detecting means. A device having a dedicated light receiving unit for each light beam is used.

【0016】また本発明の別の実施の形態においては、
請求項3に記載のように、半導体レーザーアレイが、そ
の複数の発光部から時間間隔を置いて順次光ビームを発
するように駆動され、上記光学系が、プリズムと金属膜
との界面で全反射した複数の光ビームを共通の位置に集
光するように構成され、光検出手段として、集光された
複数の光ビームに対して共通の受光部を有するものが用
いられる。
In another embodiment of the present invention,
As described in claim 3, the semiconductor laser array is driven so as to emit light beams sequentially from the plurality of light emitting portions at time intervals, and the optical system is totally reflected at the interface between the prism and the metal film. A plurality of the above-mentioned light beams are configured to be condensed at a common position, and as the light detecting means, one having a common light receiving portion for the plurality of condensed light beams is used.

【0017】[0017]

【発明の効果】本発明の表面プラズモンセンサーにおい
ては、半導体レーザーアレイから発せられた複数本の光
ビームを利用できるので、多数の試料についての分析を
一度にまとめて同時に、あるいはほぼ同時に行なうこと
ができる。
In the surface plasmon sensor of the present invention, since a plurality of light beams emitted from the semiconductor laser array can be used, it is possible to analyze a large number of samples all at once or almost simultaneously. it can.

【0018】そして各チャンネルにおいて使用される光
ビームは、本来1本の光ビームを複数本に分割したよう
なものではなく、半導体レーザーアレイの複数の発光部
から各々発せられたものであるから、それぞれの光量を
十分に確保して、高い分析精度を得ることができる。
The light beam used in each channel is not originally one light beam divided into a plurality of light beams but is emitted from a plurality of light emitting portions of the semiconductor laser array. It is possible to secure a sufficient amount of each light and obtain high analysis accuracy.

【0019】なお、本発明の表面プラズモンセンサーを
請求項2に記載のように構成した場合は、半導体レーザ
ーアレイから発せられる複数本の光ビームを並列的に使
用して、複数チャンネルについての分析を同時に行なう
ことができる。
When the surface plasmon sensor of the present invention is constructed as described in claim 2, a plurality of light beams emitted from the semiconductor laser array are used in parallel to analyze a plurality of channels. Can be done at the same time.

【0020】一方、本発明の表面プラズモンセンサーを
請求項3に記載のように構成した場合は、複数チャンネ
ルについての分析を全く同時に行なうことはできない
が、光検出手段として、複数の光ビームに対して共通の
受光部を有する簡単な構成のものが用いられるから、こ
の表面プラズモンセンサーは比較的低コストで作製可能
となる。
On the other hand, when the surface plasmon sensor of the present invention is constructed as described in claim 3, it is impossible to analyze a plurality of channels at the same time, but as a light detecting means, a plurality of light beams are detected. Since a simple structure having a common light receiving section is used, this surface plasmon sensor can be manufactured at a relatively low cost.

【0021】[0021]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を詳細に説明する。図1および図2はそれぞ
れ、本発明の1つの実施形態である表面プラズモンセン
サーの平面形状、側面形状を示すものである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 and FIG. 2 respectively show a plane shape and a side surface shape of a surface plasmon sensor which is one embodiment of the present invention.

【0022】図示されるようにこの表面プラズモンセン
サーは、半円柱形のプリズム10と、このプリズム10の一
面(図2中の下面)に形成されて、試料11に接触させら
れる例えば金、銀等からなる金属膜12と、一例として5
個の発光部(ストライプ)14aを有してそれらから各々
光ビーム13を発生させる半導体レーザーアレイ14と、上
記光ビーム13をプリズム10に通し、該プリズム10と金属
膜12との界面10aに対して、1本の光ビーム13毎に種々
の入射角が得られるように入射させる光学系15と、上記
界面10aで全反射した光ビーム13の強度を検出する光検
出手段16とを備えている。
As shown in the figure, this surface plasmon sensor is formed on a semi-cylindrical prism 10 and one surface of the prism 10 (the lower surface in FIG. 2) and brought into contact with a sample 11, for example, gold, silver, or the like. A metal film 12 made of, for example, 5
A semiconductor laser array 14 having a plurality of light emitting portions (stripe) 14a and each generating a light beam 13 from the light emitting portion 14a, and the light beam 13 is passed through a prism 10 to an interface 10a between the prism 10 and the metal film 12. In addition, an optical system 15 for making each light beam 13 incident so that various incident angles can be obtained, and a light detecting means 16 for detecting the intensity of the light beam 13 totally reflected at the interface 10a are provided. .

【0023】光学系15は、半導体レーザーアレイ14の各
発光部14aから発散光状態で出射した光ビーム13をプリ
ズム10の長軸に垂直な面内のみで集光する入射側シリン
ドリカルレンズ22、24と、この光ビーム13を平面視状態
で平行光化する入射側シリンドリカルレンズ23と、全反
射して上記面内で発散光状態となった光ビーム13を平行
光化する出射側シリンドリカルレンズ25と、この光ビー
ム13を平面視状態で集光する出射側シリンドリカルレン
ズ26とから構成されている。なおシリンドリカルレンズ
26による5本の光ビーム13の集光位置は、互いに異なる
ものとされている。
The optical system 15 includes incident-side cylindrical lenses 22 and 24 for condensing the light beam 13 emitted from each light-emitting portion 14a of the semiconductor laser array 14 in a divergent state only within a plane perpendicular to the major axis of the prism 10. And an incident side cylindrical lens 23 for collimating the light beam 13 in a plan view, and an emitting side cylindrical lens 25 for collimating the light beam 13 which is totally reflected and is in a divergent light state in the plane. An output side cylindrical lens 26 that condenses the light beam 13 in a plan view is formed. Cylindrical lens
The focus positions of the five light beams 13 by 26 are different from each other.

【0024】各光ビーム13は、入射側シリンドリカルレ
ンズ22および24の作用により上述のように集束するの
で、図2に最小入射角θ1 と最大入射角θ2 とを例示す
るように、界面10aに対して種々の入射角θで入射する
成分を含むことになる。なおこの入射角θは、全反射角
以上の角度とされる。そこで、各光ビーム13は界面10a
で全反射し、この反射した光ビーム13には、種々の反射
角で反射する成分が含まれることになる。
Since each light beam 13 is focused as described above by the action of the incident side cylindrical lenses 22 and 24, the interface 10a is illustrated as an example of the minimum incident angle θ 1 and the maximum incident angle θ 2 in FIG. In contrast, a component incident at various incident angles θ is included. The incident angle θ is set to an angle equal to or larger than the total reflection angle. Therefore, each light beam 13 is applied to the interface 10a.
Therefore, the reflected light beam 13 contains components that are reflected at various reflection angles.

【0025】一方光検出手段16としては、種々の反射角
で反射した全部の光ビーム13を受光できる方向、つまり
図2の矢印A方向に多数の受光素子が並設されるととも
に、このような受光素子列が図1の矢印B方向に5本並
設されてなる、例えばCCDエリアセンサ等が用いられ
ている。この光検出手段16は、上記5本の受光素子列が
それぞれ、シリンドリカルレンズ26による5本の光ビー
ム13の集光位置と整合するように配置されている。
On the other hand, as the light detecting means 16, a large number of light receiving elements are arranged in parallel in a direction capable of receiving all the light beams 13 reflected at various reflection angles, that is, in the direction of arrow A in FIG. For example, a CCD area sensor or the like in which five light receiving element rows are arranged in parallel in the direction of arrow B in FIG. 1 is used. The light detecting means 16 is arranged so that the above five light receiving element arrays are aligned with the condensing positions of the five light beams 13 by the cylindrical lens 26, respectively.

【0026】そこで、該光検出手段16の各受光素子列毎
に出力される光検出信号S1 、S2、S3 、S4 、S5
は、5本の光ビーム13の強度を個別に示すものとなる。
また1組の光検出信号Sm (m=1、2、3、4、5)
における各受光素子毎の光検出信号は、上記種々の反射
角毎に(つまり、種々の入射角毎に)光ビーム13の強度
を示すものとなる。
Therefore, the photodetection signals S 1 , S 2 , S 3 , S 4 , S 5 output for each light receiving element array of the photodetection means 16 are provided.
Respectively indicate the intensities of the five light beams 13.
Also, a set of photodetection signals Sm (m = 1, 2, 3, 4, 5)
The light detection signal for each of the light receiving elements in (1) indicates the intensity of the light beam 13 for each of the various reflection angles (that is, for each of the various incident angles).

【0027】以下、上記構成の表面プラズモンセンサー
による試料分析について説明する。金属膜12は複数(一
例として5個)設けられており、各金属膜12に対してそ
れぞれ別個の試料11を接触させておくことができる。複
数の金属膜12は、全て同じものが用いられても、あるい
は互いに別のものが用いられてもよい。
The sample analysis by the surface plasmon sensor having the above structure will be described below. A plurality of metal films 12 (five as an example) are provided, and separate samples 11 can be kept in contact with each metal film 12. The plurality of metal films 12 may be the same or different from each other.

【0028】試料分析に際しては、入射側シリンドリカ
ルレンズ22および24の作用で前述のように集束する5本
の光ビーム13が、それぞれ金属膜12に向けて同時に照射
される。この金属膜12とプリズム10との界面10aで全反
射した光ビーム13は、光検出手段16によって検出され
る。
In the sample analysis, the five light beams 13 focused as described above by the action of the incident side cylindrical lenses 22 and 24 are simultaneously irradiated to the metal film 12, respectively. The light beam 13 totally reflected at the interface 10 a between the metal film 12 and the prism 10 is detected by the light detecting means 16.

【0029】前述の通り、光検出手段16の各受光素子列
毎に出力される光検出信号Sm は、全反射した光ビーム
13の強度Iを入射角θ毎に示すものとなる。そしてこの
反射光強度Iと入射角θとの関係は、概ね図3に示すよ
うなものとなる。
As described above, the photodetection signal Sm output from each photodetector array of the photodetector 16 is the total reflection of the light beam.
The intensity I of 13 is shown for each incident angle θ. The relationship between the reflected light intensity I and the incident angle θ is as shown in FIG.

【0030】ここで、ある特定の入射角θSPで入射した
光は、金属膜12と試料11との界面に表面プラズモンを励
起させるので、この光については反射光強度Iが鋭く低
下する。光検出手段16の各受光素子毎に出力される光検
出信号Sを用いれば上記入射角θSPが分かり、このθSP
の値に基づいて試料11中の特定物質を定量分析すること
ができる。その理由は、先に詳しく説明した通りであ
る。
Light incident at a specific incident angle θ SP excites surface plasmons at the interface between the metal film 12 and the sample 11, so that the reflected light intensity I of this light sharply decreases. The incident angle θ SP can be known by using the light detection signal S output from each light receiving element of the light detection means 16, and this θ SP
The specific substance in the sample 11 can be quantitatively analyzed based on the value of. The reason is as described in detail above.

【0031】そして、5つの金属膜12に向けてそれぞれ
光ビーム13が照射されるので、光検出手段16の各受光素
子列毎に光検出信号S1 、S2 、S3 、S4 、S5 が出
力され、各金属膜12に接触している5個の試料11の分析
が同時になされ得る。このようにして、本装置によれ
ば、複数の試料11についての分析を短い時間間隔で一度
にまとめて行なえるようになる。
Since the light beams 13 are emitted toward the five metal films 12, the light detection signals S 1 , S 2 , S 3 , S 4 , S for each light receiving element array of the light detection means 16 are provided. 5 is output, and the analysis of five samples 11 in contact with each metal film 12 can be performed simultaneously. In this way, according to the present apparatus, it becomes possible to collectively analyze a plurality of samples 11 at a short time interval.

【0032】また、各チャンネルにおいて使用される光
ビーム13は、本来1本の光ビームを複数本に分割したよ
うなものではなく、半導体レーザーアレイ14の複数の発
光部14aから各々発せられたものであるから、それぞれ
の光量を十分に確保して、高い分析精度を得ることがで
きる。
The light beam 13 used in each channel is not originally one light beam divided into a plurality of light beams, but is emitted from each of a plurality of light emitting portions 14a of the semiconductor laser array 14. Therefore, it is possible to secure a sufficient amount of each light and obtain high analysis accuracy.

【0033】なお半導体レーザーアレイ14は、その複数
の発光部14aから時間間隔を置いて順次光ビーム13を発
するように駆動されてもよい。その場合は、前記界面10
aで全反射した複数の光ビーム13を互いに共通の位置に
集光するように光学系を形成すれば、光検出手段16とし
て、集光された複数の光ビーム13に対して共通の受光部
を有する比較的簡単な構成のものを用いることができ
る。
The semiconductor laser array 14 may be driven so as to emit the light beams 13 sequentially from the plurality of light emitting portions 14a at time intervals. In that case, the interface 10
If an optical system is formed so as to collect the plurality of light beams 13 totally reflected by a at a common position, the light detecting means 16 serves as a light receiving unit common to the collected light beams 13. It is possible to use a relatively simple structure having

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態である表面プラズモンセン
サーの平面図
FIG. 1 is a plan view of a surface plasmon sensor according to an embodiment of the present invention.

【図2】上記表面プラズモンセンサーの側面図FIG. 2 is a side view of the surface plasmon sensor.

【図3】表面プラズモンセンサーにおける光ビーム入射
角と光検出手段の出力との概略関係を示すグラフ
FIG. 3 is a graph showing a schematic relationship between an incident angle of a light beam and an output of a light detecting means in a surface plasmon sensor.

【符号の説明】[Explanation of symbols]

10 プリズム 10a プリズムと金属膜との界面 11 試料 12 金属膜 13 光ビーム 14 半導体レーザーアレイ 14a 半導体レーザーアレイの発光部 15 光学系 16 光検出手段 22、23、24 入射側シリンドリカルレンズ 25、26 出射側シリンドリカルレンズ 10 Prism 10a Interface between prism and metal film 11 Sample 12 Metal film 13 Light beam 14 Semiconductor laser array 14a Semiconductor laser array light emitting part 15 Optical system 16 Photodetector 22, 23, 24 Incident side Cylindrical lens 25, 26 Exit side Cylindrical lens

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 プリズムと、 このプリズムの一面に形成されて、試料に接触させられ
る金属膜と、 複数の発光部を有し、各発光部からそれぞれ光ビームを
発する半導体レーザーアレイと、 この半導体レーザーアレイから発せられた複数本の光ビ
ームを前記プリズムに通し、該プリズムと金属膜との界
面に対して、各光ビームの中で種々の入射角が得られる
ように入射させる光学系と、 前記界面で全反射した各光ビームの強度を、前記種々の
入射角毎に検出可能な光検出手段とを備えてなる表面プ
ラズモンセンサー。
1. A prism, a metal film formed on one surface of the prism to be brought into contact with a sample, a semiconductor laser array having a plurality of light emitting portions, each emitting a light beam, and the semiconductor laser array. An optical system in which a plurality of light beams emitted from a laser array are passed through the prism and are incident on the interface between the prism and the metal film so that various incident angles can be obtained in each light beam. A surface plasmon sensor comprising: a light detection unit capable of detecting the intensity of each light beam totally reflected at the interface for each of the various incident angles.
【請求項2】 前記半導体レーザーアレイが、その複数
の発光部から同時に光ビームを発するように駆動され、 前記光学系が、前記界面で全反射した複数の光ビームを
互いに別の位置に集光するように構成され、 前記光検出手段として、集光された前記複数の光ビーム
をそれぞれ別個に受光する、各光ビーム毎に専用の受光
部を有するものが用いられていることを特徴とする請求
項1記載の表面プラズモンセンサー。
2. The semiconductor laser array is driven so that light beams are simultaneously emitted from a plurality of light emitting parts thereof, and the optical system condenses the plurality of light beams totally reflected at the interface at mutually different positions. It is characterized in that, as the light detecting means, a means for individually receiving the plurality of condensed light beams and having a dedicated light receiving portion for each light beam is used. The surface plasmon sensor according to claim 1.
【請求項3】 前記半導体レーザーアレイが、その複数
の発光部から時間間隔を置いて順次光ビームを発するよ
うに駆動され、 前記光学系が、前記界面で全反射した複数の光ビームを
共通の位置に集光するように構成され、 前記光検出手段として、集光された前記複数の光ビーム
に対して共通の受光部を有するものが用いられているこ
とを特徴とする請求項1記載の表面プラズモンセンサ
ー。
3. The semiconductor laser array is driven so as to emit light beams sequentially from the plurality of light emitting portions at time intervals, and the optical system uses a plurality of light beams that are totally reflected at the interface. 2. The light detecting means, which is configured to collect light at a position, and which has a common light receiving part for the plurality of collected light beams, is used. Surface plasmon sensor.
JP10936596A 1996-04-25 1996-04-30 Surface plasmon sensor Expired - Fee Related JP3926409B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10936596A JP3926409B2 (en) 1996-04-30 1996-04-30 Surface plasmon sensor
US08/847,359 US5917607A (en) 1996-04-25 1997-04-24 Surface plasmon sensor for multiple channel analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10936596A JP3926409B2 (en) 1996-04-30 1996-04-30 Surface plasmon sensor

Publications (2)

Publication Number Publication Date
JPH09292333A true JPH09292333A (en) 1997-11-11
JP3926409B2 JP3926409B2 (en) 2007-06-06

Family

ID=14508394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10936596A Expired - Fee Related JP3926409B2 (en) 1996-04-25 1996-04-30 Surface plasmon sensor

Country Status (1)

Country Link
JP (1) JP3926409B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999060382A1 (en) * 1998-05-20 1999-11-25 Graffinity Pharmaceutical Design Gmbh Surface plasmon resonance sensor for the simultaneous measurement of a plurality of samples in fluid form
EP1038167A1 (en) * 1997-12-12 2000-09-27 The Perkin-Elmer Corporation Optical resonance analysis system
JP2003254905A (en) * 2001-03-22 2003-09-10 Fuji Photo Film Co Ltd Measuring instrument
WO2004095006A1 (en) * 2003-04-23 2004-11-04 Japan Science And Technology Agency Differential surface plasmon resonance measuring device and its measuring method
JP2006258739A (en) * 2005-03-18 2006-09-28 Fujinon Corp Output device of branched light flux and measuring devices of a plurality of light flux output type
US7218401B2 (en) 2002-12-24 2007-05-15 Aisin Seiki Kabushiki Kaisha Surface plasmon sensor, surface plasmon resonance measurement device, and detection chip
JP2007175614A (en) * 2005-12-27 2007-07-12 Toshiba Corp Liquid droplet jetting inspection equipment and liquid droplet jetting device
JP2008070391A (en) * 2007-12-05 2008-03-27 Fujifilm Corp Measuring apparatus utilizing total reflection light
US7443507B2 (en) 2002-12-25 2008-10-28 Bio-Rad Laboratories Inc. Surface plasmon resonance sensor
JP2009250900A (en) * 2008-04-09 2009-10-29 Sharp Corp Surface plasmon sensor

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6873417B2 (en) 1997-12-12 2005-03-29 Applera Corporation Optical resonance analysis system
EP1038167A1 (en) * 1997-12-12 2000-09-27 The Perkin-Elmer Corporation Optical resonance analysis system
EP1038167A4 (en) * 1997-12-12 2001-08-22 Perkin Elmer Corp Optical resonance analysis system
US7251085B2 (en) 1997-12-12 2007-07-31 Applera Corporation Optical resonance analysis system
US6373577B1 (en) 1998-05-20 2002-04-16 Graffinity Pharmaceutical Design Gmbh Surface plasmon resonance sensor for the simultaneous measurement of a plurality of samples in fluid form
WO1999060382A1 (en) * 1998-05-20 1999-11-25 Graffinity Pharmaceutical Design Gmbh Surface plasmon resonance sensor for the simultaneous measurement of a plurality of samples in fluid form
JP2003254905A (en) * 2001-03-22 2003-09-10 Fuji Photo Film Co Ltd Measuring instrument
US7218401B2 (en) 2002-12-24 2007-05-15 Aisin Seiki Kabushiki Kaisha Surface plasmon sensor, surface plasmon resonance measurement device, and detection chip
US8743369B2 (en) 2002-12-25 2014-06-03 Bio-Rad Laboratories Inc. Surface plasmon resonance sensor
US8363223B2 (en) 2002-12-25 2013-01-29 Bio-Rad Laboratories Inc. Surface plasmon resonance sensor
US7999942B2 (en) 2002-12-25 2011-08-16 Bio-Rad Laboratories Inc. Surface plasmon resonance sensor
US8111400B2 (en) 2002-12-25 2012-02-07 Bio-Rad Laboratories Inc. Surface plasmon resonance sensor
US7443507B2 (en) 2002-12-25 2008-10-28 Bio-Rad Laboratories Inc. Surface plasmon resonance sensor
US7586616B2 (en) 2002-12-25 2009-09-08 Bio-Rad Laboratories Inc. Surface plasmon resonance sensor
WO2004095006A1 (en) * 2003-04-23 2004-11-04 Japan Science And Technology Agency Differential surface plasmon resonance measuring device and its measuring method
JP2006258739A (en) * 2005-03-18 2006-09-28 Fujinon Corp Output device of branched light flux and measuring devices of a plurality of light flux output type
JP2007175614A (en) * 2005-12-27 2007-07-12 Toshiba Corp Liquid droplet jetting inspection equipment and liquid droplet jetting device
JP2008070391A (en) * 2007-12-05 2008-03-27 Fujifilm Corp Measuring apparatus utilizing total reflection light
JP4572244B2 (en) * 2008-04-09 2010-11-04 シャープ株式会社 Surface plasmon sensor
JP2009250900A (en) * 2008-04-09 2009-10-29 Sharp Corp Surface plasmon sensor

Also Published As

Publication number Publication date
JP3926409B2 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
US5917607A (en) Surface plasmon sensor for multiple channel analysis
JP3399836B2 (en) Surface plasmon sensor
JP3562912B2 (en) Surface plasmon sensor
JP4455362B2 (en) Measuring device using total reflection attenuation
US8553220B2 (en) Optical device and analyzing apparatus
US6885454B2 (en) Measuring apparatus
US6801317B2 (en) Plasmon resonance sensor
JP3926409B2 (en) Surface plasmon sensor
JPH09292334A (en) Surface plasmon sensor
US20030090668A1 (en) Measuring method and apparatus using attenuation in total internal reflection
JP2000180353A (en) Surface plasmon sensor
JP4043538B2 (en) Surface plasmon sensor
JPH09292335A (en) Surface plasmon sensor
JPH1019769A (en) Surface plasmon sensor
US7075657B2 (en) Surface plasmon resonance measuring apparatus
JPH1137934A (en) Surface plasmon sensor and dark-line locator
JP4173628B2 (en) Surface plasmon resonance measuring device
KR101222700B1 (en) Surface plasmon resonance system device
JP2005337940A (en) Surface plasmon resonator
JP2005221274A (en) Measuring method and measuring instrument
JP2004085488A (en) Measuring instrument
JPH1078391A (en) Surface plasmon sensor
JP2002195942A (en) Sensor utilizing attenuated total reflection
KR100728888B1 (en) Method for analysis of protein chip by using a line-scanning mode
JPH1078392A (en) Surface plasmon sensor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041004

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041124

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050304

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees