JPH09290018A - Calcium phosphate organism prosthetic material - Google Patents

Calcium phosphate organism prosthetic material

Info

Publication number
JPH09290018A
JPH09290018A JP8108124A JP10812496A JPH09290018A JP H09290018 A JPH09290018 A JP H09290018A JP 8108124 A JP8108124 A JP 8108124A JP 10812496 A JP10812496 A JP 10812496A JP H09290018 A JPH09290018 A JP H09290018A
Authority
JP
Japan
Prior art keywords
phosphate
calcium
grain size
crystal grain
calcium phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8108124A
Other languages
Japanese (ja)
Other versions
JP3464096B2 (en
Inventor
Tsunehiro Ishii
経裕 石井
Masaru Ichinomiya
優 一宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10812496A priority Critical patent/JP3464096B2/en
Publication of JPH09290018A publication Critical patent/JPH09290018A/en
Application granted granted Critical
Publication of JP3464096B2 publication Critical patent/JP3464096B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a calcium phosphate organism prosthetic material having high mechanical strength, ensuring cost effectiveness and safety, and having the capability of maintaining enough bone conduction. SOLUTION: This prosthetic material is formed out of a sintered material having a bare sintered surface substantially made of only calcium tertiary phosphate and hydroxy apatite. Furthermore, the content ratio and mean crystal grain size of the calcium tertiory phosphate for the total content of the calcium tertiary phosphate and hydroxy apatite are between 1wt.% and 10wt.%, and 0.05μm and 5.0μm respectively. In addition, the content ratio and mean crystal grain size of the calcium tertiary phosphate at 50μm depth from the bare sintered surface are both between 50% and 100% relative thereto.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は人工骨などを構成す
るリン酸カルシウム系生体補綴部材に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a calcium phosphate bioprosthesis member that constitutes artificial bone or the like.

【0002】[0002]

【従来の技術】従来より、生体組織や細胞との親和性に
優れた生体材料としてリン酸カルシウム系材料が研究さ
れている。
2. Description of the Related Art Calcium phosphate-based materials have been studied as biomaterials having excellent affinity with living tissues and cells.

【0003】このような技術として、特開昭55−14
0756号には原料のCa/P=1.4〜1.75(モ
ル比)で合成し、ハイドロキシアパタイト(HAP)と
第三リン酸カルシウム(TCP)を主成分とし、リン酸
カルシウム系ガラスを含有した焼結体を得る技術が記載
されている。
As such a technique, Japanese Patent Laid-Open No. 55-14
No. 0756 was synthesized by using Ca / P = 1.4 to 1.75 (molar ratio) as a raw material, and contained hydroxyapatite (HAP) and tricalcium phosphate (TCP) as main components, and contained calcium phosphate-based glass. Techniques for gaining body are described.

【0004】また特開昭61−106166号にはHA
P(5〜95重量%)と他の第三リン酸カルシウムや第
四リン酸カルシウムなどのリン酸カルシウム(95〜5
重量%)からなり、綿状体をした生体補綴材に関する技
術が記載されている。
Also, Japanese Patent Laid-Open No. 61-106166 discloses HA.
P (5 to 95% by weight) and other calcium phosphates such as tricalcium phosphate and tetracalcium phosphate (95 to 5%)
% By weight) and describes a technique for a cotton-like bioprosthetic material.

【0005】さらに、特公昭60−50743号には
(Ca,Mg)3 (PO4 2 を0.01〜3重量%含
んだHAPを成形、焼成して得られる生体補綴材に関す
る技術が記載されている。
Further, Japanese Patent Publication No. 60-50743 discloses a technique relating to a bioprosthetic material obtained by molding and firing HAP containing 0.01 to 3% by weight of (Ca, Mg) 3 (PO 4 ) 2. Has been done.

【0006】しかしながら、このような技術は、いずれ
も大きな荷重を受ける部位へ適用するには焼結体の機械
的強度が不充分であり、このため機械的強度を改善が試
みられている。
However, in all of these techniques, the mechanical strength of the sintered body is insufficient to be applied to a site subjected to a large load, and therefore, attempts have been made to improve the mechanical strength.

【0007】そのような試みとして、まずHIP、ホッ
トプレスにて低温で焼結させることが行われている。そ
の他、焼結助剤としてガラスを使用すること、ジルコニ
アを含有させたHAPを得ること、さらにHAPとβ−
TCPの複合材料を得ることなどが行われてきた。
As such an attempt, first of all, HIP and hot pressing are performed at low temperature. In addition, using glass as a sintering aid, obtaining HAP containing zirconia, and HAP and β-
For example, obtaining a composite material of TCP has been performed.

【0008】[0008]

【従来技術の課題】しかしながら、上記のような強度改
善の試みも以下のような問題点を有してた。
However, the attempts to improve the strength as described above also have the following problems.

【0009】すなわち、HIP、ホットプレスにて低温
で焼結させるには、工程が増え、装置が高価なものとな
り、したがって量産性と経済性に問題点があった。
That is, in order to sinter at a low temperature by HIP or hot pressing, the number of steps is increased and the apparatus becomes expensive, so that there are problems in mass productivity and economical efficiency.

【0010】また焼結助剤としてガラスを使用すると、
生体内で経時的にガラスが溶出し、生体に悪影響を与え
る恐れがあるとともに、強度も低下していくという問題
点があった。
When glass is used as a sintering aid,
There is a problem in that the glass may be eluted in the living body over time, which may adversely affect the living body, and the strength may decrease.

【0011】次に、HAPにジルコニアを含有させると
部材表面でのHAPの含有率が低下するのでHAPの特
性である骨伝導性が低下する問題があった。
Next, when zirconia is contained in HAP, the content of HAP on the surface of the member is lowered, so that there is a problem that osteoconductivity, which is a characteristic of HAP, is lowered.

【0012】さらに、HAPとβ−TCPの複合材料で
は、大気焼成で焼結させる際に、1200℃以上の温度
が必要であり、この時、β−TCPがα−TCPに変位
してしまう恐れがあり、これを防ぐにはMg等の添加物
が必要であるため、工程が複雑であるという問題点があ
った。
Further, the composite material of HAP and β-TCP requires a temperature of 1200 ° C. or higher when it is sintered by firing in air, and at this time, β-TCP may be displaced to α-TCP. However, in order to prevent this, an additive such as Mg is necessary, which causes a problem that the process is complicated.

【0013】[0013]

【課題を解決するための手段】このような従来技術の課
題を解決すべく、鋭意検討の結果、第三リン酸カルシウ
ムとハイドロキシアパタイトの焼結体において、焼成面
としての焼放し面から内部にかけての第三リン酸カルシ
ウムの含有率、平均結晶粒径を抑え、且つその値が急変
しないようにすることによって機械的強度が大幅に改善
されること、また、このような生体補綴部材において、
表面を研削しても、表面粗さをRa=0.05〜0.4
0とすることによって、焼結体の機械的強度はほとんど
低下しないことを見いだした。
[Means for Solving the Problems] In order to solve the problems of the prior art, as a result of intensive studies, as a result, in a sintered body of tricalcium phosphate and hydroxyapatite, the first surface from the unburned surface to the interior The content of calcium triphosphate, the average crystal grain size is suppressed, and the mechanical strength is significantly improved by preventing the value from changing rapidly, and in such a bioprosthesis member,
Even if the surface is ground, the surface roughness Ra = 0.05 to 0.4
It was found that by setting the value to 0, the mechanical strength of the sintered body was hardly reduced.

【0014】この結果、上記課題を解決する手段として
の本発明は、実質的に第三リン酸カルシウムとハイドロ
キシアパタイトのみから構成された、焼放し面を有する
焼結体からなる生体補綴部材であって、上記焼放し面で
の、第三リン酸カルシウムとハイドロキシアパタイトの
全含有量に対する第三リン酸カルシウムの含有率、およ
び平均結晶粒径が、それぞれ1〜10重量%、0.05
μm〜5.0μmであるとともに、上記焼放し面から5
0μmの深さにおける上記第三リン酸カルシウムの含有
率および平均結晶粒径がともに上記焼放し面に比して5
0%〜100%であることを特徴とするリン酸カルシウ
ム系生体補綴部材、および実質的に第三リン酸カルシウ
ムとハイドロキシアパタイトのみから構成された、研削
面を有する焼結体からなる生体補綴部材であって、上記
研削面での上記第三リン酸カルシウムの含有率、平均結
晶粒径および表面粗さが、それぞれ1〜10重量%、
0.05μm〜5.0μm、Ra=0.05〜0.40
μmであることを特徴とするリン酸カルシウム系補綴部
材を提供する。
As a result, the present invention as a means for solving the above-mentioned problems is a bioprosthesis member consisting of a sintered body having an unburned surface, which is composed essentially of tricalcium phosphate and hydroxyapatite. The content of tricalcium phosphate with respect to the total content of tricalcium phosphate and hydroxyapatite and the average crystal grain size on the burned-out surface are 1 to 10% by weight and 0.05, respectively.
μm to 5.0 μm and 5 from the exposed surface
Both the content of the above-mentioned tricalcium phosphate and the average crystal grain size at a depth of 0 μm are 5 compared with the above-mentioned burnt surface.
A bioprosthesis member comprising a calcium phosphate-based bioprosthesis member characterized by being 0% to 100%, and a sintered body having a grinding surface, which is substantially composed of tricalcium phosphate and hydroxyapatite, The content of the tricalcium phosphate on the ground surface, the average crystal grain size and the surface roughness are each 1 to 10% by weight,
0.05 μm to 5.0 μm, Ra = 0.05 to 0.40
Provided is a calcium phosphate-based prosthesis member having a size of μm.

【0015】[0015]

【発明を実施する形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0016】[0016]

【実施例1】以下、本発明の実施例を説明する。 (a)非晶質リン酸カルシウムの合成 カルシウムイオン:Ca(OH)2 の水溶液にリン酸イ
オン:H3 (PO3 )の水溶液を滴下し、カルシウムと
リンの比を1.63〜1.71に調整した後、約1日熟
成し、非晶質リン酸カルシウム化合物を合成した。
Example 1 An example of the present invention will be described below. (A) Synthesis of Amorphous Calcium Phosphate An aqueous solution of phosphate ion: H 3 (PO 3 ) is dropped into an aqueous solution of calcium ion: Ca (OH) 2 to adjust the ratio of calcium to phosphorus to 1.63 to 1.71. After adjustment, the mixture was aged for about 1 day to synthesize an amorphous calcium phosphate compound.

【0017】(b)原料の作製 上記非晶質リン酸カルシウム化合物を700℃〜900
℃にて仮焼後、原子吸光等の光析機器にて、カルシウム
とリンのモル比の測定を行った。約2日間湿式粉砕し、
バインダーを添加した後、スプレードライ等の造粒装置
を用いて、数十μm程度の大きさの球状顆粒に造粒を行
い、プレス用原料を作製した。
(B) Preparation of raw material The above amorphous calcium phosphate compound was added at 700 ° C. to 900 ° C.
After calcination at ℃, the molar ratio of calcium and phosphorus was measured by a photodeposition instrument such as atomic absorption. Wet grind for about 2 days,
After the binder was added, a granulating device such as spray drying was used to granulate spherical granules having a size of about several tens of μm to prepare a raw material for pressing.

【0018】(c)成形 金型又はラバーに上記原料を充填後、成形圧約1000
(kgf/cm2 )にて加圧成形した。
(C) Molding After filling the above materials into a mold or rubber, a molding pressure of about 1000
It was pressure molded at (kgf / cm 2 ).

【0019】(d)焼成 大気中、1100℃〜1350℃の温度で、2時間〜4
時間の焼成を行い、ほぼ全体が第三リン酸カルシウムと
ハイドロキシアパタイトのみから構成された、3×4×
16cmのリン酸カルシウム系生体補綴部材を得た。そ
して、その焼肌面としての焼放し面の結晶構造等を分析
し、第三リン酸カルシウムとハイドロキシアパタイトの
全含有量に対する第三リン酸カルシウムの含有率、平均
結晶粒径を通法に従って測定した。
(D) Firing In air, at a temperature of 1100 ° C to 1350 ° C for 2 hours to 4
Calcination for 3 hours, 3x4x, consisting almost entirely of tricalcium phosphate and hydroxyapatite
A 16 cm calcium phosphate bioprosthesis member was obtained. Then, the crystal structure and the like of the as-baked surface as the burnt surface were analyzed, and the content ratio of tribasic calcium phosphate to the total content of tribasic calcium phosphate and hydroxyapatite, and the average crystal grain size were measured according to a conventional method.

【0020】(e)研削 さらに、上記焼成品の一部表面を、♯600の砥石にて
深さ50μmまで研削し、その研削面の上記第三リン酸
カルシウムの含有量、平均結晶粒径を通法に従って測定
した。
(E) Grinding Further, a part of the surface of the fired product is ground to a depth of 50 μm with a # 600 grindstone, and the content of the above-mentioned tricalcium phosphate on the ground surface and the average crystal grain size are passed. Was measured according to.

【0021】このような上記(a)〜(e)に従って作
製された各焼成品について、湿式合成時のカルシウムと
モル比、焼成温度および焼成時間、前記第三リン酸カル
シウムの含有率[T/(T+H)(wt%)]、平均結
晶粒径の値、さらにJISR1601に準拠した3点曲
げ試験測定にて得られた抗折強度の値を表1に示す。
For each of the calcined products prepared according to the above (a) to (e), the molar ratio of calcium to the wet synthesis, the calcining temperature and the calcining time, the content ratio of the tricalcium phosphate [T / (T + H ) (Wt%)], the value of the average crystal grain size, and the value of the bending strength obtained by the three-point bending test measurement based on JISR1601 are shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】表1中、二重線で囲んだものは、いずれも
抗折強度が130Mpa〜160Mpaと従来品の10
0Mpa〜120Mpaに比して大きく改善されてお
り、かつ、これらの焼成品は、上記焼放し面での前記第
三リン酸カルシウムの含有率および平均結晶粒径が、そ
れぞれ1〜10重量%、0.05μm〜5.0μmであ
るとともに、上記焼放し面から50μmの深さでは第三
リン酸カルシウムの含有率および平均結晶粒径がともに
上記焼放し面に比して50%〜100%である、という
範囲を充たすものであった。
In Table 1, those enclosed by a double line have a bending strength of 130 MPa to 160 MPa, which is 10 of the conventional product.
0 Mpa to 120 Mpa, which are greatly improved, and in these fired products, the content of the tricalcium phosphate and the average crystal grain size on the burnt surface are 1 to 10% by weight and 0. In the range of 05 μm to 5.0 μm, both the content of tricalcium phosphate and the average crystal grain size at the depth of 50 μm from the burnt surface are 50% to 100% of the burnt surface. Was satisfied.

【0024】これに対して、その他の焼成品について
は、いずれも上記範囲外のものであり、かつ抗折強度も
100Mpa〜120Mpaと従来品と同等程度であっ
た。
On the other hand, the other fired products were out of the above range, and the bending strength was 100 Mpa to 120 Mpa, which was about the same as the conventional products.

【0025】また、表1の結果から、上記範囲を充たす
リン酸カルシウム系生体補綴部材を得るためには、前記
(a)〜(e)の製造方法において、カルシウムイオン
水溶液にリン酸イオン水溶液を滴下して得られた水溶液
のカルシウムとリンのモル比を1.65〜1.71、焼
成温度を1150℃〜1300℃とすることが好ましい
ことが判った。
From the results shown in Table 1, in order to obtain a calcium phosphate-based bioprosthesis member satisfying the above range, the phosphate ion aqueous solution was dropped into the calcium ion aqueous solution in the production methods (a) to (e). It was found that it is preferable to set the molar ratio of calcium to phosphorus in the obtained aqueous solution to 1.65 to 1.71 and the firing temperature to 1150 ° C to 1300 ° C.

【0026】ただし、上記モル比を1.70以上で調整
する場合には、以下のような点に留意する必要がある。
すなわち、上記モル比が大きくなれば過剰なCaが、焼
成後にCaOとなる場合もあり、このCaOは塩基性で
あるため生体材料にはなるべく含有されていないことが
好ましい。
However, when adjusting the above molar ratio to 1.70 or more, it is necessary to pay attention to the following points.
That is, if the above molar ratio becomes large, excess Ca may become CaO after firing, and since CaO is basic, it is preferable that it is not contained in the biomaterial as much as possible.

【0027】なお、用いられるカルシウムイオン水溶液
は上記Ca(OH)2 に限定されるものではなく、Ca
(NO)3 等、適宜選択し得るものであり、同様に、リ
ン酸イオン水溶液も上記H3 (PO3 )のみでなく、
(NH4 2 HPO3 等、適宜選択し得るものである。
The calcium ion aqueous solution used is not limited to the above-mentioned Ca (OH) 2 , but Ca
(NO) 3 or the like can be appropriately selected. Similarly, the phosphate ion aqueous solution is not limited to the above H 3 (PO 3 ),
(NH 4 ) 2 HPO 3 or the like can be appropriately selected.

【0028】[0028]

【実施例2】前記(a)〜(e)の製法において、カル
シウムとリンのモル比を1.67、焼成を1200℃×
2時間、♯400〜♯1500の砥石(研削ダイヤ)で
焼成体の全表面を50μm研削した研削品を得、これら
の研削面における前記第三リン酸カルシウムの含有率、
平均結晶粒径、表面粗さ、3点曲げ抗折強度を通法に従
って測定した。用いた砥石の番手、及びこれらの結果を
表2に示す。
Example 2 In the production methods (a) to (e) above, the molar ratio of calcium to phosphorus was 1.67, and firing was 1200 ° C.
A grinded product was obtained by grinding the entire surface of the fired body by 50 μm with a # 400 to # 1500 grindstone for 2 hours, and the content of the tricalcium phosphate in these ground surfaces was obtained.
The average crystal grain size, the surface roughness, and the three-point bending transverse strength were measured by a conventional method. Table 2 shows the grindstone counts used and the results thereof.

【0029】[0029]

【表2】 [Table 2]

【0030】表2中、二重線で囲んだものは、いずれも
抗折強度が130Mpa〜160Mpaと従来品の10
0Mpa〜120Mpaに比して大きく改善されてお
り、かつ、これらの焼成品は、研削面での前記第三リン
酸カルシウムの含有率および平均結晶粒径が、それぞれ
1〜10重量%、0.05μm〜5.0μmであるとと
もに、表面粗さをRa=0.05〜0.40という範囲
を充たすものであった。
In Table 2, those surrounded by double lines have a bending strength of 130 MPa to 160 MPa, which is 10 of the conventional product.
Compared with 0 Mpa to 120 Mpa, these burned products have a content rate of the tricalcium phosphate on the ground surface and an average crystal grain size of 1 to 10% by weight and 0.05 μm to, respectively. The surface roughness was 5.0 μm and the surface roughness Ra was in the range of 0.05 to 0.40.

【0031】これに対して、その他の研削品について
は、いずれも上記範囲外のものであり、かつ抗折強度も
100Mpa〜120Mpaと従来品と同等程度であっ
た。
On the other hand, the other ground products were out of the above range, and the bending strength was 100 Mpa to 120 Mpa, which was about the same as the conventional products.

【0032】したがって、本発明のリン酸カルシウム系
生体補綴部材は、非研削部分のみでなく、研削して滑面
を形成して用いる場合も、表面粗さをRa=0.05〜
0.40とすることによって、研削部分も抗折強度が1
30Mpa〜160Mpaと従来より大きな強度に保こ
とができ、したがって、研削品あるいは非研削部分と研
削部分の混合品として用いることが可能である。
Therefore, the calcium phosphate bioprosthesis member of the present invention has a surface roughness of Ra = 0.05 to not only in the non-ground portion but also in the case where it is ground to form a smooth surface.
By setting 0.40, the bending strength of the ground part is 1 as well.
The strength can be maintained at 30 Mpa to 160 Mpa, which is higher than the conventional strength. Therefore, it can be used as a ground product or a mixed product of a non-ground portion and a ground portion.

【0033】なお、研削に用いる砥石の番手としては♯
600〜♯1000が好ましいことが判った。
The number of the grindstone used for grinding is #
It has been found that 600 to # 1000 is preferable.

【0034】[0034]

【発明の効果】叙上のように、本発明のリン酸カルシウ
ム系生体補綴部材は、実質的に第三リン酸カルシウムと
ハイドロキシアパタイトのみから構成された、焼放し面
を有する焼結体からなる生体補綴部材であって、上記焼
放し面での、第三リン酸カルシウムとハイドロキシアパ
タイトの全含有量に対する第三リン酸カルシウムの含有
率、および平均結晶粒径が、それぞれ1〜10重量%、
0.05μm〜5.0μmであるとともに、上記焼放し
面から50μmの深さにおける上記第三リン酸カルシウ
ムの含有率および平均結晶粒径がともに上記焼放し面に
比して50%〜100%としたことにより、機械的強度
が飛躍的に改善されて高荷重部位への適用が可能とな
り、さらに、このようなリン酸カルシウム系生体補綴部
材は、特に添加物を必要とせずに大気焼成で簡便且つ大
量に作製することが可能でき、経済的で安全であり、骨
伝導性も充分維持されたものである、という極めて優れ
た効果を奏するものである。
INDUSTRIAL APPLICABILITY As described above, the calcium phosphate-based bioprosthesis member of the present invention is a bioprosthesis member composed of a sintered body having an unburned surface, which is substantially composed of tricalcium phosphate and hydroxyapatite. Then, the content of tricalcium phosphate with respect to the total content of tricalcium phosphate and hydroxyapatite, and the average crystal grain size on the burnt surface are 1 to 10% by weight, respectively.
The content of the tricalcium phosphate and the average crystal grain size at a depth of 50 μm from the burnt surface were both 50% to 100% compared with the burnt surface. As a result, mechanical strength is dramatically improved and application to high load sites becomes possible.Furthermore, such a calcium phosphate-based bioprosthesis member can be simply and large-scaled by atmospheric firing without the need for additives. It has an extremely excellent effect that it can be produced, is economical and safe, and has sufficient osteoconductivity.

【0035】また、本発明のリン酸カルシウム系生体補
綴部材は、表面粗さがRa=0.05〜0.40なるよ
うに研削することによって、研削部分の機械的強度も非
研削部分同様の大きさに維持することができるので、表
面を研削により滑面として高荷重部位に適用することも
でき、適用の幅が広い。
The calcium phosphate bioprosthesis member of the present invention is ground so that the surface roughness is Ra = 0.05 to 0.40, so that the mechanical strength of the ground portion is the same as that of the non-ground portion. Since it can be maintained at a high level, it can be applied to a high load part as a smooth surface by grinding, and the application range is wide.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 実質的に第三リン酸カルシウムとハイド
ロキシアパタイトのみから構成された、焼放し面を有す
る焼結体からなる生体補綴部材であって、上記焼放し面
での、第三リン酸カルシウムとハイドロキシアパタイト
の全含有量に対する第三リン酸カルシウムの含有率、お
よび平均結晶粒径が、それぞれ1〜10重量%、0.0
5μm〜5.0μmであるとともに、上記焼放し面から
50μmの深さにおける上記第三リン酸カルシウムの含
有率および平均結晶粒径がともに上記焼放し面に比して
50%〜100%であることを特徴とするリン酸カルシ
ウム系生体補綴部材。
1. A bioprosthesis member comprising a sintered body having an unburned surface, which is substantially composed of only tricalcium phosphate and hydroxyapatite, wherein the unburned surface has tricalcium phosphate and hydroxyapatite. Content of tribasic calcium phosphate and average crystal grain size are 1 to 10% by weight and 0.0
It is 5 μm to 5.0 μm, and the content of the tricalcium phosphate and the average crystal grain size at a depth of 50 μm from the burnt surface are both 50% to 100% of the burnt surface. A characteristic calcium phosphate bioprosthesis member.
【請求項2】 実質的に第三リン酸カルシウムとハイド
ロキシアパタイトのみから構成された、研削面を有する
焼結体からなる生体補綴部材であって、上記研削面での
上記第三リン酸カルシウムの含有率、平均結晶粒径およ
び表面粗さが、それぞれ1〜10重量%、0.05μm
〜5.0μm、Ra=0.05〜0.40μmであるこ
とを特徴とするリン酸カルシウム系補綴部材。
2. A bioprosthesis member consisting of a sintered body having a ground surface, which is composed essentially of tricalcium phosphate and hydroxyapatite, wherein the content of the tricalcium phosphate in the ground surface is average, The crystal grain size and the surface roughness are 1 to 10% by weight and 0.05 μm, respectively.
˜5.0 μm, Ra = 0.05 to 0.40 μm, a calcium phosphate-based prosthetic member.
JP10812496A 1996-04-26 1996-04-26 Calcium phosphate bioprosthesis Expired - Fee Related JP3464096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10812496A JP3464096B2 (en) 1996-04-26 1996-04-26 Calcium phosphate bioprosthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10812496A JP3464096B2 (en) 1996-04-26 1996-04-26 Calcium phosphate bioprosthesis

Publications (2)

Publication Number Publication Date
JPH09290018A true JPH09290018A (en) 1997-11-11
JP3464096B2 JP3464096B2 (en) 2003-11-05

Family

ID=14476549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10812496A Expired - Fee Related JP3464096B2 (en) 1996-04-26 1996-04-26 Calcium phosphate bioprosthesis

Country Status (1)

Country Link
JP (1) JP3464096B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008066106A1 (en) * 2006-11-30 2008-06-05 Nihon University Layered gradient material for biological use and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008066106A1 (en) * 2006-11-30 2008-06-05 Nihon University Layered gradient material for biological use and method for producing the same

Also Published As

Publication number Publication date
JP3464096B2 (en) 2003-11-05

Similar Documents

Publication Publication Date Title
JP2773752B2 (en) Storage stable formulations for calcium phosphate minerals prepared in situ
CA1332495C (en) In situ calcium phosphate minerals -- method and composition
US5047031A (en) In situ calcium phosphate minerals method
US5053212A (en) Intimate mixture of calcium and phosphate sources as precursor to hydroxyapatite
Kalita et al. Nanocrystalline hydroxyapatite doped with magnesium and zinc: Synthesis and characterization
US5178845A (en) Intimate mixture of calcium and phosphate sources as precursor to hydroxyapatite
EP0835668B1 (en) Biologically resorbable calcium phosphate cement compositions
US6521264B1 (en) Method for preparing a biomaterial based on hydroxyapatite, resulting biomaterial and surgical or dental use
CA2438742C (en) A new calcium phosphate cement composition and a method for the preparation thereof
JPS60186455A (en) Apatite composite ceramics
EP0541687B1 (en) Intimate mixture of calcium and phosphate sources as precursor to hydroxyapatite
JP2501213B2 (en) Bone glue
US20120201870A1 (en) Dicalcium Phosphate Ceramics, Dicalcium Phosphate/Hydroxyapatite Biphasic Ceramics and Method of Manufacturing the Same
JPH09290018A (en) Calcium phosphate organism prosthetic material
US20040250729A1 (en) Fast-setting carbonated hydroxyapatite compositions and uses
El-Maghraby et al. Preparation, structural characterization, and biomedical applications of gypsum-based nanocomposite bone cements
El-Ghannam et al. 1.9 Bioactive Ceramics
Kurniawati et al. Solid-state sintering synthesis of biphasic calcium phosphate/alumina ceramic composites and their mechanical behaviors
JP3082503B2 (en) Precursor for artificial bone production and method for producing artificial bone
JP2525011B2 (en) Calcium phosphate complex and method for producing the same
JPH01301543A (en) Curable composition
Bohne et al. Heating of calcium phosphate crystals: morphological consequences and biological implications
EP1394132A2 (en) A new calcium phosphate cement composition and a method for the preparation thereof
JP2696345B2 (en) Calcium phosphate ceramic sintered body
JPH07187623A (en) Production of apatite fibrous body

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees