JP3082503B2 - Precursor for artificial bone production and method for producing artificial bone - Google Patents

Precursor for artificial bone production and method for producing artificial bone

Info

Publication number
JP3082503B2
JP3082503B2 JP05062802A JP6280293A JP3082503B2 JP 3082503 B2 JP3082503 B2 JP 3082503B2 JP 05062802 A JP05062802 A JP 05062802A JP 6280293 A JP6280293 A JP 6280293A JP 3082503 B2 JP3082503 B2 JP 3082503B2
Authority
JP
Japan
Prior art keywords
artificial bone
precursor
apatite
hydroxyapatite
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05062802A
Other languages
Japanese (ja)
Other versions
JPH06245992A (en
Inventor
隆夫 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP05062802A priority Critical patent/JP3082503B2/en
Publication of JPH06245992A publication Critical patent/JPH06245992A/en
Application granted granted Critical
Publication of JP3082503B2 publication Critical patent/JP3082503B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は生体親和性や骨伝導に優
れ且つ緻密で優れた強度を有すると共に、生体為害性の
少ないアパタイト系の人工骨を与える前駆体、およびこ
の前駆体を用いて人工骨を製造する方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a precursor which is excellent in biocompatibility and osteoconductivity, has a dense and excellent strength, and gives an apatite artificial bone which is less harmful to the living body. The present invention relates to a method for producing an artificial bone.

【0002】[0002]

【従来の技術】整形外科、口腔外科、歯科、形成外科等
における骨欠損の補修あるいは空隙部の充填等に用いら
れる人工骨材料としては、従来より燐酸カルシウム系の
アパタイトが汎用されており、代表的なものとしては、
ヒドロキシアパタイト[Ca10(PO4)6(OH)2]、ふ
っ素アパタイト[Ca10(PO4)6 F]、炭酸アパタイ
ト[Ca10(PO4)6(CO2)]、β・Ca3(PO4)2
α・Ca3(PO4)2 等が知られている。
2. Description of the Related Art As an artificial bone material used for repairing bone defects or filling voids in orthopedic surgery, oral surgery, dentistry, plastic surgery, etc., calcium phosphate-based apatite has been widely used. Typically,
Hydroxyapatite [Ca 10 (PO 4 ) 6 (OH) 2 ], fluorine apatite [Ca 10 (PO 4 ) 6 F], carbonate apatite [Ca 10 (PO 4 ) 6 (CO 2 )], β · Ca 3 ( PO 4 ) 2 ,
α · Ca 3 (PO 4 ) 2 and the like are known.

【0003】これらのうちふっ素アパタイトは、化学的
にもまた熱的にも最も安定なものであるが、ふっ素が遊
離する様なことがあると強い毒性を示すので、生体用材
料として厳密な管理を必要とする。またα・Ca3(PO
4)2 は溶解性が高く、生体内での安定性が余り良くない
ので単独での使用はできず、他のアパタイト類と併用す
る場合でも量的な管理が必要となる。
[0003] Of these, fluorine apatite is the most stable chemically and thermally. However, since fluorine apatite is highly toxic when it may be released, it is strictly controlled as a biomaterial. Need. Α ・ Ca 3 (PO
4 ) 2 cannot be used alone because it has high solubility and its stability in the living body is not so good. Even when used in combination with other apatites, quantitative control is required.

【0004】これらに対しヒドロキシアパタイトや炭酸
アパタイトは、生体内安定性が良好で且つ毒性の問題も
なく、しかも取扱いも容易であるところから、現在最も
汎用されているが、その合成時にCaとPの比が原子化
学量論になり難いという問題を残している。そしてCa
/P原子比が10/6を超える場合は、焼成過程で余剰
のCaOが生成し、これが生体内での親和性に悪影響を
及ぼす。またCa/P原子比が10/6未満になるとC
3(PO4)2 を生成するが、これは1200℃以上の焼成条
件下でα・Ca3(PO4)2 となり、このものは焼成体と
したときの初期骨伝導性が乏しく、人工骨としての適性
を欠く。即ち副生する上記CaOやα・Ca3(PO4)2
は、骨ができる前に溶出してしまうため骨との接合が遅
れるほか、骨伝導性不足の問題を生じる。こうした問題
を回避するため、1200℃以下の低温焼成を行なうことも
考えられるが、この様な低温焼成で十分な強度を得るに
は、高温静水圧プレス(HIP)の様な高価な成形設備
が必要になる。
On the other hand, hydroxyapatite and carbonate apatite are currently most widely used because they have good in vivo stability, have no toxicity problem, and are easy to handle. The problem remains that the ratio of is difficult to become atomic stoichiometry. And Ca
If the / P atomic ratio exceeds 10/6, excess CaO is generated during the firing process, which adversely affects the affinity in vivo. When the Ca / P atomic ratio is less than 10/6, C
a 3 (PO 4 ) 2 is produced, which becomes α · Ca 3 (PO 4 ) 2 under firing conditions of 1200 ° C. or higher, which has poor initial osteoconductivity when formed into a fired body, Lack of bone suitability. That is, the above-mentioned CaO or α · Ca 3 (PO 4 ) 2
Is eluted before the bone is formed, which delays the bonding with the bone and causes a problem of insufficient osteoconductivity. In order to avoid such a problem, it is conceivable to perform low-temperature sintering at 1200 ° C. or lower. However, in order to obtain sufficient strength by such low-temperature sintering, expensive molding equipment such as a high-temperature isostatic press (HIP) is required. Will be needed.

【0005】他方、ヒドロキシアパタイトや炭酸アパタ
イトにMg等の第三成分を含有させると、1400℃程度の
高温焼成条件下でも安定なβ・Ca3(PO4)2 を生成す
ることが確認されているが、反面、Mgを過剰量含有
させると発癌性を示す恐れがある、Mgを含有させる
と非晶質化し易くなって生体との親和性が乏しくなるの
で、こうした問題を回避するには十分な混合と焼成を繰
り返して行なわなければならず、製造に長時間を要す
る、Mg3(PO4)2 自体も生体内での溶解性が高い、
といった問題があり、製造面で厳密な管理が必要になる
ことから、現実には殆ど実用化されていない。またβ・
Ca3(PO4)2 のみでは生体内での安定性に欠けるが、
アパタイトとの混合体にすると、アパタイト単体よりも
骨伝導が良好になることが確認されている。
On the other hand, it has been confirmed that when hydroxyapatite or carbonate apatite contains a third component such as Mg, stable β.Ca 3 (PO 4 ) 2 is produced even under high-temperature firing conditions of about 1400 ° C. However, on the other hand, if Mg is contained in an excessive amount, there is a risk of showing carcinogenicity. If Mg is contained, it becomes easily amorphous and the affinity with the living body is poor, so it is enough to avoid such problems The mixing and baking must be repeated, and it takes a long time to manufacture. Mg 3 (PO 4 ) 2 itself has high solubility in vivo,
However, since strict management is required in terms of manufacturing, it has hardly been practically used. Also, β
Ca 3 (PO 4 ) 2 alone lacks stability in vivo,
It has been confirmed that a mixture with apatite has better bone conduction than apatite alone.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記の様な事
情に着目してなされたものであって、その目的は、ヒド
ロキシアパタイトや炭酸アパタイトに第三成分としてM
gを含有させた場合の利点を享受しつつ、Mg添加によ
って生じる上記の問題を解消し、Mg成分の溶出を抑え
て生体為害性の問題を解消すると共に、生体親和性や骨
伝導に優れた人工骨を与える前駆体および人工骨を効率
良く製造することのできる方法を提供しようとするもの
である。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and its object is to provide hydroxyapatite or carbonate apatite with M as a third component.
While enjoying the advantages of containing g, the above problems caused by the addition of Mg are eliminated, the elution of the Mg component is suppressed, and the problem of harm to living organisms is eliminated. An object of the present invention is to provide a precursor capable of providing an artificial bone and a method capable of efficiently producing the artificial bone.

【0007】[0007]

【課題を解決するための手段】上記課題を解決すること
のできた本発明に係る人工骨製造用前駆体の構成は、構
成元素としてCa,MgおよびPを含有するヒドロキシ
アパタイトおよび/または炭酸アパタイトを主成分と
し、下記要件を満たす量のMgを含有するところに要旨
を有するものである。
Means for Solving the Problems The precursor for producing an artificial bone according to the present invention, which can solve the above-mentioned problems, comprises hydroxyapatite and / or carbonate apatite containing Ca, Mg and P as constituent elements. It has a gist in that it contains Mg in an amount satisfying the following requirements as a main component.

【0008】Mg含有量:0.1〜0.5重量% Ca,Mg,Pの原子比:1.50≦(Ca+Mg)/P≦
1.67 尚この前駆体は、原料調整段階で燐酸と水酸化カルシウ
ムや炭酸カルシウム等とMg源(水酸化マグネシウムや
炭酸マグネシウム等)を、水系もしくは非水系の溶液反
応、あるいは、りん酸トリメチルやカルシウムエトキシ
ド等の金属アルコキシドを用いるゾルゲル法によって合
成すれば、この合成段階でMgがアパタイト結晶構造中
に固溶したものとなり、焼成後のMgの溶出を一層少な
くすることができる。そしてこれらのMg含有アパタイ
トを1200〜1450℃で焼成すれば、Mg溶出がなく、生体
親和性や骨伝導に優れ且つ緻密で優れた強度を有すると
共に生体為害性の少ない人工骨を得ることができる。
Mg content: 0.1-0.5% by weight Atomic ratio of Ca, Mg, P: 1.50 ≦ (Ca + Mg) / P ≦
1.67 This precursor is prepared by reacting phosphoric acid, calcium hydroxide, calcium carbonate, etc. and a Mg source (magnesium hydroxide, magnesium carbonate, etc.) in an aqueous or non-aqueous solution, or using trimethyl phosphate, calcium ethoxy, etc. If the synthesis is performed by a sol-gel method using a metal alkoxide such as Mg, Mg becomes a solid solution in the apatite crystal structure at this synthesis stage, and the elution of Mg after firing can be further reduced. If these Mg-containing apatites are fired at 1200 to 1450 ° C., there is no elution of Mg, excellent biocompatibility and osteoconductivity, and dense and excellent strength, and it is possible to obtain artificial bones that are less harmful to living organisms. .

【0009】[0009]

【作用】上記の様に本発明では、ヒドロキシアパタイト
および/または炭酸アパタイトを主成分とし、これに所
定量のMgを固溶させることにより、1200℃以上の温度
で焼成した場合でも安定なβ・Ca3(PO4)2 を生成せ
しめ、緻密なβ・Ca3(PO4)2 とアパタイトの2相混
合体からなる生体親和性及び骨伝導の良好な焼結成形体
を与える前駆体を得るものであり、上記構成要件を定め
た理由は次の通りである。
As described above, in the present invention, hydroxyapatite and / or carbonate apatite are the main components, and a predetermined amount of Mg is dissolved in this to form a stable β. Ca 3 (PO 4) yielding 2, dense β · Ca 3 (PO 4) 2 and biocompatibility of two-phase mixture of apatite and to obtain a precursor that gives a good sintered compact bone conduction The reasons for determining the above constituent requirements are as follows.

【0010】即ちアパタイトへのMg含有量を0.1〜0.5
重量%に定めたのは、Mg量が不足すると、1200℃以上
の温度で焼成したときのα・Ca3(PO4)2の生成を阻
止することができず、焼結成形体の溶出抑制効果や骨伝
導性向上効果が確保できなくなるからである。一方、M
g量が0.5重量%を超えると、アパタイト結晶構造内へ
のMg固溶量が飽和してMgOが生成し、これらが焼成
後も可溶成分として残存することになり、従来技術で指
摘した障害が回避できなくなる。
That is, the Mg content in apatite is 0.1 to 0.5
If the amount of Mg is insufficient, the formation of α · Ca 3 (PO 4 ) 2 when firing at a temperature of 1200 ° C. or more cannot be prevented if the amount of Mg is insufficient. This is because the effect of improving bone conductivity cannot be ensured. On the other hand, M
When the amount of g exceeds 0.5% by weight, the amount of Mg solid solution in the apatite crystal structure is saturated to generate MgO, which remains as a soluble component even after firing, which is an obstacle pointed out in the prior art. Can not be avoided.

【0011】ちなみに図1は、ヒドロキシアパタイトま
たは炭酸アパタイトに対するMg量を種々変えたものを
1200℃×120分で焼結し、得られる焼結体の生理
食塩水への溶出量と骨伝導を調べた結果を示したもので
あり、この図からもMg含有量を0.1重量%以上とする
ことにより、焼結体の溶出を抑制しつつ優れた骨伝導を
確保し得ることが分かる。しかし、Mg量が0.5重量
%を超えると、Mgの溶出性が急増して発癌性の恐れが
生じてくる他、焼結体の生体親和性も悪くなるので、
0.5重量%以下に抑えなければならない。
FIG. 1 shows the results obtained by sintering various amounts of Mg with respect to hydroxyapatite or carbonate apatite at 1200 ° C. for 120 minutes, and examining the amount of sintering of the resulting sintered body in physiological saline and bone conduction. From this figure, it can also be seen that by setting the Mg content to 0.1% by weight or more, excellent osteoconduction can be ensured while suppressing elution of the sintered body. However, when the amount of Mg exceeds 0.5% by weight, the dissolution of Mg is rapidly increased, and the possibility of carcinogenicity is caused, and the biocompatibility of the sintered body is deteriorated.
It must be kept below 0.5% by weight.

【0012】また(Ca+Mg)/Pの原子比を1.50〜
1.67の範囲に定めた理由は、CaOの生成を防止しつつ
β・Ca3(PO4)2 を生成せしめ、焼結成形体をアパタ
イトとβ・Ca3(PO4)2 の2相混合組成とするためで
あり、上記範囲未満では1200℃以上の高温で焼結したと
きのβ・Ca3(PO4)2 としての安定性が悪くなり、緻
密で安定なアパタイトとβ・Ca3(PO4)2 との2相混
合組成の焼結成形体が得られ難くなり、一方上記範囲を
超える場合は、CaOが生成して焼結性成形体の生体親
和性が低下すると共に骨伝導も悪くなる。
The atomic ratio of (Ca + Mg) / P is 1.50 to
The reason defined in the range of 1.67 is that β · Ca 3 (PO 4 ) 2 is generated while preventing the generation of CaO, and the sintered compact is mixed with a two-phase mixed composition of apatite and β · Ca 3 (PO 4 ) 2. If the temperature is less than the above range, the stability as β · Ca 3 (PO 4 ) 2 when sintered at a high temperature of 1200 ° C. or more becomes poor, and dense and stable apatite and β · Ca 3 (PO 4 ) It becomes difficult to obtain a sintered compact having a two-phase mixed composition with 2, and if it exceeds the above range, CaO is generated, the biocompatibility of the sinterable molded body is reduced, and osteoconduction is also deteriorated.

【0013】ちなみに表1は、ヒドロキシアパタイトま
たは炭酸アパタイトに対するMg添加量を0.2重量%
に固定し、(Ca+Mg)/Pの原子比を種々変えたも
のを1200℃×2時間焼成し、得られる焼結体中のβ
・Ca3(PO4)2 の生成率を調べた結果を示したもので
ある。この表からも明らかである様に、(Ca+Mg)
/Pを1.50〜1.67の範囲に設定すると、焼結物中に緻密
で安定なβ・Ca3(PO4)2 を生成させることができ
る。しかし、1.50未満では、Ca227 が生成して
β・Ca3(PO4)2 の生成が認められなくなり、また1.
67を超える場合もβ・Ca3(PO4)2 が生成しなくなっ
て焼結物はヒドロキシアパタイトとCaO混合組成とな
る。
Table 1 shows that the amount of Mg added to hydroxyapatite or carbonate apatite was 0.2% by weight.
, And calcined at 1200 ° C. for 2 hours while changing the atomic ratio of (Ca + Mg) / P to β in the obtained sintered body.
-It is a result of examining the generation rate of Ca 3 (PO 4 ) 2 . As is clear from this table, (Ca + Mg)
When / P is set in the range of 1.50 to 1.67, dense and stable β · Ca 3 (PO 4 ) 2 can be generated in the sintered product. However, if it is less than 1.50, Ca 2 P 2 O 7 is generated, and no generation of β · Ca 3 (PO 4 ) 2 is observed.
Even when it exceeds 67, β · Ca 3 (PO 4 ) 2 is not generated, and the sintered product has a mixed composition of hydroxyapatite and CaO.

【0014】[0014]

【表1】 [Table 1]

【0015】ところで本発明に係る前駆体の製法は特に
限定されないが、最も好ましいのはたとえばりん酸、り
ん酸トリエチル等のりん酸エステル類等と塩化カルシウ
ム、Caカルボン酸塩、カルシウムアルコキシド等を、
Mg源(Mg塩化物、あるいは酢酸マグネシウム等のカ
ルボン酸塩等)と共に、水系もしくは非水系の溶媒中で
アルカリ性に保って溶液反応させる方法、あるいはゾル
ゲル法によって反応させる方法である。この様な方法を
採用すれば、アパタイト生成段階でその結晶構造中にM
gが固溶状態で取り込まれ、焼成時の相変化に伴ってM
gが容易に拡散移動する結果、Mgが均質に分散して新
たに生成する相へ移行することになり、Mgの溶出を一
層確実に防止することができる。
The method for producing the precursor according to the present invention is not particularly limited, but the most preferred is, for example, phosphoric acid esters such as phosphoric acid and triethyl phosphate and calcium chloride, Ca carboxylate, calcium alkoxide and the like.
This is a method in which a solution is reacted with an Mg source (Mg chloride or a carboxylate such as magnesium acetate or the like) in an aqueous or non-aqueous solvent while maintaining the alkalinity, or a reaction is performed by a sol-gel method. If such a method is adopted, the crystal structure in the apatite generation stage will have M
g is taken in a solid solution state, and M
As a result of the easy diffusion and movement of g, Mg is homogeneously dispersed and shifts to a newly generated phase, so that elution of Mg can be prevented more reliably.

【0016】上記の溶液反応によりMg固溶ヒドロキシ
アパタイトまたはMg固溶炭酸アパタイトが微粉末状と
なって析出するが、このMg固溶アパタイトは、その後
の圧粉成形および焼結処理によって空孔欠陥のない緻密
な成形体を得るため、一次粒子の長径が5μm以下の微
粒子状で得られる様に溶液反応条件(溶液濃度、溶媒の
種類、温度等)を調整するのがよい。粗粒物として得ら
れた場合は、その後粉砕して好適粒径に合わせることも
勿論可能である。
By the above-mentioned solution reaction, Mg-dissolved hydroxyapatite or Mg-dissolved carbonate apatite precipitates in the form of fine powder, and the Mg-dissolved apatite is subjected to vacancy defects by the subsequent compacting and sintering processes. In order to obtain a dense molded article free from defects, it is preferable to adjust the solution reaction conditions (solution concentration, type of solvent, temperature, etc.) so that primary particles can be obtained in the form of fine particles having a major axis of 5 μm or less. When it is obtained as a coarse particle, it is of course possible to pulverize it and adjust it to a suitable particle size.

【0017】かくして得られる微粉末状の前駆体を乾燥
し、所定形状に成形した後、必要により予備焼成してか
ら大気圧下に1200〜1450℃で1〜3時間程度焼成する
と、緻密で強固な人工骨を得ることができる。尚焼成温
度が1200℃未満では緻密な焼結物が得られ難く、強度不
足となるばかりでなく、人工骨自体の溶出性が高くなっ
て骨伝導が不安定になり、更には、細胞貧食も活発とな
って生成骨の安定性も悪くなる。
The thus obtained precursor in the form of fine powder is dried, formed into a predetermined shape, preliminarily calcined if necessary, and then calcined at 1200 to 1450 ° C. for about 1 to 3 hours under atmospheric pressure. A natural artificial bone can be obtained. If the sintering temperature is less than 1200 ° C., it is difficult to obtain a dense sintered product, not only the strength becomes insufficient, but also the elution of the artificial bone itself becomes high, the bone conduction becomes unstable, and furthermore, the cell is poorly eaten. And the stability of the generated bone becomes worse.

【0018】一方、焼成温度が1450℃を超えると、ヒド
ロキシアパタイトとβ・Ca3(PO4)2 構造のいずれに
ついても異なった相が析出し、Mgの溶出量が高くなる
ため、骨伝導および生体内安定性が悪くなる。
On the other hand, if the calcination temperature exceeds 1450 ° C., different phases are precipitated for both hydroxyapatite and β.Ca 3 (PO 4 ) 2 structures, and the amount of Mg eluted increases, resulting in osteoconduction and In vivo stability deteriorates.

【0019】[0019]

【実施例】以下、実施例を挙げて本発明の構成および作
用効果をより具体的に説明するが、本発明はもとより下
記実施例によって制限を受けるものではなく、前・後記
の趣旨に適合し得る範囲で適当に変更して実施すること
も可能であり、それらはすべて本発明の技術的範囲に含
まれる。
EXAMPLES Hereinafter, the structure and operation and effect of the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples, and the present invention is applicable to the above and following points. The present invention can be appropriately modified and implemented within the scope of the invention, and all of them are included in the technical scope of the present invention.

【0020】実施例 所定量の燐酸と水酸化カルシウムおよび水酸化マグネシ
ウムを水に加え、pHを11に保持して強撹拌しつつ80
℃で2時間反応させた。反応終了後生成物を濾過、洗浄
し、Mg固溶ヒドロキシアパタイトを得た。得られた各
生成物のMg量および(Ca+Mg)/P原子比を元素
分析によって調べたところ、表1に示す結果が得られ、
またこれらをX線粉末回折にかけたところ、いずれもヒ
ドロキシアパタイト単相であることが確認された。
EXAMPLE A predetermined amount of phosphoric acid, calcium hydroxide and magnesium hydroxide were added to water, and the pH was maintained at 11 while stirring vigorously.
The reaction was carried out at 2 ° C. for 2 hours. After completion of the reaction, the product was filtered and washed to obtain Mg solid solution hydroxyapatite. When the Mg content and the (Ca + Mg) / P atomic ratio of each obtained product were examined by elemental analysis, the results shown in Table 1 were obtained.
Further, when these were subjected to X-ray powder diffraction, it was confirmed that each was a single phase of hydroxyapatite.

【0021】このMg固溶ヒドロキシアパタイト(人工
骨製造用前駆体)粉末を0.6 〜1mmに造粒し、大気炉中
1200℃で2時間焼成した。得られた焼成物の相構成及び
β・Ca3(PO4)2 含有量をX線回折によって求め、結
果を表1に併記した。
This Mg-dissolved hydroxyapatite (precursor for producing artificial bone) powder is granulated to 0.6 to 1 mm, and is granulated in an air furnace.
Baking was performed at 1200 ° C. for 2 hours. The phase constitution and β · Ca 3 (PO 4 ) 2 content of the obtained fired product were determined by X-ray diffraction, and the results are shown in Table 1.

【0022】[0022]

【表2】 [Table 2]

【0023】表2からも明らかである様にNo.A〜Eの
焼結前(前駆体)はいずれもヒドロキシアパタイト相を
有するものであるが、No.A〜D(実施例)では、焼結
後の相がヒドロキシアパタイトとβ・Ca3(PO4)2
2相混合組成となるのに対し、No.E(比較例)では、
焼結物中にCaOが認められる。
As is clear from Table 2, before sintering of Nos. A to E (precursors) all have a hydroxyapatite phase, but in Nos. A to D (Examples), While the resulting phase has a two-phase mixed composition of hydroxyapatite and β · Ca 3 (PO 4 ) 2 , No. E (comparative example)
CaO is observed in the sintered product.

【0024】得られた各焼結物を下記のin vitro試験に
供し、溶出量および水溶液pHを調べたところ、Mg溶
出はいずれも0.5ppm以下であったが、No.A〜Dの水溶
液pHは約7.5 であるのに対し、No.EはpH10以上
であった。また各焼結物を使用し、家兎腰骨への埋込み
試験を行なったところ、No.Eを除いていずれも良好な
骨伝導を有していることが確認された。
Each of the obtained sintered products was subjected to the following in vitro test, and the elution amount and the pH of the aqueous solution were examined. The Mg elution was 0.5 ppm or less in all cases. Was about 7.5, while No. E was pH 10 or more. In addition, when an implanting test was performed on rabbit hip bone using each of the sintered products, it was confirmed that all had good bone conduction except for No. E.

【0025】尚比較のため、Mgの添加を省略した以外
は上記と同様の実験を行なったところ、焼成物はいずれ
もα・Ca3(PO4)2 となり、in vitro試験でも前記表
1のNo.A〜Dに比べて約3倍もの溶出が認められ、骨
の形成が著しく遅延することが確認された。
For comparison, the same experiment as above was carried out except that the addition of Mg was omitted. As a result, all of the calcined products were α.Ca 3 (PO 4 ) 2 . Elution was observed about three times as much as Nos. A to D, confirming that the formation of bone was significantly delayed.

【0026】(in vitro試験)前駆体をプレス成形し、
1200℃で焼成して気孔率0.4 %以下の緻密体を得
る。これを1cm角×1mmのサイズに切り出し、表面研磨
してRa=0.2μmとした後、これを50ccの生理食
塩水に浸漬し、37℃で30日保持する。この液を1
日、3日、7日、14日、30日に取り出し、液中のC
a、MgおよびPの増加量を測定する。
(In vitro test) The precursor was press-molded,
It is fired at 1200 ° C. to obtain a dense body having a porosity of 0.4% or less. This is cut out to a size of 1 cm square × 1 mm, the surface is polished to Ra = 0.2 μm, and then immersed in 50 cc of physiological saline and kept at 37 ° C. for 30 days. 1
Days, 3 days, 7 days, 14 days, 30 days
The increments of a, Mg and P are measured.

【0027】比較例 MgCO3 を5%添加したCaCO3 と燐酸をメノウ乳
鉢で30分間混合した後、1100℃で2時間反応させた。
これをX線回折にかけたところ、未反応のCaOと一部
に易溶性のCa227 が認められた。これを再度ア
ルコールを用いて30分間湿式粉砕してから1100℃で2
時間焼成し、同じ操作を3回繰り返すことにより、よう
やくヒドロキシアパタイトとβ・Ca3(PO4)2 の2相
混合組成の焼結体が得られた。
Comparative Example CaCO 3 containing 5% MgCO 3 and phosphoric acid were mixed in an agate mortar for 30 minutes, and reacted at 1100 ° C. for 2 hours.
When this was subjected to X-ray diffraction, unreacted CaO and partially soluble Ca 2 P 2 O 7 were recognized. This is wet pulverized again for 30 minutes using alcohol and then at 1100 ° C. for 2 minutes.
By firing for a time and repeating the same operation three times, a sintered body having a two-phase mixed composition of hydroxyapatite and β · Ca 3 (PO 4 ) 2 was finally obtained.

【0028】[0028]

【発明の効果】本発明は以上の様に構成されており、生
体親和性や骨伝導に優れ且つ緻密で優れた強度を有する
と共に、低溶出性で生体為害性の少ないアパタイト系の
人工骨を与える前駆体および人工骨を効率良く製造し得
ることになった。
According to the present invention, an apatite-based artificial bone having excellent biocompatibility and osteoconductivity, having a high density and excellent strength, having a low dissolution property and being less harmful to the living body is constructed. The given precursor and artificial bone can be produced efficiently.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Mg含有量と生理食塩水へのCa溶出量との関
係を示すグラフである。
FIG. 1 is a graph showing the relationship between the Mg content and the amount of Ca eluted into physiological saline.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 構成元素としてCa,MgおよびPを含
有するヒドロキシアパタイトおよび/または炭酸アパタ
イトを主成分とし、下記の要件を満たす量のMgを含有
することを特徴とする人工骨製造用前駆体。 Mg含有量:0.1〜0.5重量% Ca,Mg,Pの原子比:1.50≦(Ca+Mg)/P≦
1.67
1. A precursor for producing an artificial bone, comprising hydroxyapatite and / or carbonate apatite containing Ca, Mg and P as constituent elements as a main component, and containing Mg in an amount satisfying the following requirements. . Mg content: 0.1 to 0.5% by weight Atomic ratio of Ca, Mg, P: 1.50 ≦ (Ca + Mg) / P ≦
1.67
【請求項2】 前駆体が、水系もしくは非水系の溶液反
応もしくはゾルゲル法により合成されたものである請求
項1記載の人工骨製造用前駆体。
2. The precursor for producing an artificial bone according to claim 1, wherein the precursor is synthesized by an aqueous or non-aqueous solution reaction or a sol-gel method.
【請求項3】 請求項1または2記載の前駆体を、大気
圧下1200〜1450℃で焼成することを特徴とする人工骨の
製法。
3. A method for producing an artificial bone, comprising firing the precursor according to claim 1 at 1200 to 1450 ° C. under atmospheric pressure.
JP05062802A 1993-02-26 1993-02-26 Precursor for artificial bone production and method for producing artificial bone Expired - Fee Related JP3082503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05062802A JP3082503B2 (en) 1993-02-26 1993-02-26 Precursor for artificial bone production and method for producing artificial bone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05062802A JP3082503B2 (en) 1993-02-26 1993-02-26 Precursor for artificial bone production and method for producing artificial bone

Publications (2)

Publication Number Publication Date
JPH06245992A JPH06245992A (en) 1994-09-06
JP3082503B2 true JP3082503B2 (en) 2000-08-28

Family

ID=13210841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05062802A Expired - Fee Related JP3082503B2 (en) 1993-02-26 1993-02-26 Precursor for artificial bone production and method for producing artificial bone

Country Status (1)

Country Link
JP (1) JP3082503B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9727048D0 (en) 1997-12-22 1998-02-18 Abonetics Ltd Process for the preparation of magnesium and carbonate substituted hydroxyapatite
US6921544B2 (en) 2001-03-06 2005-07-26 Rutgers, The State University Magnesium-substituted hydroxyapatites
WO2006083418A2 (en) 2005-01-04 2006-08-10 Rutgers, The State University Hydroxyapatite with controllable size and morphology
ITMI20050343A1 (en) * 2005-03-04 2006-09-05 Fin Ceramica Faenza S R L CARTRIDGE REPLACEMENT AND OSTEOCINDRAL INCLUDING A MULTILAYER STRUCTURE AND ITS USE
EP2493686A4 (en) 2009-10-26 2015-09-09 Univ Rutgers Hydroxyapatite with controllable size and morphology

Also Published As

Publication number Publication date
JPH06245992A (en) 1994-09-06

Similar Documents

Publication Publication Date Title
US4097935A (en) Hydroxylapatite ceramic
JP4260880B2 (en) Bone substitute material and method for producing the same
EP1335757B1 (en) Porous calcium phosphate cement
JP2773752B2 (en) Storage stable formulations for calcium phosphate minerals prepared in situ
CA2438742C (en) A new calcium phosphate cement composition and a method for the preparation thereof
JPH0222113A (en) Production of calcium phosphate mineral
EP0639366A1 (en) Hydroxyapatite cement as bone or tooth replacement
US20110034391A1 (en) Shaped article
US4207306A (en) Process for producing polycrystalline ceramic oxides
Jalota et al. A new rhenanite (β‐NaCaPO4) and hydroxyapatite biphasic biomaterial for skeletal repair
Fathi et al. Setting properties of calcium phosphate bone cement
TWI573776B (en) Dicalcium phosphate ceramics, dicalcium phosphate/hydroxyapatite biphasic ceramics and method of manufacturing the same
JP3082503B2 (en) Precursor for artificial bone production and method for producing artificial bone
JPH05509284A (en) Homogeneous mixture of calcium and phosphate sources as precursors to hydroxyapatite
RU2372313C2 (en) Method of producing hydroxyapatite based ceramic, containing zinc oxide
CA2803294C (en) Fluorapatite-forming calcium phosphate cements
EP1394132B1 (en) A new calcium phosphate cement composition and a method for the preparation thereof
JP2696345B2 (en) Calcium phosphate ceramic sintered body
KR20020096521A (en) High strength of bioactive ceramics and manufacturing process of the same
JPH0533635B2 (en)
JPH03210271A (en) Production of biomaterial of calcium phosphate system
JPH09290018A (en) Calcium phosphate organism prosthetic material
JPH02116685A (en) Production of porous body of calcium phosphate compound
Sturgeon Formation of hydroxyapatite in various aqueous solutions
JPS62132756A (en) High strength calcium phosphate base ceramic material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000530

LAPS Cancellation because of no payment of annual fees