JPH09288185A - Sampler for radiation detection - Google Patents

Sampler for radiation detection

Info

Publication number
JPH09288185A
JPH09288185A JP10022696A JP10022696A JPH09288185A JP H09288185 A JPH09288185 A JP H09288185A JP 10022696 A JP10022696 A JP 10022696A JP 10022696 A JP10022696 A JP 10022696A JP H09288185 A JPH09288185 A JP H09288185A
Authority
JP
Japan
Prior art keywords
sample
liquid
sample chamber
radiation detector
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10022696A
Other languages
Japanese (ja)
Other versions
JP3779374B2 (en
Inventor
Yoshiyuki Ito
義行 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Original Assignee
Toshiba Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp filed Critical Toshiba Engineering Corp
Priority to JP10022696A priority Critical patent/JP3779374B2/en
Publication of JPH09288185A publication Critical patent/JPH09288185A/en
Application granted granted Critical
Publication of JP3779374B2 publication Critical patent/JP3779374B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable nuclide analysis of a liquid sample except for gas and a solid sample with the same radiation detector by performing nuclide analysis measuring of the liquid or solid sample with the same radiation detector when a gas sample is introduced from a sample chamber and nuclide analysis measuring is not performed. SOLUTION: When a liquid sample or a solid sample, for instance is analyzed, a sample chamber 10 is moved upward a sample base 3 by a lift mechanism 11, and an analysis sample 5 such as the liquid sample or a dust sample sampled from a tritium collection device and the solid sample sampled from an iodine filter is mounted on the sample base 3. Thereby, a Ge detector 6 detects radiation containing the liquid sample or the solid sample existing on the upper part, after its detection signal is amplified with a preamplifier 8, it is transmitted to an analyzer, for instance, a multi-channel analyzer, and nuclide analysis is performed therein.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、原子力施設におけ
る排気筒放射線モニタを校正するための放射線検出用サ
ンプラに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation detection sampler for calibrating a stack radiation monitor in a nuclear facility.

【0002】[0002]

【従来の技術】原子力施設における排気筒には、排気ガ
ス中に放射性物質が含まれているか否かを監視する目的
で排気筒放射線モニタが設置されている。従来、かかる
排気筒放射線モニタを校正するため、排気筒放射線モニ
タのサンプリングガスに含まれている放射性物質の核種
分析を行う放射線検出用サンプラが使用されている。
2. Description of the Related Art An exhaust stack radiation monitor is installed in an exhaust stack in a nuclear facility for the purpose of monitoring whether or not radioactive materials are contained in the exhaust gas. Conventionally, in order to calibrate such a stack radiation monitor, a radiation detection sampler for analyzing a nuclide of a radioactive substance contained in the sampling gas of the stack radiation monitor has been used.

【0003】この放射線検出用サンプラは、気体に含ま
れる放射性物質の核種分析を行うだけのものであり、液
体試料、固体試料に対しては排気筒放射線モニタの他の
設備で採取し、その核種分析は別の核種分析装置を使用
して行っている。
This radiation detection sampler is used only for the analysis of nuclides of radioactive substances contained in gas. Liquid samples and solid samples are collected by other equipment such as a stack radiation monitor, and their nuclides are collected. The analysis is performed using another nuclide analyzer.

【0004】[0004]

【発明が解決しようとする課題】このように従来の放射
線検出用サンプラでは、気体だけの核種分析しかできな
いため、気体以外の液体試料、固体試料についてはそれ
ぞれ別の核種分析装置により核種分析を行うための各設
備が必要となる。
As described above, since the conventional radiation detection sampler can only analyze the nuclide of gas, the nuclide analysis is performed by using different nuclide analyzers for liquid samples and solid samples other than gas. Each equipment for that is required.

【0005】一方、連続して流れる液体中に含まれる放
射性物質の放射能を測定する場合には、液体専用のサン
プルチャンバーが用いられるが、このサンプルチャンバ
ー内を流れる液体の流速が速い場合には放射性物質がサ
ンプルチャンバー内に長く滞留しないため、測定精度が
悪いという問題がある。
On the other hand, when measuring the radioactivity of a radioactive substance contained in a continuously flowing liquid, a sample chamber dedicated to the liquid is used, but when the flow velocity of the liquid flowing in the sample chamber is high, Since the radioactive substance does not stay in the sample chamber for a long time, there is a problem that the measurement accuracy is poor.

【0006】本発明の第1の目的は気体以外の液体試
料、固体試料の核種分析を同一の放射線検出器により行
うことができ、設備の利用範囲の広い放射線検出用サン
プラを提供することにある。
A first object of the present invention is to provide a sampler for radiation detection which can perform nuclide analysis of liquid samples other than gas and solid samples by the same radiation detector, and has a wide range of equipment utilization. .

【0007】また、本発明の第2の目的はサンプルチャ
ンバー内に流れる流体の流速が速くても放射性物質の滞
留時間を長くして測定精度の向上を図ることができる流
体専用の放射線検出用サンプラを提供することにある。
A second object of the present invention is to use a fluid-exclusive sampler for radiation detection, which can prolong the residence time of the radioactive substance and improve the measurement accuracy even if the flow velocity of the fluid flowing in the sample chamber is high. To provide.

【0008】[0008]

【課題を解決するための手段】本発明は上記の目的を達
成するため、次のような手段により放射線検出用サンプ
ラを構成する。請求項1に対応する発明は、遮蔽容器
と、この遮蔽容器内の底面側に設けられた放射線検出器
と、この放射線検出器に対応する部分に該放射線検出器
を挿入し得る凹部を有し、且つ内部にサンプルガスを供
給又は排出するためのフレキシブル配管が前記遮蔽容器
の内外を貫通させて接続されたサンプルチャンバーと、
このサンプルチャンバーを昇降移動可能に支持し、且つ
液体又は固体試料の核種分析測定を行うときは前記サン
プルチャンバーを前記遮蔽容器内の上部空間部に移動さ
せ、気体の核種分析測定を行うときは前記サンプルチャ
ンバーを前記凹部内に前記放射線検出器が挿入される位
置まで下降させる移動機構とを備え、前記液体又は固体
試料の核種分析を行うとき、前記放射線検出器の近傍に
試料台を設けると共に、その上に液体又は固体試料を載
置して前記放射線検出器により、前記液体又は固体試料
を核種分析測定する。
In order to achieve the above object, the present invention constitutes a radiation detecting sampler by the following means. The invention corresponding to claim 1 has a shielding container, a radiation detector provided on the bottom surface side in the shielding container, and a recess into which the radiation detector can be inserted in a portion corresponding to the radiation detector. And a sample chamber in which a flexible pipe for supplying or discharging a sample gas to the inside is connected by penetrating the inside and outside of the shielding container,
This sample chamber is supported so as to be movable up and down, and when performing a nuclide analysis measurement of a liquid or solid sample, the sample chamber is moved to an upper space portion inside the shielding container, and when performing a gas nuclide analysis measurement, A moving mechanism that lowers the sample chamber to a position where the radiation detector is inserted into the recess, and when performing a nuclide analysis of the liquid or solid sample, a sample table is provided near the radiation detector, A liquid or solid sample is placed thereon, and the liquid or solid sample is subjected to nuclide analysis measurement by the radiation detector.

【0009】従って、このような構成の放射線検出用サ
ンプラにおいては、サンプルチャンバーによりサンプル
ガスを導入して気体の核種分析測定を行っていないとき
は同一の放射線検出器により液体又は固体試料の核種分
析測定を行うことができるので、設備の利用範囲が広く
なる。
Therefore, in the radiation detecting sampler having such a configuration, when the sample gas is introduced into the sample chamber and the nuclide analysis of the gas is not performed, the same radiation detector is used to analyze the nuclide of the liquid or solid sample. Since the measurement can be performed, the utilization range of the equipment is widened.

【0010】請求項2に対応する発明は、遮蔽容器内に
サンプルチャンバーを設けると共に、放射線検出器を設
け、この放射線検出器により前記サンプルチャンバー内
を連続して流れる流体に含有する放射性物質の放射能を
測定する放射線検出器用サンプラにおいて、前記サンプ
ルチャンバー内に前記流体中から放射性物質を分離する
中空糸膜により構成された中空糸膜フィルタを設ける。
According to the second aspect of the invention, a sample chamber is provided in the shielded container and a radiation detector is provided, and the radiation detector emits radioactive substances contained in a fluid continuously flowing in the sample chamber. In a radiation detector sampler for measuring the activity, a hollow fiber membrane filter constituted by a hollow fiber membrane for separating a radioactive substance from the fluid is provided in the sample chamber.

【0011】従って、このような構成の放射線検出用サ
ンプラにおいては、サンプルチャンバー内に中空糸膜フ
ィルタを設けることにより、連続して流れる流体の流速
を遅くすることなく、流体中に含まれる放射性物質のみ
を中空糸膜の表面に吸着させ、長時間サンプルチャンバ
ー内に滞留させることができる。
Therefore, in the radiation detecting sampler having such a structure, by providing the hollow fiber membrane filter in the sample chamber, the radioactive substance contained in the fluid is not slowed down without slowing down the flow velocity of the fluid. Only this can be adsorbed on the surface of the hollow fiber membrane and retained in the sample chamber for a long time.

【0012】[0012]

【発明の実施の形態】以下本発明の実施の形態を図面を
参照して説明する。図1は本発明による放射線検出用サ
ンプラの第1の実施の形態を示す構成例を示す断面図で
ある。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing a configuration example showing a first embodiment of a radiation detection sampler according to the present invention.

【0013】図1(a)において、1は架台2上に設置
された鉛・銅等からなる遮蔽容器で、この遮蔽容器1内
の底面のほぼ中央部には筒状の試料台3が設置され、こ
の試料台3の中途に設けられた支持体4の上に液体又は
固体分析試料5が載置される。
In FIG. 1 (a), reference numeral 1 denotes a shield container made of lead, copper or the like installed on a pedestal 2. A cylindrical sample stand 3 is installed in the shield container 1 at substantially the center of its bottom surface. Then, the liquid or solid analysis sample 5 is placed on the support 4 provided in the middle of the sample table 3.

【0014】また、試料台3内の支持体4の下方にゲル
マニュウム半導体検出器(以下Ge検出器と呼ぶ)6が
設けられ、このGe検出器6は架台1側から遮蔽容器1
の底部を貫通させて設けられたパイプ状のガイド7に取
付けられている。
Further, a germanium semiconductor detector (hereinafter referred to as a Ge detector) 6 is provided below the support 4 in the sample table 3, and the Ge detector 6 is provided from the gantry 1 side to the shielded container 1
Is attached to a pipe-shaped guide 7 which is provided by penetrating the bottom portion of the.

【0015】上記ガイド7の架台1側には、ガイド7内
に存するケーブルに電気的に接続されてGe検出器6に
より検出された放射線検出信号を増幅するプリアンプ8
が設けられ、さらにガイド7の端部には液体窒素が収容
された冷却容器9が取付けられている。
A preamplifier 8 for electrically amplifying the radiation detection signal detected by the Ge detector 6 is electrically connected to a cable existing in the guide 7 on the side of the gantry 1 of the guide 7.
Is provided, and a cooling container 9 containing liquid nitrogen is attached to the end of the guide 7.

【0016】一方、遮蔽容器1内にサンプルチャンバー
10が設けられ、このサンプルチャンバー10は遮蔽容
器1底面に垂直に取付けられた昇降機構11に上下方向
に移動可能に支持されている。
On the other hand, a sample chamber 10 is provided in the shielding container 1, and the sample chamber 10 is supported by an elevating mechanism 11 mounted vertically on the bottom surface of the shielding container 1 so as to be vertically movable.

【0017】このサンプルチャンバー10は、上記Ge
検出器6に対応する部分に凹部10aが形成され、この
凹部10a内にGe検出器6が挿入可能になっている。
また、サンプルチャンバー10内にサンプルガスを充填
するためのフレキシブル配管12及びサンプルチャンバ
ー10内のサンプルガスを外部に排出するためのフレキ
シブル配管13を遮蔽容器1の側壁の適宜箇所を貫通さ
せてそれぞれ配設すると共に、フレキシブル配管12の
端部はサンプルチャンバー10の下部に接続され、フレ
キシブル配管13の端部はサンプルチャンバー10の上
面中央部に接続される。
The sample chamber 10 is composed of the above-mentioned Ge.
A recess 10a is formed in a portion corresponding to the detector 6, and the Ge detector 6 can be inserted into the recess 10a.
In addition, a flexible pipe 12 for filling the sample chamber 10 with the sample gas and a flexible pipe 13 for discharging the sample gas in the sample chamber 10 to the outside are respectively arranged by penetrating appropriate portions of the side wall of the shielding container 1. In addition, the end of the flexible pipe 12 is connected to the lower portion of the sample chamber 10, and the end of the flexible pipe 13 is connected to the center of the upper surface of the sample chamber 10.

【0018】これらフレキシブル配管12及び13は、
サンプルチャンバー10の昇降移動に追従可能なもので
ある。次に上記のように構成された放射線検出用サンプ
ラの作用について述べる。
These flexible pipes 12 and 13 are
It is capable of following up and down movements of the sample chamber 10. Next, the operation of the radiation detecting sampler configured as described above will be described.

【0019】液体試料又は固体試料を分析するときは、
図1(a)に示すようにサンプルチャンバー10を昇降
機構11により試料台3の上方に移動させ、また試料台
3上に例えばトリチューム回収装置により採取された液
体試料又はダストサンプラ(ろ紙)やよう素フィルタ
(活性炭吸着フィルタ)により採取された固体試料等の
分析試料5を載置する。
When analyzing a liquid sample or a solid sample,
As shown in FIG. 1 (a), the sample chamber 10 is moved above the sample table 3 by the elevating mechanism 11, and a liquid sample or a dust sampler (filter paper) collected on the sample table 3 by, for example, a tritum collection device. An analysis sample 5 such as a solid sample collected by an elementary filter (activated carbon adsorption filter) is placed.

【0020】このようにすれば、Ge検出器6はその上
部に存する液体又は固体試料に含有する放射線を検出
し、その検出信号はプリアンプ8により増幅された後、
図示しない分析器、例えばマルチチャンネルアナライザ
に伝送されて核種分析が行われる。
In this way, the Ge detector 6 detects the radiation contained in the liquid or solid sample present above it, and the detection signal is amplified by the preamplifier 8 and then
The radionuclide is analyzed by transmitting it to an analyzer (not shown), for example, a multi-channel analyzer.

【0021】他方、気体分析を行う場合は、図1(a)
に示す試料台3及び分析試料5を外部に取出してGe検
出器6のみとし、サンプルチャンバー10を昇降機構1
1により下降移動させ、図1(b)に示すようにサンプ
ルチャンバー10に形成された凹部10a内にGe検出
器6が挿入される位置で停止する。
On the other hand, when performing gas analysis, FIG.
The sample stage 3 and the analysis sample 5 shown in FIG.
1 to move it downward, and then stop at the position where the Ge detector 6 is inserted into the recess 10a formed in the sample chamber 10 as shown in FIG. 1 (b).

【0022】この状態でフレキシブル配管12を通して
サンプルチャンバー10内にサンプリングガスを導入し
てGe検出器6からの検出信号を前述同様に例えばマル
チチャンネルアナライザに伝送することにより核種分析
を行うことができる。
In this state, nuclide analysis can be performed by introducing a sampling gas into the sample chamber 10 through the flexible pipe 12 and transmitting the detection signal from the Ge detector 6 to, for example, a multi-channel analyzer as described above.

【0023】このように第1の実施の形態では、遮蔽容
器1内に昇降機構11により昇降移動するサンプルチャ
ンバー10を設け、サンプルガスの核種分析を行う場合
にはGe検出器6の上部にサンプルチャンバー10を移
動させ、気体分析を行っていない場合にはサンプルチャ
ンバー10を上方へ移動させてGe検出器6部に試料台
3を配置すると共に、この試料台3に液体又は固体試料
5を載置して核種分析を行えるようにしたので、設備の
利用範囲が広くなり、従来のように気体以外に液体、固
体の各試料に対応する別の核種分析装置により核種分析
を行うための設備が不要となる。
As described above, in the first embodiment, the sample chamber 10 which is moved up and down by the elevating mechanism 11 is provided in the shielded container 1, and when the nuclide analysis of the sample gas is performed, the sample is placed above the Ge detector 6. When the gas analysis is not performed by moving the chamber 10, the sample chamber 10 is moved upward to place the sample stage 3 on the Ge detector 6 part, and the liquid or solid sample 5 is placed on the sample stage 3. Since it has been made possible to perform nuclide analysis by installing it, the range of use of the equipment is widened, and equipment for performing nuclide analysis by another nuclide analyzer that corresponds to each sample of liquid and solid other than gas as in the past is provided. It becomes unnecessary.

【0024】なお、上記第1の実施の形態ではGe検出
器6を冷却容器9に収容された液体窒素により冷却する
ようにしたが、放射線検出器によっては必ずしも液体窒
素による冷却機能がなくてもよい。
Although the Ge detector 6 is cooled by the liquid nitrogen housed in the cooling container 9 in the first embodiment, some radiation detectors do not necessarily have the cooling function by the liquid nitrogen. Good.

【0025】ところで、上記第1の実施の形態では1つ
の放射線検出用サンプラにより気体、液体、固体試料の
核種分析を行う場合について述べたが、連続して流れる
液体中に含まれる放射性物質の放射能を測定して核種分
析するものにあっては適用することができないため、液
体専用のサンプルチャンバーが必要となる。
By the way, in the first embodiment described above, the case where the nuclide analysis of the gas, the liquid and the solid sample is performed by one radiation detection sampler has been described. However, the emission of the radioactive substance contained in the continuously flowing liquid is described. It cannot be applied to those that measure the activity and analyze the nuclide, so a sample chamber dedicated to the liquid is required.

【0026】図2は本発明の第2の実施の形態として液
体専用の放射線検出用サンプラを示す断面図である。図
2において、21は鉛製の遮蔽容器で、この遮蔽容器2
1内には一方の側壁下部を貫通させて設けられた入口配
管22を通して液体が流入し、且つ内部を環流して他方
の側壁上部を貫通させて設けられた出口配管23を通し
て外部に流出するようにしたサンプルチャンバー24が
設けられている。
FIG. 2 is a sectional view showing a radiation detecting sampler dedicated to a liquid as a second embodiment of the present invention. In FIG. 2, reference numeral 21 denotes a lead shielding container, and this shielding container 2
The liquid 1 flows into the inside of 1 through an inlet pipe 22 that penetrates through the lower part of one side wall, and circulates through the inside to flow out through an outlet pipe 23 that penetrates the upper part of the other side wall. A sample chamber 24 is provided.

【0027】このサンプルチャンバー24は、両端開口
部が閉塞された筒体の上面のほぼ中央より内方に膨出さ
せた凹部24aが形成され、この凹部24aには放射線
検出器25が挿入されている。
The sample chamber 24 is formed with a recess 24a which bulges inward from the substantial center of the upper surface of the cylindrical body whose both end openings are closed. A radiation detector 25 is inserted into this recess 24a. There is.

【0028】また、サンプルチャンバー24内には液体
を浸透させ、放射性物質を吸着する中空糸膜フィルタ2
6が設けられる。この中空糸膜フィルタ26は、図3に
示すように細い管状の中空糸膜を束ねたもので、表面か
ら内部に浸透した液体が中空部を通して排水される構成
となっている。
Further, the hollow fiber membrane filter 2 which permeates a liquid into the sample chamber 24 and adsorbs a radioactive substance.
6 are provided. The hollow fiber membrane filter 26 is a bundle of thin tubular hollow fiber membranes as shown in FIG. 3, and is configured such that the liquid that has penetrated from the surface to the inside is drained through the hollow portion.

【0029】このような構成の放射線検出用サンプラに
おいて、入口配管22からサンプルチャンバー24内に
流入した液体は中空糸膜フィルタ26の表面から内部に
浸透し、中空部を通して出口配管23を通して外部に排
出される。この時、中空糸膜を通り抜けなかった放射性
物質が中空糸膜の表面に吸着する。
In the radiation detecting sampler having such a structure, the liquid flowing into the sample chamber 24 from the inlet pipe 22 permeates from the surface of the hollow fiber membrane filter 26 to the inside and is discharged to the outside through the outlet pipe 23 through the hollow portion. To be done. At this time, radioactive substances that have not passed through the hollow fiber membrane are adsorbed on the surface of the hollow fiber membrane.

【0030】従って、サンプルチャンバー24内に流れ
る液体の流速が速くても液体中に含まれる放射性物質の
みを中空糸膜の表面に長く滞留させることが可能となる
ので、放射線検出器25による放射線の測定精度を向上
させることができる。
Therefore, even if the flow rate of the liquid flowing in the sample chamber 24 is high, only the radioactive substance contained in the liquid can be retained on the surface of the hollow fiber membrane for a long time. The measurement accuracy can be improved.

【0031】上記第2の実施の形態によれば、サンプル
チャンバー24内に中空糸膜フィルタ26を設けること
により、連続して流れる液体の流速を遅くすることな
く、液体中に含まれる放射性物質のみを中空糸膜の表面
に吸着させ、長時間サンプルチャンバー24内に滞留さ
せることができ、放射線検出器25への放射線量が増加
する。
According to the second embodiment described above, by providing the hollow fiber membrane filter 26 in the sample chamber 24, only the radioactive substance contained in the liquid can be provided without slowing down the flow velocity of the liquid flowing continuously. Can be adsorbed on the surface of the hollow fiber membrane and retained in the sample chamber 24 for a long time, and the radiation dose to the radiation detector 25 increases.

【0032】このことは、被測定物が低放射能レベルの
液体の場合、放射線検出器が測定した放射能値/バック
グランド放射能値比(S/N比)が向上し、測定精度を
良くすることができる。以上第2の実施の形態は測定対
象が液体として説明してきたが、気体に対しても適用す
ることができる。
This means that when the object to be measured is a liquid having a low radioactivity level, the radioactivity / background radioactivity ratio (S / N ratio) measured by the radiation detector is improved and the measurement accuracy is improved. can do. Although the second embodiment has been described as the measurement target being a liquid, it can be applied to a gas.

【0033】[0033]

【発明の効果】以上述べたように本発明による放射線検
出用サンプラによれば、気体以外の液体試料、固体試料
の核種分析を同一の放射線検出器により行うことがで
き、設備の利用範囲を拡大することができる。
As described above, according to the radiation detecting sampler of the present invention, it is possible to perform the nuclide analysis of liquid samples other than gas and solid samples by the same radiation detector, thus expanding the range of use of the equipment. can do.

【0034】また、流体専用の放射線検出用サンプラに
よれば、被測定物が低レベル放射能レベルの流体であっ
ても、サンプルチャンバー内に設けられた中空糸膜フィ
ルタにより被測定物質と流体を分離し、サンプルチャン
バー内に放射性物質を滞留させることができるので、連
続してサンプルチャンバー内を流れる流体の流速が速く
ても精度良く放射能を測定することができる。
Further, according to the radiation detecting sampler dedicated to the fluid, even if the object to be measured is a fluid having a low level of radioactivity, the hollow fiber membrane filter provided in the sample chamber separates the object to be measured and the fluid. Since the radioactive substance can be separated and retained in the sample chamber, the radioactivity can be accurately measured even if the flow velocity of the fluid continuously flowing in the sample chamber is high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による放射線検出用サンプラの第1の実
施の形態を示すもので、(a)は液体又は固体試料の分
析を行う場合の断面図、(b)は気体試料の分析を行う
場合の断面図。
1A and 1B show a first embodiment of a radiation detection sampler according to the present invention, where FIG. 1A is a sectional view when a liquid or solid sample is analyzed, and FIG. 1B is a gas sample analysis. Sectional view of the case.

【図2】本発明による液体専用の放射線検出用サンプラ
の第2の実施の形態を示す断面図。
FIG. 2 is a cross-sectional view showing a second embodiment of a liquid-specific radiation detection sampler according to the present invention.

【図3】図2の中空糸膜フィルタのA部を拡大して示す
斜視図。
FIG. 3 is an enlarged perspective view showing a portion A of the hollow fiber membrane filter of FIG.

【符号の説明】[Explanation of symbols]

1……鉛・銅等からなる遮蔽容器 2……架台 3……試料台 4……支持体 5……固体分析試料 6……Ge検出器 7……ガイド 8……プリアンプ 9……冷却容器 10……サンプルチャンバー 11……昇降機構 12,13……フレキシブル配管 21……鉛製の遮蔽容器 22……入口配管 23……出口配管 24……サンプルチャンバー 24a……凹部 25……放射線検出器 26……中空糸膜フィルタ 1 ... Shielding container made of lead, copper, etc. 2 ... Stand 3 ... Sample stand 4 ... Support 5 ... Solid analysis sample 6 ... Ge detector 7 ... Guide 8 ... Preamplifier 9 ... Cooling container 10 ... Sample chamber 11 ... Lifting mechanism 12, 13 ... Flexible piping 21 ... Lead shielding container 22 ... Inlet piping 23 ... Exit piping 24 ... Sample chamber 24a ... Recess 25 ... Radiation detector 26 ... Hollow fiber membrane filter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 遮蔽容器と、この遮蔽容器内の底面側に
設けられた放射線検出器と、この放射線検出器に対応す
る部分に該放射線検出器を挿入し得る凹部を有し、且つ
内部にサンプルガスを供給又は排出するためのフレキシ
ブル配管が前記遮蔽容器の内外を貫通させて接続された
サンプルチャンバーと、このサンプルチャンバーを昇降
移動可能に支持し、且つ液体又は固体試料の核種分析測
定を行うときは前記サンプルチャンバーを前記遮蔽容器
内の上部空間部に移動させ、気体の核種分析測定を行う
ときは前記サンプルチャンバーを前記凹部内に前記放射
線検出器が挿入される位置まで下降させる移動機構とを
備え、 前記液体又は固体試料の核種分析を行うとき、前記放射
線検出器の近傍に試料台を設けると共に、その上に液体
又は固体試料を載置して前記放射線検出器により、前記
液体又は固体試料を核種分析測定することを特徴とする
放射線検出用サンプラ。
1. A shielded container, a radiation detector provided on the bottom side in the shielded container, and a recess into which the radiation detector can be inserted in a portion corresponding to the radiation detector A sample chamber to which a flexible pipe for supplying or discharging a sample gas penetrates the inside and outside of the shielding container and is connected, and supports this sample chamber so that it can be moved up and down, and performs nuclide analysis measurement of a liquid or solid sample. When moving the sample chamber to the upper space of the shield container, when performing the nuclide analysis measurement of the gas, a moving mechanism that lowers the sample chamber to the position where the radiation detector is inserted into the recess When performing a nuclide analysis of the liquid or solid sample, a sample table is provided near the radiation detector, and a liquid or solid sample is placed on the sample table. By the radiation detector is placed a radiation detecting samplers, characterized in that the liquid or solid sample is measured nuclide analysis.
【請求項2】 遮蔽容器内にサンプルチャンバーを設け
ると共に、放射線検出器を設け、この放射線検出器によ
り前記サンプルチャンバー内を連続して流れる流体に含
有する放射性物質の放射能を測定する放射線検出用サン
プラにおいて、 前記サンプルチャンバー内に前記流体中から放射性物質
を分離する中空糸膜により構成された中空糸膜フィルタ
を設けたことを特徴とする放射線検出用サンプラ。
2. A radiation detector for providing a sample chamber in a shielded container and a radiation detector for measuring the radioactivity of a radioactive substance contained in a fluid continuously flowing in the sample chamber by the radiation detector. A sampler for radiation detection, wherein a hollow fiber membrane filter constituted by a hollow fiber membrane for separating radioactive substances from the fluid is provided in the sample chamber.
JP10022696A 1996-04-22 1996-04-22 Radiation detection sampler Expired - Fee Related JP3779374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10022696A JP3779374B2 (en) 1996-04-22 1996-04-22 Radiation detection sampler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10022696A JP3779374B2 (en) 1996-04-22 1996-04-22 Radiation detection sampler

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005142601A Division JP2005249805A (en) 2005-05-16 2005-05-16 Sampler for radiation detection

Publications (2)

Publication Number Publication Date
JPH09288185A true JPH09288185A (en) 1997-11-04
JP3779374B2 JP3779374B2 (en) 2006-05-24

Family

ID=14268379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10022696A Expired - Fee Related JP3779374B2 (en) 1996-04-22 1996-04-22 Radiation detection sampler

Country Status (1)

Country Link
JP (1) JP3779374B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224755A (en) * 2013-05-16 2014-12-04 日本バイリーン株式会社 Monitoring device and cartridge filter for radioactive material
CN112098673A (en) * 2020-10-29 2020-12-18 杭州智行远机器人技术有限公司 Automatic sampling control system and control method based on SCARA robot
JP6906202B1 (en) * 2021-02-26 2021-07-21 株式会社ヨシダ High radiation dose rate solid sample measuring device
CN113856586A (en) * 2021-08-20 2021-12-31 中国原子能科学研究院 Device for gas-liquid conversion and gas-liquid two-phase online sampling of iodine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224755A (en) * 2013-05-16 2014-12-04 日本バイリーン株式会社 Monitoring device and cartridge filter for radioactive material
CN112098673A (en) * 2020-10-29 2020-12-18 杭州智行远机器人技术有限公司 Automatic sampling control system and control method based on SCARA robot
JP6906202B1 (en) * 2021-02-26 2021-07-21 株式会社ヨシダ High radiation dose rate solid sample measuring device
CN113856586A (en) * 2021-08-20 2021-12-31 中国原子能科学研究院 Device for gas-liquid conversion and gas-liquid two-phase online sampling of iodine
CN113856586B (en) * 2021-08-20 2022-12-13 中国原子能科学研究院 Device for gas-liquid conversion and gas-liquid two-phase online sampling of iodine

Also Published As

Publication number Publication date
JP3779374B2 (en) 2006-05-24

Similar Documents

Publication Publication Date Title
US6964190B2 (en) Particulate matter concentration measuring apparatus
Popjak et al. Scintillation counter for the measurement of radioactivity of vapors in conjunction with gas-liquid chromatography
CN104820230B (en) A kind of Low background α, β activity analysis instrument
CN109298441B (en) Detection apparatus suitable for radioactive sample
JPH09170988A (en) Device for solution analysis by fluorescent x-ray
CN105842725A (en) Method for detecting specific activity of tritiated steam in air
US4224517A (en) Device for assaying uranium and/or thorium in ore specimens comprising gold foil for suppressing compton background
Popjak et al. Scintillation counter for simultaneous assay of H3 and C14 in gas-liquid chromatographic vapors
US4786810A (en) Solid state counting system for beta and gamma isotopes of all energies
JPH09288185A (en) Sampler for radiation detection
CN103091344A (en) Device and method for detecting particulate matters and elements
US4835395A (en) Continuous aqueous tritium monitor
CN107271469A (en) The heavy metal in water semi-quantitative analysis method analyzed based on X-ray fluorescence spectra
US5440120A (en) Sampling arrangement for thermal gravimetric analyzer
JP2005249805A (en) Sampler for radiation detection
US3202819A (en) Beta and gamma measuring apparatus for fluids
JP2966333B2 (en) Internal pressure creep rupture detector
EP1281066B1 (en) Method and apparatus for measuring the density of a material
KR101672846B1 (en) Vapor-liquid equilibrium distribution measurement device
EP4273590A1 (en) Device for determination of specific activity of radiocarbon (14c)
JPH04184288A (en) Sampler for monitoring radioactive rays
KR100668223B1 (en) Apparatus for measuring a radioactive surface contamination using inorganic fluor-impregnated membranes
Banick Determination of Americium-243 by Separation and Counting of Neptunium-239 Daughter.
JPS61160079A (en) Apparatus for analysis of beta nuclide
CA3103948A1 (en) System and method for evaluating elution efficiency and radiopurity of tc-99m generators

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040319

A977 Report on retrieval

Effective date: 20050304

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050315

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060228

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20060302

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees