JPS61160079A - Apparatus for analysis of beta nuclide - Google Patents
Apparatus for analysis of beta nuclideInfo
- Publication number
- JPS61160079A JPS61160079A JP82585A JP82585A JPS61160079A JP S61160079 A JPS61160079 A JP S61160079A JP 82585 A JP82585 A JP 82585A JP 82585 A JP82585 A JP 82585A JP S61160079 A JPS61160079 A JP S61160079A
- Authority
- JP
- Japan
- Prior art keywords
- scintillators
- beta
- laminated
- container
- coaxial cylindrical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measurement Of Radiation (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、ベータ線放出核種の分析に係り、とくに、含
有する同位体の種類が明らかな場合に好適な放射能分析
装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to the analysis of beta-ray emitting nuclides, and particularly to a radioactivity analyzer suitable for cases where the type of isotope contained is known.
ベータ線放出核種(以下ベータ核種と称略する)の89
3 r 、 903 rの分析法は、「放射性ストロン
チウム分析法」、科学技術庁(1963)に詳述されて
いる。この中では、3r同位体の化学分離から同位体の
核種分析法が明らかにされている。同様に科技庁、原子
力安全局監修の[原子力安全委員会安全審査指針集JP
180の中でも、Sr同位体の分析法が述べられている
。3rを化学分離したフラクションから8113rと9
03 rを定量分析する方法には、以下の三方法がある
。。89 of beta-ray emitting nuclides (hereinafter referred to as beta nuclides)
The analysis method for 3r and 903r is detailed in "Radioactive Strontium Analysis Method", Science and Technology Agency (1963). In this work, a method for isotopic nuclide analysis based on chemical separation of 3r isotopes has been clarified. Similarly, [Nuclear Safety Commission Safety Examination Guidelines Collection JP] supervised by the Science and Technology Agency and the Nuclear Safety Bureau
180 also describes a method for analyzing Sr isotopes. 8113r and 9 were obtained from the chemically separated fraction of 3r.
There are the following three methods for quantitatively analyzing 03r. .
(i) srを純粋分離した直後の放射能と、2週間
以上放置して903 r 90yの放射平衡に達した
状態の放射能(ミルキング)から90 B rと119
Srの放射能を定量する。(i) 90 Br and 119 from the radioactivity immediately after pure separation of sr and the radioactivity (milking) in a state where the radioactivity of 903 r 90y has been reached after leaving it for more than 2 weeks.
Quantify the radioactivity of Sr.
(2)純粋分離した3rフラクシヨンの90Y生成過程
(放射平衡に達する過程)の2つの異なる時刻で測定し
、 Y生成過程から 3rと Srを定量する。(2) Measure at two different times during the 90Y generation process (the process of reaching radiative equilibrium) of the pure separated 3r fraction, and quantify 3r and Sr from the Y generation process.
(3)ベータ線スペクトロメトリーによって 903
rと893 、を直接分離計測し、それぞれの量を求め
る。(3) By beta-ray spectrometry 903
Directly separate and measure r and 893 to find their respective amounts.
以上が、参考文献の概要であり、現状の原子力発電所の
Br分析も、このいずれかの方法をとっている。上記(
13、(2)の方法は、いずれも903 rと90yの
放射平衡に基づくものであり、分析所要時間は1〜2週
間である。(3)の方法は、ベータ線スペクトルをコン
ピュータ解析するため、分析システムの構成規模とコス
トが大きくなる。The above is an overview of the reference literature, and the current Br analysis of nuclear power plants also uses one of these methods. the above(
13, method (2) is all based on the radiation equilibrium of 903r and 90y, and the time required for analysis is 1 to 2 weeks. In method (3), the beta ray spectrum is analyzed by computer, which increases the size and cost of the analysis system.
本発明の目的は、ベータ核種の同位体分析において、自
動化が容易で高感度測定が可能なベータ核種分析装置を
提供することにある。An object of the present invention is to provide a beta-nuclide analyzer that is easy to automate and capable of highly sensitive measurement in isotope analysis of beta-nuclides.
本発明は、より高感度の測定を実現するため、上述の平
板積層シンチレータを積層円柱状あるいは積層球状に設
け、測定試料水中に浸す構造をとっている。この構造は
平板積層シンチレータに比べ、測定の幾何効率を大幅に
向上できる。さらに、測定試料の流入、流出口を設け、
フローセル構造をとることによって、自動化が容易な検
出器となるものである。In order to achieve higher sensitivity measurement, the present invention employs a structure in which the above-described flat plate laminated scintillator is provided in the form of a laminated cylinder or a laminated sphere, and is immersed in the measurement sample water. This structure can greatly improve the geometrical efficiency of measurements compared to a flat plate laminated scintillator. Furthermore, an inlet and an outlet for the measurement sample are provided.
The flow cell structure makes the detector easy to automate.
以下、本発明の一実施例を第1図により説明する。本発
明の構成は、対向する2つの光電子増倍管1の間に円筒
状積層シンチレータ2を装てんした中空円筒容器3を設
ける。中空円筒容器3のと下には、測定試料を流入、流
出させる出入口4゜5を設ける。円筒状積層シンチレー
タ2と中空円筒容器3からなるフローセルおよび光電子
増倍管は鉛じゃへい体6の中に収納され、外部放射線の
入射を阻止する。2つの光電子増倍管1の出力信号は増
幅器7、波形弁別回路8、シングルチャンネルアナライ
ザー9.10.11.を介し、データ処理装置12へ入
力し、ベータ線の核種分析を実施する。以下、本発明の
動作を詳細に説明する。An embodiment of the present invention will be described below with reference to FIG. In the configuration of the present invention, a hollow cylindrical container 3 in which a cylindrical laminated scintillator 2 is mounted is provided between two photomultiplier tubes 1 facing each other. At the bottom of the hollow cylindrical container 3, an inlet/outlet 4.degree. 5 is provided through which the sample to be measured flows in and out. A flow cell and a photomultiplier tube consisting of a cylindrical laminated scintillator 2 and a hollow cylindrical container 3 are housed in a lead jacket 6 to block the incidence of external radiation. The output signals of the two photomultiplier tubes 1 are sent to an amplifier 7, a waveform discrimination circuit 8, and a single channel analyzer 9.10.11. The data is input to the data processing device 12 via the data processor 12, and nuclide analysis of beta rays is carried out. The operation of the present invention will be explained in detail below.
と<K、ここでは、ベータ核動分析として、Br分析を
対象として説明する。Br分析では、液体クロマトグラ
フィなどの化学分離操作でBrフラクションを抽出し、
そめフラクション中に含まれる89Sr、 90B、
、 IOyを分析する必要がある。and <K, here, Br analysis will be explained as beta nuclear motion analysis. In Br analysis, the Br fraction is extracted using chemical separation operations such as liquid chromatography.
89Sr, 90B contained in the Some fraction
, it is necessary to analyze IOy.
89B r 、 903 rは分析対象核種でsす、9
0yは903、の娘核種である。それぞれの核データを
表1に示す。89B r, 903 r are the nuclides to be analyzed, 9
0y is the daughter nuclide of 903. The nuclear data for each are shown in Table 1.
第2図には、本発明のベータ核種弁別原理の説明図を示
す。光電子増倍管1に螢光減衰定数τの異なるシンチレ
ータ21,22,2.3を順に積層する。各シンチレー
タ21,22.23が独立の場合は第3図に示す出力波
形が増幅器7の出力から得られる。各シンチレータの螢
光減衰定数τが異なるため出力波形の立ち上が秒時間が
異なる。FIG. 2 shows an explanatory diagram of the beta nuclide discrimination principle of the present invention. Scintillators 21, 22, and 2.3 having different fluorescence attenuation constants τ are laminated in order on the photomultiplier tube 1. When each scintillator 21, 22, 23 is independent, the output waveform shown in FIG. 3 is obtained from the output of the amplifier 7. Since the fluorescence attenuation constant τ of each scintillator is different, the rise time of the output waveform is different.
第2図に示した積層シンチレータの場合は、第4図に示
した出力波形となる。すなわち、第2図に示した積層シ
ンチレータ21は、ベータ線の最大エネルギーBaの飛
租厚、シンチレータ22は、シンチレータ21と22を
加算した厚さが、分析に
の飛程厚になるようl計する(シンチレータ23はEC
の飛程厚以上に設計すれば良い)。Br分析を対象にし
た具体的な積層シンチレータの設計例を表2に示した。In the case of the laminated scintillator shown in FIG. 2, the output waveform is shown in FIG. 4. That is, the laminated scintillator 21 shown in FIG. 2 has a flight thickness of the maximum energy Ba of beta rays, and the scintillator 22 has a thickness so that the sum of the thicknesses of the scintillators 21 and 22 is the range thickness for analysis. (Scintillator 23 is EC
(The design should be designed to have a range thickness greater than or equal to Table 2 shows specific design examples of laminated scintillators targeted for Br analysis.
このように設計した検出器からは、分析対象のベータ線
エネルギーに対応して、τaの立ち上がり時間を持つ出
力波形、τaとτbで合成された出力波形、τa、τb
、τCで合成された出力波形が得られる(第4図)。こ
の立ち上がり時間を弁別することKよって、ベータ線の
エネルギーを識で自る。この計測系ブロワ線を第1図中
に示した。波形弁別回路8で出力波形の立ち上が9時間
を弁別する。波形弁別回路8の出力は波高値の異なるパ
ルスであり、シンプルチャンネル9,10.11で識別
し、データ処理装置12で得る各波高値のカウント数か
ら、ベータ核種を定量する。A detector designed in this way produces an output waveform with a rise time of τa, an output waveform synthesized by τa and τb, τa, τb, corresponding to the beta ray energy to be analyzed.
, τC, a synthesized output waveform is obtained (FIG. 4). By distinguishing this rise time, we can discern the energy of beta rays. This measurement system blower wire is shown in FIG. A waveform discrimination circuit 8 discriminates the rising 9 hours of the output waveform. The output of the waveform discrimination circuit 8 is a pulse with different peak values, which are identified by simple channels 9, 10, 11, and the beta nuclide is quantified from the count number of each peak value obtained by the data processing device 12.
本発明は、上記ベータ核種弁別の原理を応用するもので
あり、積層シンチレータを同軸円筒状に製作したものを
用いる。第1図中に同軸円筒状の積層シンチレータの構
造13を示す1.シンチレータ14がもつとも飛程の長
いところを対象にした部分で第2図のシンチレータ23
に対応する。同様に、第1図のシンチレータ15は、第
2図のシンチレータ22に、第1図のシンチレータ1G
は、第2図のシンチレータ21に対応する。この同軸円
筒状の積層シンチレータ13は、上下の光電子増倍管1
へ、光学的に接続する。試料入口配管5から流入する液
体試料は同軸円筒状の積層シンチレータ13のまわりを
通過して、試料出口4から流出する。このフローセル形
の検出器を用いると第2図の幾伺効率に比べ、3倍以上
の効率向上が望める。すなわち、3倍以との高感度測定
が可能となる。The present invention applies the principle of beta nuclide discrimination described above, and uses a laminated scintillator manufactured in a coaxial cylindrical shape. 1. The structure 13 of a coaxial cylindrical laminated scintillator is shown in FIG. The scintillator 23 in Fig. 2 is the part that targets the long range of the scintillator 14.
corresponds to Similarly, scintillator 15 in FIG. 1 is similar to scintillator 22 in FIG. 2, scintillator 1G in FIG.
corresponds to the scintillator 21 in FIG. This coaxial cylindrical laminated scintillator 13 has upper and lower photomultiplier tubes 1
optically connect to. A liquid sample flowing in from the sample inlet pipe 5 passes around a coaxial cylindrical laminated scintillator 13 and flows out from the sample outlet 4. If this flow cell type detector is used, an efficiency improvement of more than three times can be expected compared to the somewhat higher efficiency shown in FIG. In other words, highly sensitive measurement of 3 times or more becomes possible.
第5図には、球状の積層シンチレータ20を用いた変形
例を示す。球状の積層シンチレータ20を第1図と同様
に光電子増倍管1と中空円筒容器3で囲まれた中に充て
んする。試料水は、試料入口配管5から流入させ、試料
出口4から流出させる。この変形例は、第1図の構造よ
り試料水とシンチレータの密着度が大きくな9、よ妙高
感度が達成できる。FIG. 5 shows a modification using a spherical laminated scintillator 20. A spherical laminated scintillator 20 is filled in a space surrounded by a photomultiplier tube 1 and a hollow cylindrical container 3 as in FIG. The sample water flows in through the sample inlet pipe 5 and flows out through the sample outlet 4. In this modification, the degree of adhesion between the sample water and the scintillator is greater than the structure shown in FIG. 19, and a much higher sensitivity can be achieved.
第1図、第5図のいずれもフローセル形の検出器である
ため、Srを液体クロマトグラフィーで分離した溶出液
を容易に直接測定することが可能でおる。これは、溶出
液を配管流路のバルブ切替だけで移送可能であるため、
測定の自動化が容易に達成できる。Since both of FIG. 1 and FIG. 5 are flow cell type detectors, it is possible to easily and directly measure the eluate from which Sr has been separated by liquid chromatography. This is because the eluate can be transferred simply by switching the valve in the piping flow path.
Automation of measurements can be easily achieved.
表1
〔発明の効果〕
本発明によれば、市販の放射線計測モジュールだけの単
純女構成で、高感度なベータ核種弁別が可能となり、従
来法に比べ約3倍の感直向上を図つた自動分析装置を提
供できる。Table 1 [Effects of the invention] According to the present invention, highly sensitive beta nuclide discrimination is possible with a simple configuration using only a commercially available radiation measurement module, and an automatic method that improves sensitivity by about three times compared to conventional methods We can provide analysis equipment.
第1図は、本発明の実施例の構成図、第2図はベータ核
種弁別1理の説明図、第3図は各シンチレータ単独で用
いる場合の出力波形図、第4図は積層シンチレータの出
力波形図、第5図は、本発明の変形例を示す構成図であ
る。
1・・・光電子増倍管、2・・・円筒状積層シンチレー
タ3・・・中空円筒容器、5・・・試料入口配管、6・
・・鉛じゃへい体、7・・・増幅器、8・・・波形弁別
回路、12・・・データ処理装置。Figure 1 is a configuration diagram of an embodiment of the present invention, Figure 2 is an explanatory diagram of the first principle of beta nuclide discrimination, Figure 3 is an output waveform diagram when each scintillator is used alone, and Figure 4 is the output of the laminated scintillator. The waveform diagram in FIG. 5 is a configuration diagram showing a modification of the present invention. DESCRIPTION OF SYMBOLS 1... Photomultiplier tube, 2... Cylindrical laminated scintillator 3... Hollow cylindrical container, 5... Sample inlet piping, 6...
...Lead jacket body, 7...Amplifier, 8...Waveform discrimination circuit, 12...Data processing device.
Claims (1)
ータから得られる出力波形を弁別するベータ線放出核種
分析装置において、螢光減衰定数の異なるシンチレータ
を同軸円筒状に積層し、かつそのシンチレータを中空容
器内に設け、液体試料の流入、流出口を設けることを特
徴としたベータ核種分析装置。1. In a beta-ray emitting nuclide analyzer that discriminates output waveforms obtained from scintillators with different fluorescence attenuation constants and radiation absorption thicknesses, scintillators with different fluorescence attenuation constants are stacked in a coaxial cylindrical shape, and the scintillators are A beta nuclide analyzer characterized by being installed in a hollow container and provided with inflow and outflow ports for a liquid sample.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP82585A JPS61160079A (en) | 1985-01-09 | 1985-01-09 | Apparatus for analysis of beta nuclide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP82585A JPS61160079A (en) | 1985-01-09 | 1985-01-09 | Apparatus for analysis of beta nuclide |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61160079A true JPS61160079A (en) | 1986-07-19 |
Family
ID=11484425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP82585A Pending JPS61160079A (en) | 1985-01-09 | 1985-01-09 | Apparatus for analysis of beta nuclide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61160079A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6327883U (en) * | 1986-08-08 | 1988-02-24 | ||
JPH06156869A (en) * | 1992-11-09 | 1994-06-03 | Idai Kagi Kofun Yugenkoshi | Automatic paper feeding and folding machine |
WO2002101413A1 (en) * | 2001-06-12 | 2002-12-19 | Institute Of Whole Body Metabolism | Particle beam quantative sensor |
WO2006089991A1 (en) * | 2005-02-25 | 2006-08-31 | Universidad De Barcelona | Radiochemical sensor for fluids |
EP2120065A3 (en) * | 2008-04-22 | 2011-06-08 | Canberra Albuquerque, Inc. | Scintillation-Based Continuous Monitor for Beta-Emitting Radionuclides in a Liquid Medium |
WO2024190868A1 (en) * | 2023-03-15 | 2024-09-19 | 株式会社テクノブリッジ | Radiation detecting device and radiation measuring device |
-
1985
- 1985-01-09 JP JP82585A patent/JPS61160079A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6327883U (en) * | 1986-08-08 | 1988-02-24 | ||
JPH06156869A (en) * | 1992-11-09 | 1994-06-03 | Idai Kagi Kofun Yugenkoshi | Automatic paper feeding and folding machine |
WO2002101413A1 (en) * | 2001-06-12 | 2002-12-19 | Institute Of Whole Body Metabolism | Particle beam quantative sensor |
WO2006089991A1 (en) * | 2005-02-25 | 2006-08-31 | Universidad De Barcelona | Radiochemical sensor for fluids |
ES2258932A1 (en) * | 2005-02-25 | 2006-09-01 | Universidad De Barcelona | Radiochemical sensor for fluids |
EP2120065A3 (en) * | 2008-04-22 | 2011-06-08 | Canberra Albuquerque, Inc. | Scintillation-Based Continuous Monitor for Beta-Emitting Radionuclides in a Liquid Medium |
US8039810B2 (en) | 2008-04-22 | 2011-10-18 | Canberra Industries, Inc. | Scintillation-based continuous monitor for beta-emitting radionuclides in a liquid medium |
WO2024190868A1 (en) * | 2023-03-15 | 2024-09-19 | 株式会社テクノブリッジ | Radiation detecting device and radiation measuring device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4528450A (en) | Method and apparatus for measuring radioactive decay | |
JPS61160079A (en) | Apparatus for analysis of beta nuclide | |
CN109557575A (en) | A kind of neutron multiplicity measuring device and its application method | |
McCurdy et al. | Determination of radium-224,-226, and-228 by coincidence spectrometry | |
JPS60111981A (en) | Quantitative analysis of strontium | |
JPS6063485A (en) | Radioactive nuclide analyzer | |
RU2217777C2 (en) | Device for evaluating concentration of radioactive materials | |
RU2102775C1 (en) | Neutron flux recorder | |
Corless | Determination of Calcium-48 in Natural Calcium by Neutron Activation Analysis. | |
Adams et al. | Activation analysis of antimony by sum-coincidence spectrometry | |
Basinger et al. | A seven-detector angular-correlation apparatus for the study of short-lived nuclei | |
Rippon | An assessment of Cherenkov detectors as fission product monitors in water cooled reactors | |
RU2189612C1 (en) | Method for testing of enrichment of gaseous uranium hexafluoride by uranium-235 | |
KR20160141593A (en) | Multi-SCA Data Logger for Radiotracer | |
SU890291A1 (en) | Telescope for registering nucleous particles | |
Andersson Sunden et al. | GeCo-A gamma-ray spectroscopysystem for evaluation of coincidencemethods in radionuclide monitoring | |
JPS62225953A (en) | Automatic radioactive strontium analyzer | |
Guerrero et al. | Neutron capture and fission reactions on 235U: cross sections, α-ratios and prompt γ-ray emission from fission | |
CN117665891A (en) | Measuring equipment and measuring method for activity concentration of alpha nuclide or beta nuclide | |
Krebs | Contribution to the x-raying of tires | |
CN113625331A (en) | Real-time on-line monitoring method for specific activity of total alpha and total beta of water body | |
CN118797213A (en) | Element detection limit calculation method and device based on multiple detectors | |
Wainerdi et al. | Investigations in Automated Activation Analysis | |
Langhorst | Investigation into the improvement of monitoring gaseous effluents for radioactive iodine | |
Fardy | Current techniques in neutron activation analysis |