JP3779374B2 - Radiation detection sampler - Google Patents

Radiation detection sampler Download PDF

Info

Publication number
JP3779374B2
JP3779374B2 JP10022696A JP10022696A JP3779374B2 JP 3779374 B2 JP3779374 B2 JP 3779374B2 JP 10022696 A JP10022696 A JP 10022696A JP 10022696 A JP10022696 A JP 10022696A JP 3779374 B2 JP3779374 B2 JP 3779374B2
Authority
JP
Japan
Prior art keywords
sample
liquid
radiation
sample chamber
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10022696A
Other languages
Japanese (ja)
Other versions
JPH09288185A (en
Inventor
義行 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Plant Systems and Services Corp filed Critical Toshiba Plant Systems and Services Corp
Priority to JP10022696A priority Critical patent/JP3779374B2/en
Publication of JPH09288185A publication Critical patent/JPH09288185A/en
Application granted granted Critical
Publication of JP3779374B2 publication Critical patent/JP3779374B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、原子力施設における排気筒放射線モニタを校正するための放射線検出用サンプラに関する。
【0002】
【従来の技術】
原子力施設における排気筒には、排気ガス中に放射性物質が含まれているか否かを監視する目的で排気筒放射線モニタが設置されている。
従来、かかる排気筒放射線モニタを校正するため、排気筒放射線モニタのサンプリングガスに含まれている放射性物質の核種分析を行う放射線検出用サンプラが使用されている。
【0003】
この放射線検出用サンプラは、気体に含まれる放射性物質の核種分析を行うだけのものであり、液体試料、固体試料に対しては排気筒放射線モニタの他の設備で採取し、その核種分析は別の核種分析装置を使用して行っている。
【0004】
【発明が解決しようとする課題】
このように従来の放射線検出用サンプラでは、気体だけの核種分析しかできないため、気体以外の液体試料、固体試料についてはそれぞれ別の核種分析装置により核種分析を行うための各設備が必要となる。
【0005】
一方、連続して流れる液体中に含まれる放射性物質の放射能を測定する場合には、液体専用のサンプルチャンバーが用いられるが、このサンプルチャンバー内を流れる液体の流速が速い場合には放射性物質がサンプルチャンバー内に長く滞留しないため、測定精度が悪いという問題がある。
【0006】
本発明の第1の目的は気体以外の液体試料、固体試料の核種分析を同一の放射線検出器により行うことができ、設備の利用範囲の広い放射線検出用サンプラを提供することにある。
【0008】
【課題を解決するための手段】
本発明は上記目的を達成するため、次のような手段により放射線検出用サンプラを構成する。
請求項1に対応する発明は、遮蔽容器と、この遮蔽容器の底部に設置された放射線検出器と、前記遮蔽容器内であって前記放射線検出器上方に昇降自在に設置され、流体試料を供給・排出するフレキシブル配管が前記遮蔽容器の内外を貫通させて接続されており、前記放射線検出器に対向する位置に凹部が設けられたチェンバーと、前記放射線検出器と前記凹部との間に設けられた着脱自在の試料台とを具備し、前記試料台が配置されている状態では前記チェンバーは前記放射線検出器上方に移動し、前記チェンバー内の試料を検出対象とする場合には前記試料台を除去して前記放射線検出器が前記凹部内に挿入されるよう前記チェンバーを下降移動させる。
【0009】
従って、このような構成の放射線検出用サンプラにおいては、サンプルチャンバーによりサンプルガスを導入して気体の核種分析測定を行っていないときは同一の放射線検出器により液体又は固体試料の核種分析測定を行うことができるので、設備の利用範囲が広くなる。
【0012】
【発明の実施の形態】
以下本発明の実施の形態を図面を参照して説明する。
図1は本発明による放射線検出用サンプラの第1の実施の形態を示す構成例を示す断面図である。
【0013】
図1(a)において、1は架台2上に設置された鉛・銅等からなる遮蔽容器で、この遮蔽容器1内の底面のほぼ中央部には筒状の試料台3が設置され、この試料台3の中途に設けられた支持体4の上に液体又は固体分析試料5が載置される。
【0014】
また、試料台3内の支持体4の下方にゲルマニュウム半導体検出器(以下Ge検出器と呼ぶ)6が設けられ、このGe検出器6は架台1側から遮蔽容器1の底部を貫通させて設けられたパイプ状のガイド7に取付けられている。
【0015】
上記ガイド7の架台1側には、ガイド7内に存するケーブルに電気的に接続されてGe検出器6により検出された放射線検出信号を増幅するプリアンプ8が設けられ、さらにガイド7の端部には液体窒素が収容された冷却容器9が取付けられている。
【0016】
一方、遮蔽容器1内にサンプルチャンバー10が設けられ、このサンプルチャンバー10は遮蔽容器1底面に垂直に取付けられた昇降機構11に上下方向に移動可能に支持されている。
【0017】
このサンプルチャンバー10は、上記Ge検出器6に対応する部分に凹部10aが形成され、この凹部10a内にGe検出器6が挿入可能になっている。また、サンプルチャンバー10内にサンプルガスを充填するためのフレキシブル配管12及びサンプルチャンバー10内のサンプルガスを外部に排出するためのフレキシブル配管13を遮蔽容器1の側壁の適宜箇所を貫通させてそれぞれ配設すると共に、フレキシブル配管12の端部はサンプルチャンバー10の下部に接続され、フレキシブル配管13の端部はサンプルチャンバー10の上面中央部に接続される。
【0018】
これらフレキシブル配管12及び13は、サンプルチャンバー10の昇降移動に追従可能なものである。
次に上記のように構成された放射線検出用サンプラの作用について述べる。
【0019】
液体試料又は固体試料を分析するときは、図1(a)に示すようにサンプルチャンバー10を昇降機構11により試料台3の上方に移動させ、また試料台3上に例えばトリチューム回収装置により採取された液体試料又はダストサンプラ(ろ紙)やよう素フィルタ(活性炭吸着フィルタ)により採取された固体試料等の分析試料5を載置する。
【0020】
このようにすれば、Ge検出器6はその上部に存する液体又は固体試料に含有する放射線を検出し、その検出信号はプリアンプ8により増幅された後、図示しない分析器、例えばマルチチャンネルアナライザに伝送されて核種分析が行われる。
【0021】
他方、気体分析を行う場合は、図1(a)に示す試料台3及び分析試料5を外部に取出してGe検出器6のみとし、サンプルチャンバー10を昇降機構11により下降移動させ、図1(b)に示すようにサンプルチャンバー10に形成された凹部10a内にGe検出器6が挿入される位置で停止する。
【0022】
この状態でフレキシブル配管12を通してサンプルチャンバー10内にサンプリングガスを導入してGe検出器6からの検出信号を前述同様に例えばマルチチャンネルアナライザに伝送することにより核種分析を行うことができる。
【0023】
このように第1の実施の形態では、遮蔽容器1内に昇降機構11により昇降移動するサンプルチャンバー10を設け、サンプルガスの核種分析を行う場合にはGe検出器6の上部にサンプルチャンバー10を移動させ、気体分析を行っていない場合にはサンプルチャンバー10を上方へ移動させてGe検出器6部に試料台3を配置すると共に、この試料台3に液体又は固体試料5を載置して核種分析を行えるようにしたので、設備の利用範囲が広くなり、従来のように気体以外に液体、固体の各試料に対応する別の核種分析装置により核種分析を行うための設備が不要となる。
【0024】
なお、上記第1の実施の形態ではGe検出器6を冷却容器9に収容された液体窒素により冷却するようにしたが、放射線検出器によっては必ずしも液体窒素による冷却機能がなくてもよい。
【0025】
ところで、上記第1の実施の形態では1つの放射線検出用サンプラにより気体、液体、固体試料の核種分析を行う場合について述べたが、連続して流れる液体中に含まれる放射性物質の放射能を測定して核種分析するものにあっては適用することができないため、液体専用のサンプルチャンバーが必要となる。
【0026】
図2は本発明の第2の実施の形態として液体専用の放射線検出用サンプラを示す断面図である。
図2において、21は鉛製の遮蔽容器で、この遮蔽容器21内には一方の側壁下部を貫通させて設けられた入口配管22を通して液体が流入し、且つ内部を環流して他方の側壁上部を貫通させて設けられた出口配管23を通して外部に流出するようにしたサンプルチャンバー24が設けられている。
【0027】
このサンプルチャンバー24は、両端開口部が閉塞された筒体の上面のほぼ中央より内方に膨出させた凹部24aが形成され、この凹部24aには放射線検出器25が挿入されている。
【0028】
また、サンプルチャンバー24内には液体を浸透させ、放射性物質を吸着する中空糸膜フィルタ26が設けられる。この中空糸膜フィルタ26は、図3に示すように細い管状の中空糸膜を束ねたもので、表面から内部に浸透した液体が中空部を通して排水される構成となっている。
【0029】
このような構成の放射線検出用サンプラにおいて、入口配管22からサンプルチャンバー24内に流入した液体は中空糸膜フィルタ26の表面から内部に浸透し、中空部を通して出口配管23を通して外部に排出される。この時、中空糸膜を通り抜けなかった放射性物質が中空糸膜の表面に吸着する。
【0030】
従って、サンプルチャンバー24内に流れる液体の流速が速くても液体中に含まれる放射性物質のみを中空糸膜の表面に長く滞留させることが可能となるので、放射線検出器25による放射線の測定精度を向上させることができる。
【0031】
上記第2の実施の形態によれば、サンプルチャンバー24内に中空糸膜フィルタ26を設けることにより、連続して流れる液体の流速を遅くすることなく、液体中に含まれる放射性物質のみを中空糸膜の表面に吸着させ、長時間サンプルチャンバー24内に滞留させることができ、放射線検出器25への放射線量が増加する。
【0032】
このことは、被測定物が低放射能レベルの液体の場合、放射線検出器が測定した放射能値/バックグランド放射能値比(S/N比)が向上し、測定精度を良くすることができる。
以上第2の実施の形態は測定対象が液体として説明してきたが、気体に対しても適用することができる。
【0033】
【発明の効果】
以上述べたように本発明による放射線検出用サンプラによれば、気体以外の液体試料、固体試料の核種分析を同一の放射線検出器により行うことができ、設備の利用範囲を拡大することができる。
【0034】
また、流体専用の放射線検出用サンプラによれば、被測定物が低レベル放射能レベルの流体であっても、サンプルチャンバー内に設けられた中空糸膜フィルタにより被測定物質と流体を分離し、サンプルチャンバー内に放射性物質を滞留させることができるので、連続してサンプルチャンバー内を流れる流体の流速が速くても精度良く放射能を測定することができる。
【図面の簡単な説明】
【図1】本発明による放射線検出用サンプラの第1の実施の形態を示すもので、(a)は液体又は固体試料の分析を行う場合の断面図、(b)は気体試料の分析を行う場合の断面図。
【図2】本発明による液体専用の放射線検出用サンプラの第2の実施の形態を示す断面図。
【図3】図2の中空糸膜フィルタのA部を拡大して示す斜視図。
【符号の説明】
1……鉛・銅等からなる遮蔽容器
2……架台
3……試料台
4……支持体
5……固体分析試料
6……Ge検出器
7……ガイド
8……プリアンプ
9……冷却容器
10……サンプルチャンバー
11……昇降機構
12,13……フレキシブル配管
21……鉛製の遮蔽容器
22……入口配管
23……出口配管
24……サンプルチャンバー
24a……凹部
25……放射線検出器
26……中空糸膜フィルタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a radiation detection sampler for calibrating an exhaust stack radiation monitor in a nuclear facility.
[0002]
[Prior art]
An exhaust pipe radiation monitor is installed in an exhaust pipe in a nuclear facility for the purpose of monitoring whether or not a radioactive substance is contained in the exhaust gas.
Conventionally, in order to calibrate such an exhaust stack radiation monitor, a radiation detection sampler that performs nuclide analysis of a radioactive substance contained in a sampling gas of the exhaust stack radiation monitor has been used.
[0003]
This sampler for radiation detection is used only for nuclide analysis of radioactive materials contained in gas. Liquid samples and solid samples are collected by other equipment in an exhaust stack radiation monitor. Using a nuclide analyzer.
[0004]
[Problems to be solved by the invention]
As described above, since the conventional sampler for radiation detection can only perform nuclide analysis of only gas, each facility for performing nuclide analysis with a separate nuclide analyzer is required for liquid samples and solid samples other than gas.
[0005]
On the other hand, when measuring the radioactivity of a radioactive substance contained in a continuously flowing liquid, a sample chamber dedicated to the liquid is used, but when the flow rate of the liquid flowing in the sample chamber is high, the radioactive substance is not contained. There is a problem that measurement accuracy is poor because it does not stay in the sample chamber for a long time.
[0006]
A first object of the present invention is to provide a radiation detection sampler that can perform nuclide analysis of liquid samples other than gas and solid samples with the same radiation detector and has a wide utilization range of equipment.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention constitutes a radiation detection sampler by the following means.
The invention corresponding to claim 1 includes a shielding container, a radiation detector installed at the bottom of the shielding container, and a fluid sample installed in the shielding container so as to be movable up and down above the radiation detector. A flexible pipe for supplying and discharging the gas is connected through the inside and outside of the shielding container, and a chamber having a recess provided at a position facing the radiation detector, and between the radiation detector and the recess. A detachable sample stage provided, and in a state where the sample stage is arranged, the chamber moves above the radiation detector, and the sample in the chamber is used as a detection target. The platform is removed and the chamber is moved downward so that the radiation detector is inserted into the recess.
[0009]
Therefore, in the sampler for radiation detection having such a configuration, when the sample gas is introduced by the sample chamber and the nuclide analysis of the gas is not performed, the nuclide analysis of the liquid or solid sample is performed by the same radiation detector. As a result, the range of use of the facilities is widened.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view showing a configuration example showing a first embodiment of a radiation detection sampler according to the present invention.
[0013]
In FIG. 1 (a), reference numeral 1 denotes a shielding container made of lead, copper or the like installed on a gantry 2, and a cylindrical sample table 3 is installed at the substantially central portion of the bottom surface in the shielding container 1. A liquid or solid analysis sample 5 is placed on a support 4 provided in the middle of the sample stage 3.
[0014]
Further, a germanium semiconductor detector (hereinafter referred to as Ge detector) 6 is provided below the support 4 in the sample stage 3, and this Ge detector 6 is provided through the bottom of the shielding container 1 from the gantry 1 side. The pipe-shaped guide 7 is attached.
[0015]
On the gantry 1 side of the guide 7, a preamplifier 8 is provided which is electrically connected to a cable existing in the guide 7 and amplifies a radiation detection signal detected by the Ge detector 6. Is fitted with a cooling vessel 9 containing liquid nitrogen.
[0016]
On the other hand, a sample chamber 10 is provided in the shielding container 1, and this sample chamber 10 is supported by an elevating mechanism 11 that is vertically attached to the bottom surface of the shielding container 1 so as to be movable in the vertical direction.
[0017]
The sample chamber 10 has a recess 10a formed in a portion corresponding to the Ge detector 6, and the Ge detector 6 can be inserted into the recess 10a. Further, a flexible pipe 12 for filling the sample chamber 10 with the sample gas and a flexible pipe 13 for discharging the sample gas in the sample chamber 10 to the outside are arranged through the appropriate portions of the side wall of the shielding container 1. In addition, the end of the flexible pipe 12 is connected to the lower part of the sample chamber 10, and the end of the flexible pipe 13 is connected to the center of the upper surface of the sample chamber 10.
[0018]
These flexible pipes 12 and 13 can follow up and down movement of the sample chamber 10.
Next, the operation of the radiation detection sampler configured as described above will be described.
[0019]
When analyzing a liquid sample or a solid sample, as shown in FIG. 1A, the sample chamber 10 is moved above the sample stage 3 by the lifting mechanism 11 and is collected on the sample stage 3 by, for example, a tritium recovery device. An analysis sample 5 such as a liquid sample or a solid sample collected by a dust sampler (filter paper) or an iodine filter (activated carbon adsorption filter) is placed.
[0020]
In this way, the Ge detector 6 detects the radiation contained in the liquid or solid sample existing above it, and the detection signal is amplified by the preamplifier 8 and then transmitted to an analyzer (not shown) such as a multi-channel analyzer. The nuclide analysis is performed.
[0021]
On the other hand, when performing a gas analysis, the sample stage 3 and the analysis sample 5 shown in FIG. 1A are taken out to make only the Ge detector 6, and the sample chamber 10 is moved downward by the elevating mechanism 11. As shown in b), it stops at the position where the Ge detector 6 is inserted into the recess 10a formed in the sample chamber 10.
[0022]
In this state, the nuclide analysis can be performed by introducing the sampling gas into the sample chamber 10 through the flexible pipe 12 and transmitting the detection signal from the Ge detector 6 to, for example, a multi-channel analyzer as described above.
[0023]
As described above, in the first embodiment, the sample chamber 10 that is moved up and down by the lifting mechanism 11 is provided in the shielding container 1, and when the nuclide analysis of the sample gas is performed, the sample chamber 10 is placed above the Ge detector 6. When the gas analysis is not performed, the sample chamber 10 is moved upward to place the sample stage 3 on the Ge detector 6 and the liquid or solid sample 5 is placed on the sample stage 3. Since the nuclide analysis can be performed, the range of use of the equipment is widened, and the equipment for performing the nuclide analysis using a separate nuclide analyzer corresponding to each of liquid and solid samples in addition to gas becomes unnecessary. .
[0024]
In the first embodiment, the Ge detector 6 is cooled by liquid nitrogen accommodated in the cooling container 9. However, some radiation detectors do not necessarily have a cooling function by liquid nitrogen.
[0025]
By the way, in the first embodiment, the case where nuclide analysis of a gas, liquid, and solid sample is performed by one radiation detection sampler has been described, but the radioactivity of a radioactive substance contained in a continuously flowing liquid is measured. Therefore, it is not possible to apply the method for nuclide analysis, so a sample chamber dedicated to liquid is required.
[0026]
FIG. 2 is a cross-sectional view showing a liquid-specific radiation detection sampler according to a second embodiment of the present invention.
In FIG. 2, reference numeral 21 denotes a lead shielding container. The liquid flows into the shielding container 21 through an inlet pipe 22 penetrating the lower part of one side wall, and circulates inside the upper part of the other side wall. A sample chamber 24 is provided so as to flow out to the outside through an outlet pipe 23 provided therethrough.
[0027]
The sample chamber 24 is formed with a recess 24a bulging inward from the substantially center of the upper surface of the cylinder whose both ends are closed, and a radiation detector 25 is inserted into the recess 24a.
[0028]
In addition, a hollow fiber membrane filter 26 that permeates liquid and adsorbs a radioactive substance is provided in the sample chamber 24. This hollow fiber membrane filter 26 is a bundle of thin tubular hollow fiber membranes as shown in FIG. 3, and is configured such that liquid that has permeated into the interior from the surface is drained through the hollow portion.
[0029]
In the radiation detection sampler having such a configuration, the liquid that has flowed into the sample chamber 24 from the inlet pipe 22 penetrates from the surface of the hollow fiber membrane filter 26 and is discharged outside through the outlet pipe 23 through the hollow portion. At this time, the radioactive material that did not pass through the hollow fiber membrane is adsorbed on the surface of the hollow fiber membrane.
[0030]
Therefore, even if the flow rate of the liquid flowing in the sample chamber 24 is high, only the radioactive substance contained in the liquid can be retained for a long time on the surface of the hollow fiber membrane, so that the radiation measurement accuracy by the radiation detector 25 can be increased. Can be improved.
[0031]
According to the second embodiment, by providing the hollow fiber membrane filter 26 in the sample chamber 24, only the radioactive substance contained in the liquid can be hollow fiber without slowing the flow rate of the continuously flowing liquid. It can be adsorbed on the surface of the film and can stay in the sample chamber 24 for a long time, and the radiation dose to the radiation detector 25 increases.
[0032]
This means that when the object to be measured is a liquid with a low radioactivity level, the radioactivity value / background radioactivity value ratio (S / N ratio) measured by the radiation detector is improved, and the measurement accuracy is improved. it can.
As described above, the second embodiment has been described on the assumption that the measurement target is a liquid, but it can also be applied to a gas.
[0033]
【The invention's effect】
As described above, according to the sampler for radiation detection according to the present invention, nuclide analysis of liquid samples other than gas and solid samples can be performed by the same radiation detector, and the utilization range of equipment can be expanded.
[0034]
In addition, according to the sampler for radiation detection dedicated to fluid, even if the object to be measured is a fluid with a low level of radioactivity, the substance to be measured and the fluid are separated by the hollow fiber membrane filter provided in the sample chamber, Since the radioactive substance can be retained in the sample chamber, the radioactivity can be accurately measured even if the flow rate of the fluid flowing through the sample chamber is high.
[Brief description of the drawings]
1A and 1B show a first embodiment of a radiation detection sampler according to the present invention, in which FIG. 1A is a sectional view when analyzing a liquid or solid sample, and FIG. 1B is an analysis of a gas sample; FIG.
FIG. 2 is a cross-sectional view showing a second embodiment of a liquid detection sampler for liquids according to the present invention.
3 is an enlarged perspective view showing a portion A of the hollow fiber membrane filter of FIG. 2. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Shielding container 2 ... Lead 3 ... Sample stand 4 ... Support 5 ... Solid analysis sample 6 ... Ge detector 7 ... Guide 8 ... Preamplifier 9 ... Cooling vessel DESCRIPTION OF SYMBOLS 10 ... Sample chamber 11 ... Elevating mechanism 12, 13 ... Flexible piping 21 ... Lead shielding container 22 ... Inlet piping 23 ... Outlet piping 24 ... Sample chamber 24a ... Concave 25 ... Radiation detector 26 …… Hollow fiber membrane filter

Claims (1)

遮蔽容器と、この遮蔽容器の底部に設置された放射線検出器と、前記遮蔽容器内であって前記放射線検出器上方に昇降自在に設置され、流体試料を供給・排出するフレキシブル配管が前記遮蔽容器の内外を貫通させて接続されており、前記放射線検出器に対向する位置に凹部が設けられたチェンバーと、前記放射線検出器と前記凹部との間に設けられた着脱自在の試料台とを具備し、前記試料台が配置されている状態では前記チェンバーは前記放射線検出器上方に移動し、前記チェンバー内の試料を検出対象とする場合には前記試料台を除去して前記放射線検出器が前記凹部内に挿入されるよう前記チェンバーを下降移動させるようにしたことを特徴とする放射線検出用サンプラ。A shielding container, a radiation detector installed at the bottom of the shielding container, a flexible pipe that is installed in the shielding container so as to be movable up and down above the radiation detector, and that supplies and discharges a fluid sample; A chamber that is connected through the inside and outside of the shielding container, and has a recess provided at a position facing the radiation detector, and a removable sample stage provided between the radiation detector and the recess. When the sample stage is arranged, the chamber moves above the radiation detector, and when the sample in the chamber is to be detected, the sample stage is removed and the radiation detector is removed. The radiation detection sampler is characterized in that the chamber is moved downward so that is inserted into the recess .
JP10022696A 1996-04-22 1996-04-22 Radiation detection sampler Expired - Fee Related JP3779374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10022696A JP3779374B2 (en) 1996-04-22 1996-04-22 Radiation detection sampler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10022696A JP3779374B2 (en) 1996-04-22 1996-04-22 Radiation detection sampler

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005142601A Division JP2005249805A (en) 2005-05-16 2005-05-16 Sampler for radiation detection

Publications (2)

Publication Number Publication Date
JPH09288185A JPH09288185A (en) 1997-11-04
JP3779374B2 true JP3779374B2 (en) 2006-05-24

Family

ID=14268379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10022696A Expired - Fee Related JP3779374B2 (en) 1996-04-22 1996-04-22 Radiation detection sampler

Country Status (1)

Country Link
JP (1) JP3779374B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6150279B2 (en) * 2013-05-16 2017-06-21 日本バイリーン株式会社 Radioactive material collection device in liquid samples used for monitoring of radioactive materials
CN112098673A (en) * 2020-10-29 2020-12-18 杭州智行远机器人技术有限公司 Automatic sampling control system and control method based on SCARA robot
JP6906202B1 (en) * 2021-02-26 2021-07-21 株式会社ヨシダ High radiation dose rate solid sample measuring device
CN113856586B (en) * 2021-08-20 2022-12-13 中国原子能科学研究院 Device for gas-liquid conversion and gas-liquid two-phase online sampling of iodine

Also Published As

Publication number Publication date
JPH09288185A (en) 1997-11-04

Similar Documents

Publication Publication Date Title
US7159446B2 (en) Particulate matter concentration measuring apparatus
CA2112004C (en) Gas amount and solubility investigation apparatus
JPS62204141A (en) Measuring device for gas dissolved into water
US5235843A (en) Method and apparatus for analyzing volatile chemical components in a liquid
Popjak et al. Scintillation counter for the measurement of radioactivity of vapors in conjunction with gas-liquid chromatography
US6324891B1 (en) Method and apparatus for monitoring GAS(ES) in a dielectric fluid
DK155765B (en) PROCEDURE FOR DETERMINING THE CONCENTRATION OF A SUBSTANCE IN A TEST AND APPARATUS FOR USE IN EXERCISING THE PROCEDURE
CN105842725B (en) The assay method of the specific activity of tritiated water vapour in a kind of air
EP0534331A1 (en) Method and device for continuous monitoring of gas dissolved in oil
JP3779374B2 (en) Radiation detection sampler
US6216526B1 (en) Gas sampler for molten metal and method
US20020182746A1 (en) Method and device for sample introduction of volatile analytes
US4835395A (en) Continuous aqueous tritium monitor
CZ275696A3 (en) Blood gas probe
JP2005249805A (en) Sampler for radiation detection
CN107271469A (en) The heavy metal in water semi-quantitative analysis method analyzed based on X-ray fluorescence spectra
JPH01227045A (en) Detecting apparatus of gas for oil-immersed apparatus, collecting apparatus of gas in oil and detecting method of gas
JP2020525799A (en) Analyzer for detecting fission products by measuring radioactivity
US3540852A (en) Effluent sampling method and apparatus for a gas chromatographic procedure
Kotrappa et al. Diffusion sampler useful for measuring diffusion coefficients and unattached fraction of radon and thoron decay products
JPS55131739A (en) Method and device for detecting leakage of cooling water by measurement of quantity of dissolved co
JP3016769U (en) Multiphase fluid in-line analyzer
KR101672846B1 (en) Vapor-liquid equilibrium distribution measurement device
GB2089062A (en) Chromatographic flow cell
GB2077423A (en) Alpha-radiation monitor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040319

A977 Report on retrieval

Effective date: 20050304

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050315

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060228

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20060302

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees