JPH09288159A - Method and equipment for interference positioning - Google Patents

Method and equipment for interference positioning

Info

Publication number
JPH09288159A
JPH09288159A JP12628496A JP12628496A JPH09288159A JP H09288159 A JPH09288159 A JP H09288159A JP 12628496 A JP12628496 A JP 12628496A JP 12628496 A JP12628496 A JP 12628496A JP H09288159 A JPH09288159 A JP H09288159A
Authority
JP
Japan
Prior art keywords
receiver
positioning
point
fixed
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12628496A
Other languages
Japanese (ja)
Inventor
Shigeo Kawashima
茂男 河島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP12628496A priority Critical patent/JPH09288159A/en
Publication of JPH09288159A publication Critical patent/JPH09288159A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable easy determination of an integral value of a carrier frequency by a method in which a distance between a receiving antenna of a fixed receiver and a receiving antenna of a movable receiver is set to be a half wavelength of the carrier frequency or less. SOLUTION: A distance (m) between a receiving antenna 20 of a fixed receiver 2 fixed at a reference point A and a receiving antenna 30 of a movable receiver 3 at an adjacent point B is set to be m<(1/2).λ when one wavelength of a carrier frequency from a GPS satellite 1 is made λ. When an optical-path difference between the fixed receiver 2 and the movable receiver 3 is within a 1/2 wavelength, in other words, a wavelength difference (difference in the number of wavelengths) made integral can be determined automatically as 0, that is, integer ambiguity can be determined as 0. In this way, the integer ambiguity can be determined very easily and it is possible to improve operability sharply and to lessen the possibility of causing false measurement. Therefore relative positioning in centimeters can be executed even by general users.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、通信衛星からのキ
ャリア位相を利用した干渉測位方法およびその装置、さ
らに詳しくはそのキャリア位相の整数値決定に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interference positioning method and an apparatus therefor using a carrier phase from a communication satellite, and more particularly to determining an integer value of the carrier phase.

【0002】[0002]

【従来の技術】GPS衛星からのキャリア位相を利用す
る干渉測位方法は、GPS測量等の相対測位(すなわち
未知点の位置を、ある基準地点からの距離と方向で求め
る)に利用される測位方法であり、その原理は、いわゆ
る基線(基準地点と測位地点との間の直線)の両端にG
PS受信機を置き、ぞれぞれのGPS受信機が受信する
GPS衛星からのキャリア周波数の位相差で行路差を測
定する。この行路差は、衛星の位置と基線ベクトル(長
さと方向)とで一義的に定まり、また衛星の位置は衛星
からの軌道情報等によって得られるので、行路差を測定
すれば基線ベクトルが求められ、これにより相対測位を
行うことができる。
2. Description of the Related Art An interferometric positioning method using a carrier phase from a GPS satellite is a positioning method used for relative positioning such as GPS surveying (that is, the position of an unknown point is determined by the distance and direction from a certain reference point). That is, the principle is that G is applied to both ends of a so-called baseline (a straight line between the reference point and the positioning point).
The PS receiver is placed, and the path difference is measured by the phase difference of the carrier frequencies from the GPS satellites received by each GPS receiver. This path difference is uniquely determined by the position of the satellite and the baseline vector (length and direction), and the position of the satellite is obtained from orbit information from the satellite. Therefore, the baseline vector can be obtained by measuring the path difference. Thus, relative positioning can be performed.

【0003】然しながらこのような干渉測位方法で必要
となるのは、行路差を求める場合のキャリア位相の整数
値決定である。すなわち、GPS衛星からのキャリア周
波数は、L1帯が波長19cm,L2帯が24cmと短
いので、波長数と位相差により行路差を求める場合、最
初に行路差がどの波長上(整数値)にあるかを決定しな
ければならない。この整数波数不確定(ambiguity) をこ
の明細書では整数アンビギュイティと称し、整数値の決
定を整数アンビギュイティの決定と称する。
However, what is required in such an interference positioning method is the determination of an integer value of the carrier phase when obtaining the path difference. That is, since the carrier frequency from the GPS satellite is as short as 19 cm in the L1 band and 24 cm in the L2 band, when the path difference is obtained by the number of wavelengths and the phase difference, the wavelength on which the path difference is (integer value) is first. Have to decide. This integer wave number ambiguity is referred to as integer ambiguity in this specification, and the determination of the integer value is referred to as the determination of integer ambiguity.

【0004】従来のこの種の干渉測位方法では、この整
数アンビギュイティの決定に、いわゆる既知点法あるい
はアンテナ・スワッピング法が用いられている。図3
は、従来の干渉測位方法における既知点法を説明するた
めの図であり、1はGPS衛星、2は予めその位置が解
っている基準地点Aに固定されてた固定(F)受信機、
3はこの基準地点Aから相対距離L(既知の距離)離れ
た既知点Cに置かれた移動(M)受信機である。なお、
この明細書では説明の便宜のためこれ以降も全て二次元
で説明し、GPS衛星も1つで説明しているが、実際の
測位には、少なくとも4個(1つは時間補正情報を得
る)のGPS衛星からの信号を受信して3次元の測位が
行われる。
In this type of conventional interferometric positioning method, the so-called known point method or antenna swapping method is used to determine the integer ambiguity. FIG.
FIG. 3 is a diagram for explaining a known point method in a conventional interferometric positioning method, where 1 is a GPS satellite, 2 is a fixed (F) receiver fixed to a reference point A whose position is known in advance,
Reference numeral 3 is a moving (M) receiver placed at a known point C which is a relative distance L (known distance) away from the reference point A. In addition,
In this specification, for convenience of explanation, all the explanations are made in two dimensions and one GPS satellite is explained, but at least four (one obtains time correction information) for actual positioning. 3D positioning is performed by receiving signals from GPS satellites.

【0005】この既知点法は、それぞれ正確にその位置
が解っている、基準値点AにF受信機2、既知点Cに始
めにM受信機3を置き、既知の距離Lを用いてM受信機
3の整数アンビギュイティを決定し、以降衛星からの受
信を途絶えないようにしながらM受信機を未知の測定地
点(図示せず)へ移動させ、この整数アンビギュイティ
を用いて行路差を測定し、基準地点Aからの基線ベクト
ルを求めている。
In this known point method, the F receiver 2 is placed at the reference value point A, and the M receiver 3 is placed first at the known point C, the positions of which are known exactly, and the known distance L is used for M. The integer ambiguity of the receiver 3 is determined, the M receiver is moved to an unknown measurement point (not shown) while keeping the reception from the satellite thereafter, and the path difference is calculated using this integer ambiguity. Is measured and the baseline vector from the reference point A is obtained.

【0006】また図4は、従来の装置におけるアンテナ
・スワッピング法を説明するための図である。アンテナ
・スワッピング法は、最初基準地点AにF受信機2、臨
時点(適当な未知点)DにM受信機3を置いて観測し、
次に基準地点AにM受信機3、臨時点DにF受信機2を
置いて観測する。なおF受信機2とM受信機3のアンテ
ナの高さは正確に一致させておく必要がある。
FIG. 4 is a diagram for explaining the antenna swapping method in the conventional device. In the antenna swapping method, the F receiver 2 is first placed at the reference point A, and the M receiver 3 is placed at the temporary point (appropriate unknown point) D for observation.
Next, the M receiver 3 is placed at the reference point A and the F receiver 2 is placed at the temporary point D for observation. Note that the heights of the antennas of the F receiver 2 and the M receiver 3 must be exactly matched.

【0007】最初の観測では、F受信機2を基準として
AB基線を測量していることになり、整数アンビギュイ
ティによってB地点は多重解となる。そしてアンテナを
入れ替えた次の観測でも、同様にF受信機2を基準とし
て基線BAを測量していることになるのでA地点は多重
解となるが、F受信機2を基準とするGPS衛星の向き
の相違、および時間の経過によるGPS衛星の移動(1
→1a)により、それぞれの多重解の間隔が少しだけ相
違する。然しながら最初の観測でもアンテナを入れ替え
た後でもAB間は同一基線であるので、2つの多重解で
一致する基線解を見付けることができるため、これによ
りM受信機3の整数アンビギュイティを決定する。な
お、これらの従来の技術の詳細については、例えば日本
測地学会編著「GPS−人口衛星による精密測位システ
ム」、同著「GPS測量と基線解析の手引」等に開示さ
れている。
In the first observation, the AB baseline is measured with the F receiver 2 as a reference, and the integer ambiguity causes the point B to become a multiple solution. Also in the next observation with the antennas replaced, the baseline BA is also measured with the F receiver 2 as a reference, so point A is a multiple solution, but the GPS satellites with reference to the F receiver 2 Movement of GPS satellites due to difference in direction and passage of time (1
→ Due to 1a), the intervals of each multiple solution are slightly different. However, since the same baseline is used between AB even after the antennas are exchanged even in the first observation, it is possible to find a matching baseline solution in two multiple solutions, which determines the integer ambiguity of the M receiver 3. . The details of these conventional techniques are disclosed in, for example, "GPS-Precision Positioning System by Artificial Satellite" edited by The Geodetic Society of Japan, "Guide for GPS survey and baseline analysis", and the like.

【0008】[0008]

【発明が解決しようとする課題】上記のように従来の干
渉測位方法では既地点法またはアンテナ・スワッピング
法により整数アンビギュイティを決定しているが、既地
点法では上述のように基準地点Aから相対距離および方
向が既知の地点(C)が必要になる。従って地点(C)
を事前に測量しておくか、三角点等の既に測量された地
点を既地点(C)として利用することになるが、測量に
は経費と時間がかかり、既に測量された地点を利用する
場合、利用できる地点が限られてくる。
As described above, in the conventional interference positioning method, the integer ambiguity is determined by the existing point method or the antenna swapping method. In the existing point method, however, the reference point A is determined as described above. A point (C) whose relative distance and direction are known is required. Therefore, point (C)
Will be surveyed in advance, or a point that has already been surveyed, such as a triangular point, will be used as the existing point (C), but surveying will be expensive and time-consuming, and if you are using a point that has already been surveyed. , The available points are limited.

【0009】また、アンテナ・スワッピング法では、既
地点は必要ないが、正確に同じ高さのアンテナを用意
し、このアンテナを入れ替える作業が必要になり、測量
手順が複雑になると共に誤測量を招き易く、このため測
量技術者でも好まない等の問題点があった。
Further, in the antenna swapping method, although no existing spot is required, it is necessary to prepare an antenna of the same height and replace this antenna, which complicates the surveying procedure and leads to erroneous surveying. It is easy to do, and therefore there is a problem that it is not preferred by surveying engineers.

【0010】本発明はかかる問題点を解決するためにな
されたものであり、キャリア周波数の整数値決定を容易
に行える干渉測位方法およびその装置を提供することを
目的としている。
The present invention has been made to solve the above problems, and an object of the present invention is to provide an interference positioning method and an apparatus therefor which can easily determine an integer value of a carrier frequency.

【0011】[0011]

【課題を解決するための手段】本発明の干渉測位方法
は、測位開始に当たり、固定受信機の受信アンテナと移
動受信機の受信アンテナとの間を、キャリア周波数の1
/2波長以下とし、固定受信機が受信するキャリア位相
と移動受信機が受信するキャリア位相の整数波数差を自
動的に0にしてから測位地点に移動受信機を移動して測
位を行う手段を備えたことを特徴とする。
According to the interferometric positioning method of the present invention, at the start of positioning, a carrier frequency of 1 is set between the receiving antenna of a fixed receiver and the receiving antenna of a mobile receiver.
/ Wavelength less than or equal to 2 and automatically set the integer wave number difference between the carrier phase received by the fixed receiver and the carrier phase received by the mobile receiver to 0, and then moving the mobile receiver to the positioning point to perform positioning. It is characterized by having.

【0012】また、本発明の干渉測位装置は、固定受信
機が受信するキャリア位相と移動受信機が受信するキャ
リア位相の整数波数差を測定開始に当たり自動的に0に
すべく、固定受信機の受信アンテナと移動受信機の受信
アンテナとの間を、キャリア周波数の1/2波長以下に
設定できる構成を備えたことを特徴とする。
Further, the interferometric positioning apparatus of the present invention uses the fixed receiver so that the integer wavenumber difference between the carrier phase received by the fixed receiver and the carrier phase received by the mobile receiver is automatically set to 0 at the start of measurement. It is characterized in that it is provided with a configuration capable of setting the distance between the receiving antenna and the receiving antenna of the mobile receiver to ½ wavelength or less of the carrier frequency.

【0013】いわゆる整数アンビギュイティの決定を必
要とするのは、固定受信機と移動受1機との間の行路差
が、測位開始に当たり通常1/2波長以上あるために、
この行路差がどの波長を基準としてカウントしなければ
ならないかを決定する必要があるからである。然しなが
ら固定受信機と移動受信機との間の行路差が、測位開始
に当たり1/2波長以内であれば、整数波数差は0、す
なわち整数アンビギュイティは0と決定できる。本発明
は上述のように両受信機のアンテナ間を、1/2波長以
下とすることで、自動的に整数アンビギュイティを決定
することとしたものである。
The determination of the so-called integer ambiguity is necessary because the path difference between the fixed receiver and the mobile receiver 1 is usually 1/2 wavelength or more at the start of positioning.
This is because it is necessary to determine which wavelength the path difference should be counted as. However, if the path difference between the fixed receiver and the mobile receiver is within 1/2 wavelength at the start of positioning, the integer wavenumber difference can be determined to be 0, that is, the integer ambiguity can be determined to be 0. In the present invention, the integer ambiguity is automatically determined by setting the distance between the antennas of both receivers to ½ wavelength or less as described above.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施形態を図面を
用いて説明する。図1は本発明の動作原理を説明するた
めの図であり、図において、1はGPS衛星、2は予め
その位置が解っている基準値点Aに固定されているGP
S固定(Fix) 受信機、3は基準地点Aに隣接する隣接点
Bに置かれた移動(Move)受信機、20は受信機2のGP
S受信アンテナ、30は受信機3のGPS受信アンテナ
であり、アンテナ20とアンテナ30との間の距離m
は、GPS衛星からのキャリア周波数の1波長をλとし
た場合、m<(1/2)・λに設定している。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram for explaining the operation principle of the present invention. In the figure, 1 is a GPS satellite, and 2 is a GP fixed to a reference value point A whose position is known in advance.
S fixed (Fix) receiver, 3 is a move receiver placed at an adjacent point B adjacent to the reference point A, and 20 is a GP of the receiver 2.
The S receiving antenna, 30 is a GPS receiving antenna of the receiver 3, and the distance m between the antenna 20 and the antenna 30 is m.
Is set to m <(1/2) · λ, where λ is one wavelength of the carrier frequency from the GPS satellite.

【0015】次に本発明の原理について説明する。従来
の装置でいわゆる整数アンビギュイティの決定を必要と
したのは、図3で説明したように、GPS固定受信機2
とGPS移動受信機3との間の行路差が、通常1/2波
長以上あるためにこの行路差が先ずどの波長上にあるか
を決定しなければならないからである。然しながらGP
S固定受信機2とGPS移動受信機3との間の行路差
が、1/2波長以内であれば、整数化した波長差(波長
数の差)は自動的に0、すなわち整数アンビギュイティ
は0と決定できる。本発明はこの原理を利用する。
Next, the principle of the present invention will be described. In the conventional device, it is necessary to determine the so-called integer ambiguity as described in FIG.
Since the path difference between the GPS mobile receiver 3 and the GPS receiver 3 is usually 1/2 wavelength or more, it is necessary to first determine which wavelength the path difference is on. However, GP
If the path difference between the S fixed receiver 2 and the GPS mobile receiver 3 is within 1/2 wavelength, the integerized wavelength difference (difference in the number of wavelengths) is automatically 0, that is, the integer ambiguity. Can be determined to be 0. The present invention utilizes this principle.

【0016】そして、両受信機のアンテナ間距離mが、
m<(1/2)・λになる隣接点Bは、言うまでもなく
既知点法と異なり、その位置が正確に測位されている必
要はなく、アンテナ・スワッピンク法のようにアンテナ
を入れ替える必要もない。また、近年のGPS受信機
は、アンテナを装備した状態でその大きさが、50×5
2×19(mm)程度のものが開発されており(例え
ば、H.Hojo et al,:GPS Sensor for a Variety of Appl
ication, ION GPS-94 Proceedings,PP1087〜1095, Sep
t.1994, Salt Lake City, U.S.A)、また、上述のように
GPS衛星からのキャリア周波数は、L1帯が波長19
cm,L2帯が波長24cmであるので、アンテナ間距
離mを1/2λ以下にすることは容易に実現できる。な
お、両GPS受信機を隣接させる場合、マルチパス防止
用反射板、すなわちミリメートル単位の高測位精度が得
られる直径30cm程の大きさの反射板(グランド・プ
レーン)は取り付けられなくなるが、これを取り付けな
くてもセンチメートル単位の測位精度は得られるため、
一般的な測量用途には十分である。
The distance m between the antennas of both receivers is
Needless to say, unlike the known point method, the adjacent point B where m <(1/2) · λ does not need to be accurately positioned, and it is also necessary to replace the antenna like the antenna swapping method. Absent. In addition, a recent GPS receiver has a size of 50 × 5 when equipped with an antenna.
Those with a size of 2 × 19 (mm) have been developed (for example, H.Hojo et al ,: GPS Sensor for a Variety of Appl.
ication, ION GPS-94 Proceedings, PP1087 ~ 1095, Sep
t.1994, Salt Lake City, USA), and as described above, the carrier frequency from the GPS satellite has a wavelength of 19 in the L1 band.
Since the wavelengths in the cm and L2 bands are 24 cm, it is easy to reduce the inter-antenna distance m to 1 / 2λ or less. Note that when both GPS receivers are adjacent to each other, a multipath preventing reflection plate, that is, a reflection plate (ground plane) having a diameter of about 30 cm that can obtain high positioning accuracy in millimeter units cannot be attached. Since the positioning accuracy in centimeters can be obtained without installing it,
Sufficient for general surveying applications.

【0017】図2は、奔発明の一実施形態における装置
構成の概略を示すブロック図であり、図において、図1
と同一符号は同一又は相当部分を示し、21,31はそ
れぞれ表示制御装置、22は基準地点情報送信機、32
は基準地点情報受信機である。本実施形態における干渉
測位装置は、図2の概略図に示すようにGPS固定受信
機2にはその測位情報を表示する表示制御装置21と、
基準地点(A)の測位情報をGPS移動受信機へ送信す
る基準地点情報送信機22とが設けられ、GPS移動受
信機3にはその測位情報を表示する表示制御装置31
と、送信機22から送られてくる基準地点情報を受信す
る基準地点情報受信機32とが設けられている。
FIG. 2 is a block diagram showing an outline of an apparatus configuration in one embodiment of the invention of the present invention.
The same reference numerals denote the same or corresponding parts, 21 and 31 are display control devices, 22 is a reference point information transmitter, and 32 is a reference point information transmitter.
Is a reference point information receiver. The interferometric positioning device according to the present embodiment includes a display control device 21 for displaying the positioning information on the GPS fixed receiver 2 as shown in the schematic view of FIG.
A reference point information transmitter 22 for transmitting the positioning information of the reference point (A) to the GPS mobile receiver is provided, and the GPS mobile receiver 3 has a display control device 31 for displaying the positioning information.
And a reference point information receiver 32 that receives the reference point information sent from the transmitter 22.

【0018】そして、図1に示すように、最初に移動受
信機3を隣接点Bに置き、アンテナ間距離mを1/2λ
より小さくして、整数アンビギュイティを自動的に0と
決定し、両GPS受信機ともGPS衛星1からのキャリ
ア周波数の受信を継続させながら、図2に示すように移
動受信機3を測位地点Eに持って行き、両GPS受信機
が受信するキャリア位相の整数波数差および位相差と、
GPS衛星1の位置情報と、基準地点Aの位置情報とか
ら、測位地点Eの相対位置情報を表示制御装置31に出
力する。なお、この相対測位に関しては、上述の「GP
S測量と基線解析の手引」に詳しく説明されており、本
実施形態においても同様に行えば良いので、ここではそ
の詳細な説明は省略する。
Then, as shown in FIG. 1, the mobile receiver 3 is first placed at the adjacent point B, and the antenna distance m is 1 / 2λ.
It is set to a smaller value and the integer ambiguity is automatically determined to be 0. While both GPS receivers continue to receive the carrier frequency from the GPS satellite 1, as shown in FIG. Take to E and integer wavenumber difference and phase difference of carrier phase received by both GPS receivers,
From the position information of the GPS satellite 1 and the position information of the reference point A, the relative position information of the positioning point E is output to the display control device 31. Regarding the relative positioning, the above-mentioned "GP
The detailed description is given in "Guide for S-Survey and Baseline Analysis", and the same description can be applied in the present embodiment as well, and thus detailed description thereof is omitted here.

【0019】なお上述の実施形態では、GPSを利用す
る干渉測位方法および装置について説明しているが、G
PSでなくてもGLONASS等の他のシステムを利用
するものであっても良いことは言うまでもない。
In the above embodiment, the interferometric positioning method and apparatus using GPS are explained.
Needless to say, it is not limited to PS and may use another system such as GLONASS.

【0020】[0020]

【発明の効果】以上説明したように本発明の干渉測位方
法およびその装置は、整数アンビギュイティの決定を極
めて容易に行うことができ、操作性を大幅に改善できる
とともに、誤測定を招く可能性を大幅に減らすことがで
きる。このため従来、測量技術者でないと扱えないと考
えられていたセンチメートル単位の相対測位を一般利用
者が行えるようになる。また、例えばカーナビゲーショ
ン装置にみられるようにGPS受信機は年々低価格化/
小型化しており、PHS電話機にみられるように送受信
機も低価格化/小型化してきているので、このような干
渉測位装置もさらに低価格化/小型化が進むことが考え
られ、一般利用者が巻尺の替わりに利用する等、新たな
用途を提供できるようになる等の効果がある。
As described above, the interference positioning method and the apparatus thereof according to the present invention can determine the integer ambiguity extremely easily, can greatly improve the operability, and can cause erroneous measurement. Sex can be significantly reduced. Therefore, general users can perform relative positioning in units of centimeters, which was conventionally thought to be handled only by a surveying engineer. In addition, the price of GPS receivers has been decreasing year by year, as seen in car navigation systems, for example.
As the size and size of transmitters and receivers are becoming lower / smaller as seen in PHS telephones, it is considered that such an interferometric positioning device will be further lower in price / smaller. Can be used in place of a tape measure to provide new applications.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理を説明するための図である。FIG. 1 is a diagram for explaining the principle of the present invention.

【図2】本発明の一実施形態における装置構成の概略を
示すブロック図である。
FIG. 2 is a block diagram showing an outline of a device configuration according to an embodiment of the present invention.

【図3】従来の既知点法を説明するための図である。FIG. 3 is a diagram for explaining a conventional known point method.

【図4】従来のアンテナ・スワッピング法を説明するた
めの図である。
FIG. 4 is a diagram for explaining a conventional antenna swapping method.

【符号の説明】[Explanation of symbols]

1 GPS衛星 2 GPS固定受信機 3 GPS移動受信機 20 受信機2のGPS受信アンテナ 21 表示制御装置 22 基準地点情報送信機 30 受信機3のGPS受信アンテナ 31 表示制御装置 32 基準地点情報受信機 A 基準地点 B 隣接点 C 既知点 D 臨時点 E 測位地点 1 GPS Satellite 2 GPS Fixed Receiver 3 GPS Mobile Receiver 20 GPS Receiver Antenna of Receiver 2 21 Display Control Device 22 Reference Point Information Transmitter 30 GPS Receiver Antenna of Receiver 3 31 Display Control Device 32 Reference Point Information Receiver A Reference point B Adjacent point C Known point D Temporary point E Positioning point

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 予めその位置が解っている基準地点に固
定受信機を固定し、測位地点に移動受信機を移動し、衛
星からのキャリア位相をそれぞれの受信機で受信して、
受信したキャリア位相の差(整数波数差と位相差)によ
りそれぞれの受信機の衛星からの行路差を算出し、この
行路差で基準地点から測位地点を相対測位する干渉測位
方法において、 測位開始に当たり、上記固定受信機の受信アンテナと上
記移動受信機の受信アンテナとの間を、上記キャリア周
波数の1/2波長以下とし、上記固定受信機が受信する
キャリア位相と上記移動受信機が受信するキャリア位相
の上記整数波数差を自動的に0にしてから上記測位地点
に上記移動受信機を移動して測位を行う手段、 を備えたことを特徴とする干渉測位方法。
1. A fixed receiver is fixed to a reference point whose position is known in advance, a mobile receiver is moved to a positioning point, and a carrier phase from a satellite is received by each receiver,
In the interferometric positioning method that calculates the path difference from the satellite of each receiver based on the received carrier phase difference (integer wave number difference and phase difference) and uses this path difference to perform relative positioning of the positioning point from the reference point , The wavelength between the receiving antenna of the fixed receiver and the receiving antenna of the mobile receiver is equal to or less than 1/2 wavelength of the carrier frequency, the carrier phase received by the fixed receiver and the carrier received by the mobile receiver. An interferometric positioning method comprising means for automatically positioning the integer wave number difference of the phases and then moving the mobile receiver to the positioning point to perform positioning.
【請求項2】 予めその位置が解っている基準地点に固
定受信機を固定し、測位地点に移動受信機を移動し、衛
星からのキャリア位相をそれぞれの受信機で受信して、
受信したキャリア位相の差(整数波数差と位相差)によ
りそれぞれの受信機の衛星からの行路差を算出し、この
行路差で基準地点から測位地点を相対測位する干渉測位
装置において、 上記固定受信機が受信するキャリア位相と上記移動受信
機が受信するキャリア位相の上記整数波数差を測定開始
に当たり自動的に0にすべく、上記固定受信機の受信ア
ンテナと上記移動受信機の受信アンテナとの間を、上記
キャリア周波数の1/2波長以下に設定できる構成を備
えたことを特徴とする干渉測位装置。
2. A fixed receiver is fixed to a reference point whose position is known in advance, a mobile receiver is moved to a positioning point, and a carrier phase from a satellite is received by each receiver,
In the interferometric positioning device that calculates the path difference from the satellite of each receiver based on the received carrier phase difference (integer wave number difference and phase difference), and performs relative positioning of the positioning point from the reference point by this path difference, the fixed reception Of the reception antenna of the fixed receiver and the reception antenna of the mobile receiver so that the integer wave number difference between the carrier phase received by the receiver and the carrier phase received by the mobile receiver is automatically set to 0 at the start of measurement. The interferometric positioning device is characterized in that it has a configuration in which the distance can be set to ½ wavelength or less of the carrier frequency.
JP12628496A 1996-04-24 1996-04-24 Method and equipment for interference positioning Pending JPH09288159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12628496A JPH09288159A (en) 1996-04-24 1996-04-24 Method and equipment for interference positioning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12628496A JPH09288159A (en) 1996-04-24 1996-04-24 Method and equipment for interference positioning

Publications (1)

Publication Number Publication Date
JPH09288159A true JPH09288159A (en) 1997-11-04

Family

ID=14931414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12628496A Pending JPH09288159A (en) 1996-04-24 1996-04-24 Method and equipment for interference positioning

Country Status (1)

Country Link
JP (1) JPH09288159A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002365358A (en) * 2001-06-11 2002-12-18 Furuno Electric Co Ltd Deviation measuring device and course maintenance support device
KR100946167B1 (en) * 2007-12-28 2010-03-11 한국항공우주연구원 GPS carrier measurements integer resolution using mathematical constraints
JP2017053164A (en) * 2015-09-10 2017-03-16 アジア建設工業株式会社 Underwater riprap leveling work system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002365358A (en) * 2001-06-11 2002-12-18 Furuno Electric Co Ltd Deviation measuring device and course maintenance support device
KR100946167B1 (en) * 2007-12-28 2010-03-11 한국항공우주연구원 GPS carrier measurements integer resolution using mathematical constraints
JP2017053164A (en) * 2015-09-10 2017-03-16 アジア建設工業株式会社 Underwater riprap leveling work system

Similar Documents

Publication Publication Date Title
US5010343A (en) Method and device in the antenna and receiving system of a radio theodolite
US5422813A (en) No-outage GPS/commercial RF positioning system
US4283726A (en) Dual frequency distance measuring system
KR100581290B1 (en) Base station and mobile terminal for location detecting, its method for location detecting
US20040012524A1 (en) System for determining the position of an object
US7800531B2 (en) High precision positioning system
US7403155B2 (en) Method for the accelerated acquisition of satellite signals
CA2426920A1 (en) System and method for rapid telepositioning
US6476762B2 (en) Method for performing positioning and an electronic device
JP2001343447A (en) Method for detecting location of movable body
US6882312B1 (en) Method and apparatus for multipath mitigation using antenna array
JPH08146112A (en) Locating system
FR2808083B1 (en) METHOD AND DEVICE FOR INSTANT DETERMINATION OF ORIENTATION, BASED ON SATELLITE POSITIONING SIGNALS
KR100448574B1 (en) GPS Receiver and Method for Determining Position of a Wireless Terminal
US8952848B2 (en) System and method for determining the location of the phase center of an antenna
JPH09288159A (en) Method and equipment for interference positioning
JP3557024B2 (en) Positioning device
JP2005077291A (en) Three-dimensional positioning system
EP0524771A2 (en) D F method
JPH04315076A (en) Gps local position measuring apparatus
JP2004286600A (en) Three-dimensional positioning system
JPH08292073A (en) Method and device for measuring landslide surface moving quantity
JP2002181917A (en) Surveying method and surveying system
KR100839401B1 (en) Apparatus for measuring time delay of gps signals and cdma signals and method thereof
KR20030083225A (en) Method for detecting location, system and method for tracking location using that

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050308