JP3557024B2 - Positioning device - Google Patents

Positioning device Download PDF

Info

Publication number
JP3557024B2
JP3557024B2 JP34756195A JP34756195A JP3557024B2 JP 3557024 B2 JP3557024 B2 JP 3557024B2 JP 34756195 A JP34756195 A JP 34756195A JP 34756195 A JP34756195 A JP 34756195A JP 3557024 B2 JP3557024 B2 JP 3557024B2
Authority
JP
Japan
Prior art keywords
information
positioning device
doppler
doppler velocity
gps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34756195A
Other languages
Japanese (ja)
Other versions
JPH09166655A (en
Inventor
茂男 河島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP34756195A priority Critical patent/JP3557024B2/en
Publication of JPH09166655A publication Critical patent/JPH09166655A/en
Application granted granted Critical
Publication of JP3557024B2 publication Critical patent/JP3557024B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、GPS衛星を利用する測位装置に関する。
【0002】
【従来の技術】
図2は、従来のGPS衛星を利用する測位装置を説明するための図であり、図において、1はGPS衛星、2はGPSアンテナ、3はGPS受信部、4はGPS測位計算部である。
図2に示すようなGPS衛星を利用する測位装置の動作は良く知られているが、GPS衛星1からの電波はGPSアンテナ2で受信され、GPS受信部3で疑似距離と呼ばれる衛星・測位装置間の距離の情報と、測位装置(測位装置を搭載している移動体)の移動により生じる衛星・測位装置間のドップラ速度の情報とが出力され、GPS測位計算部4で四つ以上の衛星からの疑似距離とドップラ速度とから、測位装置(測位装置を搭載している移動体)の絶対位置および移動速度が演算により求められる。
このGPS衛星を利用して移動体の絶対位置および速度を求める方法は良く知られているが、例えば日本測量協会発行,日本測地学会編著「GPS−人工衛星による精密測位システム」等に記載されている。
【0003】
【発明が解決しようとする課題】
上記のように従来のGPS衛星を利用する測位装置では、GPS衛星からの電波だけで位置および速度を求めているため、得られる情報の精度および信頼性には限界がある。
上述のように従来のGPS衛星を利用する測位装置は、四つ以上の衛星から得た疑似距離により測位を行っているが、衛星からの電波の受信状態等が原因で全く誤った位置を出力してしまう場合があり、そのため、この種の測位装置の中には、計測される速度と時間の関係からその時間に位置し得る範囲を限定して正確な測位情報を出力する演算、例えば速度情報を非定常信号の観測値に用いたカルマンフィルタ(Kalman filter) を構成する微分方程式を用いて演算を行い、位置情報を出力しているが、従来の装置ではこの速度情報も衛星から受信する電波で計測したドップラ速度を用いているため、その信頼性には限界がある。
【0004】
また、例えばカーナビゲーション装置等の場合、衛星からの電波を受信できない間は推測航法に切り換えて測位情報を出力しているが、この場合に従来の測位装置では外部からの情報が全く得られないため、測位精度や信頼性が低下する。
【0005】
本発明はかかる問題点を解決するためになされたものであり、常時衛星以外からの情報も取得して衛星からの電波を受信している間も推測航法を行っている間も高精度で信頼性の高い測位情報が得られる測位装置を提供することを目的としている。
【0006】
【課題を解決するための手段】
本発明にかかわる測位装置は、FM放送,TV放送,携帯電話基地局信号,PHS基地局信号などの地上無線信号の無線周波数のドップラ速度を測定する手段を備え、この地上無線信号のドップラ速度も演算因子の1つに用いることで、GPS衛星や推測航法で得た位置および速度情報の精度および信頼性を担保させることとした。
【0007】
すなわち、GPS衛星からの電波を受信してGPS衛星・装置間の疑似距離情報とドップラ速度情報(このドップラ速度情報を第1のドップラ速度情報と仮称する)とを得、これらの疑似距離情報と第1のドップラ速度情報とを演算因子として用いた演算により装置(装置を搭載した移動体)の位置および速度の情報を出力する測位装置において、
地上無線信号を受信してこの地上無線信号の周波数変位から装置(装置を搭載した移動体)のドップラ速度情報(このドップラ速度情報を第2のドップラ速度情報と仮称する)を得る手段、
上記疑似距離情報と上記第1のドップラ速度情報と上記第2のドップラ速度情報とを演算因子として用いた演算により装置(装置を搭載した移動体)の位置および速度の情報を出力する手段を備えたことを特徴とする。
【0008】
また、地上無線信号を受信してこの地上無線信号の周波数変位から装置(装置を搭載した移動体)の第2のドップラ速度情報を得る手段は、
地上無線信号の周波数を装置内に備えた発振器からの基準周波数と比較して周波数変位を計測する構成とし、上記発振器はGPS衛星から受信した電波の周波数で発振制御される構成としたことを特徴とする。
【0009】
本発明の測位装置は上述のような構成とすることにより、GPS衛星からの電波以外の情報も演算因子として用いることができ、演算因子数の増加およびGPS衛星からの電波の受信状態に左右されない演算因子で測位情報の演算が行えるようになる。
【0010】
【発明の実施の形態】
以下、本発明の実施形態を図面を用いて説明する。図1は、本発明の一実施形態を説明するためのブロック図であり、図において、1はGPS衛星、2はGPSアンテナ、3はGPS受信部、4はGPS測位計算部であり、これらの構成は従来の測位装置と同様である。
また、10はFM放送,TV放送,携帯電話基地局信号,PHS基地局信号などの地上無線信号を受信するための受信アンテナ、11は地上無線信号を受信してそのドップラ周波数変位を計測し測位装置(移動体)のドップラ速度を検出するための放送受信部、12は放送受信部11でドップラ周波数を検出するために使用する基準周波数を出力する発振器であり、これらで本実施形態の測位装置が構成される。
また、13は発振器,14は放送送信部,15は送信アンテナで、地上無線信号を送信する例えばFM放送局等の地上無線局のうち、本実施形態と関連する構成部分を示す。
【0011】
次に動作について説明する。従来の装置と同様にGPS衛星1からの電波はGPSアンテナ2で受信され、GPS受信部3で疑似距離と呼ばれる衛星・測位装置間の距離の情報と、測位装置(この測位装置を搭載している移動体)の移動により生じる衛星・測位装置間のドップラ速度の情報(これを第1のドップラ速度情報と称する)とが出力され、GPS測位計算部4へ送られる。
一方、13〜15で構成される地上無線局からは、一般的にルビジウムあるいはセシウムを用いた正確な発振器13を備えているので、送信アンテナ15を介して送信される地上無線信号は、10−9以下の相対誤差精度を有する正確な周波数の信号が送信されており、例えば90MHzのキャリアー周波数標準値を持つ放送局から送信される地上無線信号の周波数誤差は、わずか0.09Hzとなる。
【0012】
この地上無線信号は、受信アンテナ10を介して本実施形態の測位装置で受信され、放送受信部11で発振器12からの基準周波数を基にこの地上無線信号から測位装置(この測位装置を搭載している移動体)の移動に伴う周波数変位であるドップラ速度を検出し(第2のドップラ速度情報)、GPS測位計算部4へ出力する。
GPS測位計算部4では、GPS受信部3からの疑似距離と呼ばれる衛星・測位装置間の距離の情報と、測位装置の移動により生じる衛星・測位装置間の第1のドップラ速度の情報とに加えて、放送受信部11からの出力である第2のドップラ速度の情報を用いて測位装置(この測位装置を搭載している移動体)の位置および速度を出力する。
この場合、放送受信部11からの第2のドップラ速度の情報は、地上無線局を、地上に固定したGPS衛星と見做すことにより、GPS衛星からの疑似距離やドップラ速度と同様に非定常信号の観測値とし、測位装置の絶対位置および速度を状態変数とした、カルマン・フィルタを構成する逐次式とすることにより、従来の装置より多くの演算因子を用いた演算で測位情報を出力することができ、より高精度で信頼性の高い測位情報が得られる。
なお、複数の地上無線信号を用いれば、さらにより多くの演算因子を用いて測位情報を出力することができ、出力する測位情報の精度および信頼性を更に向上させることができることは言うまでもない。
【0013】
なお放送受信部11で地上無線信号から正確な第2のドップラ速度情報を得るためには、その検出のために用いる基準周波数が正確である必要があり、このため発振器12にもルビジウムやセシウムを用いた高精度の発振器が必要になるが、GPS衛星1から受信する受信周波数は非常に正確に得られることが良く知られており、この周波数を制御信号として、例えばPLL(Phase Locked Loop) 制御により発振器12を制御する構成とすれば、発振器5に安価な水晶発振器等を用いてもその相対誤差が10−9以下の正確な周波数を基準周波数として得ることができ、例えば時速10kmで測位装置が地上無線局から遠ざかる場合、90MHzのキャリアー周波数標準値での周波数変位は0.83Hzとなり、周波数誤差0.09Hzに比べ十分に大きな値となるため測位計算に十分な速度情報が得られることになる。
【0014】
なお、発振器12にルビジウムやセシウム等の高精度の発振器を用いた場合、必ずしもGPS衛星を受信する必要はなく、推測航法を行う場合に利用できる。
【0015】
【発明の効果】
以上説明したように本発明の測位装置は、GPS衛星からの受信情報だけでなく地上無線信号から得たドップラ速度も演算因子とする演算を行って、位置および速度の測位情報を出力する構成としたので、測位精度を向上させることができると共に、信頼性の高い測位情報を出力できる等の効果がある。
【図面の簡単な説明】
【図1】本発明の測位装置の一実施形態を説明するための図である。
【図2】従来の測位装置を説明するための図である。
【符号の説明】
1 GPS衛星
2 GPSアンテナ
3 GPS受信部
4 GPS測位計算部
10 受信アンテナ
11 放送受信部
12 発振器
13 発振器
14 放送送信部
15 送信アンテナ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a positioning device using a GPS satellite.
[0002]
[Prior art]
FIG. 2 is a diagram for explaining a positioning device using a conventional GPS satellite. In the drawing, reference numeral 1 denotes a GPS satellite, 2 denotes a GPS antenna, 3 denotes a GPS receiving unit, and 4 denotes a GPS positioning calculating unit.
The operation of a positioning device using a GPS satellite as shown in FIG. 2 is well known, but a radio wave from a GPS satellite 1 is received by a GPS antenna 2, and a satellite / positioning device called a pseudo-range is received by a GPS receiver 3. Information on the distance between the two, and information on the Doppler velocity between the satellite and the positioning device caused by the movement of the positioning device (a moving object equipped with the positioning device) are output, and the GPS positioning calculation unit 4 outputs four or more satellites. The absolute position and the moving speed of the positioning device (the moving body on which the positioning device is mounted) can be obtained by calculation from the pseudo distance from and the Doppler speed.
A method of obtaining the absolute position and velocity of a moving object using the GPS satellites is well known, but is described in, for example, "Precision Positioning System Using GPS-Artificial Satellites" published by the Japan Geodetic Society and edited by the Geodetic Society of Japan. I have.
[0003]
[Problems to be solved by the invention]
As described above, in the conventional positioning device using a GPS satellite, since the position and the speed are obtained only by the radio wave from the GPS satellite, the accuracy and reliability of the obtained information are limited.
As described above, the conventional positioning device using GPS satellites performs positioning based on pseudoranges obtained from four or more satellites, but outputs a completely wrong position due to the reception state of radio waves from the satellites and the like. Therefore, some positioning devices of this type include a calculation for outputting accurate positioning information by limiting a range that can be located at that time from the relationship between the measured speed and time, for example, speed. The calculation is performed by using a differential equation constituting a Kalman filter using information as an observation value of a non-stationary signal, and the position information is output. Because the Doppler velocity measured in the above is used, its reliability is limited.
[0004]
Further, for example, in the case of a car navigation device or the like, the positioning information is output by switching to dead reckoning while the radio wave from the satellite cannot be received, but in this case, the conventional positioning device cannot obtain any information from outside. Therefore, the positioning accuracy and the reliability are reduced.
[0005]
The present invention has been made in order to solve such a problem, and it is possible to obtain information from other sources than satellites at all times, and to obtain highly reliable information while receiving radio waves from satellites and performing dead reckoning navigation. It is an object of the present invention to provide a positioning device capable of obtaining highly accurate positioning information.
[0006]
[Means for Solving the Problems]
The positioning device according to the present invention includes means for measuring a radio frequency Doppler speed of a terrestrial radio signal such as an FM broadcast, a TV broadcast, a mobile phone base station signal, and a PHS base station signal. By using it as one of the calculation factors, the accuracy and reliability of the position and velocity information obtained by the GPS satellites and dead reckoning are ensured.
[0007]
That is, a radio wave from a GPS satellite is received to obtain pseudo-distance information between a GPS satellite and a device and Doppler velocity information (this Doppler velocity information is tentatively referred to as first Doppler velocity information). In a positioning device that outputs information on the position and speed of a device (a moving body equipped with the device) by calculation using first Doppler speed information as a calculation factor,
Means for receiving a terrestrial radio signal and obtaining Doppler velocity information of the apparatus (a moving body equipped with the apparatus) from the frequency displacement of the terrestrial radio signal (this Doppler velocity information is tentatively referred to as second Doppler velocity information);
Means for outputting information on the position and speed of the device (moving body on which the device is mounted) by calculation using the pseudo distance information, the first Doppler speed information, and the second Doppler speed information as calculation factors. It is characterized by having.
[0008]
Means for receiving the ground radio signal and obtaining the second Doppler velocity information of the device (a moving body equipped with the device) from the frequency displacement of the ground radio signal,
The frequency of the terrestrial radio signal is compared with a reference frequency from an oscillator provided in the device to measure the frequency displacement, and the oscillator is controlled to oscillate at the frequency of a radio wave received from a GPS satellite. And
[0009]
With the above-described configuration, the positioning device of the present invention can also use information other than radio waves from GPS satellites as calculation factors, and is not affected by an increase in the number of calculation factors and the reception state of radio waves from GPS satellites. The calculation of the positioning information can be performed by the calculation factor.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram for explaining an embodiment of the present invention. In the drawing, reference numeral 1 denotes a GPS satellite, 2 denotes a GPS antenna, 3 denotes a GPS receiving unit, and 4 denotes a GPS positioning calculating unit. The configuration is the same as that of the conventional positioning device.
10 is a receiving antenna for receiving terrestrial radio signals such as FM broadcasting, TV broadcasting, mobile phone base station signals, and PHS base station signals, and 11 is for receiving terrestrial radio signals and measuring the Doppler frequency displacement thereof for positioning. A broadcast receiving unit 12 for detecting a Doppler speed of the apparatus (mobile body), and an oscillator 12 for outputting a reference frequency used for detecting a Doppler frequency in the broadcast receiving unit 11, is a positioning device according to the present embodiment. Is configured.
Reference numeral 13 denotes an oscillator, reference numeral 14 denotes a broadcast transmitting unit, and reference numeral 15 denotes a transmission antenna, which is a component related to the present embodiment among terrestrial radio stations such as an FM broadcast station for transmitting terrestrial radio signals.
[0011]
Next, the operation will be described. Radio waves from a GPS satellite 1 are received by a GPS antenna 2 like a conventional device, and a GPS receiver 3 receives information on a distance between a satellite and a positioning device, called a pseudo distance, and a positioning device (with this positioning device mounted). Information on the Doppler velocity between the satellite and the positioning device (hereinafter referred to as first Doppler velocity information) generated by the movement of the moving object) is output and sent to the GPS positioning calculation unit 4.
On the other hand, a terrestrial radio station composed of 13 to 15 generally has an accurate oscillator 13 using rubidium or cesium, so that a terrestrial radio signal transmitted via the transmission antenna 15 is 10 A signal of an accurate frequency having a relative error accuracy of 9 or less is transmitted. For example, a frequency error of a terrestrial radio signal transmitted from a broadcasting station having a carrier frequency standard value of 90 MHz is only 0.09 Hz.
[0012]
This terrestrial radio signal is received by the positioning device of the present embodiment via the receiving antenna 10, and the broadcast receiving unit 11 uses the terrestrial radio signal based on the reference frequency from the oscillator 12 to determine the position of the terrestrial radio signal (with this positioning device installed). A Doppler velocity, which is a frequency displacement accompanying the movement of the moving object), is detected (second Doppler velocity information) and output to the GPS positioning calculation unit 4.
The GPS positioning calculation unit 4 adds information on a distance between the satellite and the positioning device called a pseudo distance from the GPS receiving unit 3 and information on a first Doppler velocity between the satellite and the positioning device caused by movement of the positioning device. Then, the position and the speed of the positioning device (the moving body on which the positioning device is mounted) are output using the information of the second Doppler speed output from the broadcast receiving unit 11.
In this case, the information on the second Doppler speed from the broadcast receiving unit 11 can be obtained by assuming that the terrestrial radio station is a GPS satellite fixed on the ground, as in the pseudo-range from the GPS satellite and the Doppler speed. The positioning information is output by a calculation using more calculation factors than the conventional device by using a sequential expression that constitutes a Kalman filter with the observation value of the signal and the absolute position and speed of the positioning device as state variables. And more accurate and reliable positioning information can be obtained.
If a plurality of terrestrial radio signals are used, it is needless to say that positioning information can be output using even more calculation factors, and the accuracy and reliability of the output positioning information can be further improved.
[0013]
In order for the broadcast receiving unit 11 to obtain accurate second Doppler velocity information from the terrestrial radio signal, the reference frequency used for its detection needs to be accurate. For this reason, rubidium or cesium is also used in the oscillator 12. Although a high-precision oscillator used is required, it is well known that the reception frequency received from the GPS satellite 1 can be obtained very accurately, and this frequency is used as a control signal, for example, in a PLL (Phase Locked Loop) control. If the oscillator 12 is controlled by using a low-cost crystal oscillator or the like as the oscillator 5, an accurate frequency with a relative error of 10 −9 or less can be obtained as a reference frequency. Is far from the terrestrial radio station, the frequency displacement at the carrier frequency standard value of 90 MHz is 0.83 Hz, and the frequency error is Since the value is sufficiently larger than 0.09 Hz, sufficient speed information for positioning calculation can be obtained.
[0014]
Note that when a high-precision oscillator such as rubidium or cesium is used as the oscillator 12, it is not necessary to receive a GPS satellite, and can be used for performing dead reckoning navigation.
[0015]
【The invention's effect】
As described above, the positioning device of the present invention performs a calculation using not only the information received from the GPS satellites but also the Doppler speed obtained from the terrestrial radio signal as a calculation factor, and outputs position and speed positioning information. Therefore, there are effects that the positioning accuracy can be improved and highly reliable positioning information can be output.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining an embodiment of a positioning device of the present invention.
FIG. 2 is a diagram for explaining a conventional positioning device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 GPS satellite 2 GPS antenna 3 GPS receiving part 4 GPS positioning calculation part 10 Receiving antenna 11 Broadcast receiving part 12 Oscillator 13 Oscillator 14 Broadcast transmitting part 15 Transmitting antenna

Claims (2)

GPS衛星からの電波を受信してGPS衛星・装置間の疑似距離情報とドップラ速度情報(このドップラ速度情報を第1のドップラ速度情報と仮称する)とを得、これらの疑似距離情報と第1のドップラ速度情報とを演算因子として用いた演算により装置(装置を搭載した移動体)の位置および速度の情報を出力する測位装置において、
地上無線信号を受信してこの地上無線信号の周波数変位から装置(装置を搭載した移動体)のドップラ速度情報(このドップラ速度情報を第2のドップラ速度情報と仮称する)を得る手段、
上記疑似距離情報と上記第1のドップラ速度情報と上記第2のドップラ速度情報とを演算因子として用いた演算により装置(装置を搭載した移動体)の位置および速度の情報を出力する手段、
を備えたことを特徴とする測位装置。
Radio waves from GPS satellites are received to obtain pseudo distance information between GPS satellites and devices and Doppler velocity information (this Doppler velocity information is tentatively referred to as first Doppler velocity information), and these pseudo distance information and first Doppler velocity information are obtained. In a positioning device that outputs information on the position and speed of the device (a moving body equipped with the device) by calculation using Doppler speed information of
Means for receiving a terrestrial radio signal and obtaining Doppler velocity information of the apparatus (a moving body equipped with the apparatus) from the frequency displacement of the terrestrial radio signal (this Doppler velocity information is tentatively referred to as second Doppler velocity information);
Means for outputting information on the position and speed of the device (moving body on which the device is mounted) by calculation using the pseudo distance information, the first Doppler speed information, and the second Doppler speed information as calculation factors;
A positioning device comprising:
上記地上無線信号を受信してこの地上無線信号の周波数変位から装置(装置を搭載した移動体)の第2のドップラ速度情報を得る手段は、
地上無線信号の周波数を装置内に備えた発振器からの基準周波数と比較して周波数変位を計測する構成とし、上記発振器はGPS衛星から受信した電波の周波数で発振制御される構成としたことを特徴とする請求項第1項記載の測位装置。
Means for receiving the above-mentioned terrestrial radio signal and obtaining second Doppler velocity information of the device (a mobile body equipped with the device) from the frequency displacement of the terrestrial radio signal,
The frequency of the terrestrial radio signal is compared with a reference frequency from an oscillator provided in the device to measure the frequency displacement, and the oscillator is controlled to oscillate at the frequency of a radio wave received from a GPS satellite. The positioning device according to claim 1, wherein:
JP34756195A 1995-12-18 1995-12-18 Positioning device Expired - Fee Related JP3557024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34756195A JP3557024B2 (en) 1995-12-18 1995-12-18 Positioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34756195A JP3557024B2 (en) 1995-12-18 1995-12-18 Positioning device

Publications (2)

Publication Number Publication Date
JPH09166655A JPH09166655A (en) 1997-06-24
JP3557024B2 true JP3557024B2 (en) 2004-08-25

Family

ID=18391059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34756195A Expired - Fee Related JP3557024B2 (en) 1995-12-18 1995-12-18 Positioning device

Country Status (1)

Country Link
JP (1) JP3557024B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001006274A1 (en) * 1999-07-20 2001-01-25 Qualcomm Incorporated Method for determining a change in a communication signal and using this information to improve sps signal reception and processing
US6420999B1 (en) * 2000-10-26 2002-07-16 Qualcomm, Inc. Method and apparatus for determining an error estimate in a hybrid position determination system
JP4151677B2 (en) 2005-06-20 2008-09-17 セイコーエプソン株式会社 POSITIONING SYSTEM, TERMINAL DEVICE, TERMINAL DEVICE CONTROL METHOD, AND TERMINAL DEVICE CONTROL PROGRAM
JP5077054B2 (en) * 2008-05-07 2012-11-21 トヨタ自動車株式会社 Mobile positioning system
JP2010060421A (en) * 2008-09-03 2010-03-18 Toyota Motor Corp Positioning system for moving body and gnss receiving apparatus
US20120169535A1 (en) * 2011-01-05 2012-07-05 Qualcomm Incorporated Affecting electronic device positioning functions based on measured communication network signal parameters

Also Published As

Publication number Publication date
JPH09166655A (en) 1997-06-24

Similar Documents

Publication Publication Date Title
US7236883B2 (en) Aiding in a satellite positioning system
US5422813A (en) No-outage GPS/commercial RF positioning system
JP3083592B2 (en) Vehicle traveling direction information acquisition method and device
JP3062301B2 (en) GPS navigation device
JP3138952B2 (en) GPS precision approach landing system for aircraft
US7403155B2 (en) Method for the accelerated acquisition of satellite signals
US20010008393A1 (en) Method for performing positioning and an electronic device
JPH0666916A (en) Gps receiver
US6009335A (en) Method of calibrating and testing spatial nulling antenna
JP3557024B2 (en) Positioning device
JP4916660B2 (en) Support in satellite positioning system
US3141167A (en) Navigation system
US6393291B1 (en) Method and apparatus for deriving a high rate output in a GPS system
JP4334104B2 (en) Car navigation system
CN112444838A (en) High-precision navigation system and method combining precise point positioning and inertial navigation system
JPS61226610A (en) Navigation device for automobile
JPH0466316B2 (en)
JPS61198072A (en) Navigation system for automobile
JPH0249674B2 (en) GPSKOHOSOCHI
JPH09288159A (en) Method and equipment for interference positioning
JPS63222279A (en) Underwater object measuring apparatus
JPH0666917A (en) Gps location system
JPH07122665B2 (en) Underwater object position display device
JPH1048314A (en) Apparatus and system for reception from satellite
JPH1048313A (en) Apparatus and system for reception from satellite

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040514

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees