JPH0666916A - Gps receiver - Google Patents

Gps receiver

Info

Publication number
JPH0666916A
JPH0666916A JP4216152A JP21615292A JPH0666916A JP H0666916 A JPH0666916 A JP H0666916A JP 4216152 A JP4216152 A JP 4216152A JP 21615292 A JP21615292 A JP 21615292A JP H0666916 A JPH0666916 A JP H0666916A
Authority
JP
Japan
Prior art keywords
speed
moving body
acceleration
computation
satellite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4216152A
Other languages
Japanese (ja)
Inventor
Hiroshi Takeuchi
博 竹内
Tatsuo Ito
辰男 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP4216152A priority Critical patent/JPH0666916A/en
Publication of JPH0666916A publication Critical patent/JPH0666916A/en
Pending legal-status Critical Current

Links

Landscapes

  • Traffic Control Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

PURPOSE:To obtain the measured position of a moving body by detecting the speed abnormality obtained based on the Doppler shift of a frequency, and removing the effect of multipaths with the GPS, which utilizes satellites covering the entire earth. CONSTITUTION:The signals from a plurality of satellites are received. Computation is performed based on the received data. At least the position, speed, bearing and acceleration of a moving body are displayed on a GPS receiver. A speed-abnormality judging means 12, which judges the speed abnormality of the speed obtained by the computation when the speed of the moving body obtained by the computation exceeds the limit value of the moving body, is provided in the GPS receiver. A previous-computationresult memory means 14 stores at least the position, speed, bearing and acceleration of the moving body obtained by the previous computation and displays at least the position, speed, bearing and acceleration of the moving body obtained by the previous computation when the speed of the moving body obtained by the computation of the speed-abnormality judging means 12 is judged as abnormal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は全地球上を覆域とする衛
星を利用するGPS(Global Positioning System) に関
し、特に本発明では周波数のドップラーシフトから得ら
れる速度の異常を検知してマルチパスによる影響を除去
して移動体の測位を得るGPS受信機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a GPS (Global Positioning System) which uses satellites covering the entire globe, and in particular, the present invention detects multipath by detecting an abnormality in speed obtained from frequency Doppler shift. The present invention relates to a GPS receiver that removes the influence of the above and obtains positioning of a mobile body.

【0002】[0002]

【従来の技術】従来このような分野の技術として以下に
説明するものがあった。GPSはアメリカ国防省によっ
て計画実施されつつある人工衛星を利用した全世界的な
電波測定システムである。最終的には、予備衛星3個を
含む24個の衛星が六つの軌道面にそれぞれ4個ずつ打
ち上げられことになっている。これらの衛星のうち、4
個の衛星からの電波をシーケンシャルあるいはマルチに
受信することによって受信点の三次元測位(経度、緯
度、高度)が可能である。3個の衛星からの電波受信で
は受信点の二次元測位が可能である。また車両、船舶等
の移動体が衛星に対して移動するから衛星との相対速度
が変化するため、衛星信号の周波数は周波数シフトであ
るドップラー効果が生じる。したがって移動体に搭載さ
れる受信機で受信される周波数のドップラーシフトを測
定して移動体の走行する方位、速度、加速度を得ること
ができる。
2. Description of the Related Art Conventionally, there have been techniques described below as techniques in such a field. GPS is a worldwide radio wave measurement system using artificial satellites, which is being planned and implemented by the US Department of Defense. Eventually, 24 satellites, including 3 spare satellites, will be launched into each of the 6 orbital planes, 4 each. 4 of these satellites
Three-dimensional positioning (longitude, latitude, altitude) of the receiving point is possible by receiving radio waves from each satellite sequentially or in multiple. Two-dimensional positioning of the receiving point is possible by receiving radio waves from three satellites. Further, since a moving body such as a vehicle or a ship moves with respect to the satellite, the relative speed with respect to the satellite changes, so that the frequency of the satellite signal has a Doppler effect which is a frequency shift. Therefore, by measuring the Doppler shift of the frequency received by the receiver mounted on the mobile body, the traveling direction, speed, and acceleration of the mobile body can be obtained.

【0003】[0003]

【発明が解決しようとする課題】ところで、従来のGP
S受信機では受信信号のドップラーシフトから得られた
速度等を表示していたが、移動体の周辺にある反射物
等、電離層等の反射等によるマルチパスの影響により、
受信する周波数のドップラーシフトが変化する。しかし
ながら、元来の移動体の速度によるドップラーシフト量
は非常に小さいから、マルチパスによるドップラーシフ
ト量の変化が大きくなり、結果的に移動体の速度は、マ
ルチパスの影響によりしばしば車両、船舶の最大速度を
越える無意味な表示がなされるという問題がある。この
場合には測位データにも悪影響を与えている虞があるの
で、測位データの表示を阻止する必要がある。
By the way, the conventional GP
In the S receiver, the speed and the like obtained from the Doppler shift of the received signal were displayed, but due to the influence of multipath due to the reflection of the reflector around the moving body, the ionosphere, etc.,
The Doppler shift of the received frequency changes. However, since the Doppler shift amount due to the speed of the original moving body is very small, the change in the Doppler shift amount due to the multipath becomes large, and as a result, the moving object speed often changes due to the influence of the multipath. There is a problem that a meaningless display exceeding the maximum speed is displayed. In this case, the positioning data may be adversely affected, so it is necessary to prevent the positioning data from being displayed.

【0004】したがって、本発明は上記問題点に鑑み移
動体の最大速度を越えるような速度異常を検出した場合
に位置、速度、方位、加速度の表示を阻止できるGPS
受信機を提供する。
Therefore, in view of the above problems, the present invention can prevent the display of the position, velocity, azimuth and acceleration when a velocity abnormality exceeding the maximum velocity of the moving body is detected.
Provide a receiver.

【0005】[0005]

【課題を解決するための手段】本発明は前記問題点を解
決するために、複数の衛星からの信号を受信し受信デー
タから計算して移動体の少なくとも位置、速度、方位、
加速度を表示するGPS受信機に、速度異常判断手段及
び前回計算結果記憶手段14を設ける。前記速度異常判
断手段は前記計算して得られた移動体の速度が移動体の
限界値を越える場合に計算して得られた速度を異常と判
断する。
In order to solve the above-mentioned problems, the present invention receives signals from a plurality of satellites and calculates from received data to calculate at least the position, speed, direction,
The GPS receiver for displaying the acceleration is provided with a speed abnormality determination means and a previous calculation result storage means 14. The speed abnormality determining means determines that the calculated speed is abnormal when the calculated speed of the moving body exceeds the limit value of the moving body.

【0006】前記前回計算結果記憶手段は前回計算して
得た移動体の少なくとも位置、速度、方位、加速度を記
憶し、前記速度異常判断手段によって移動体の計算して
得られた速度が異常と判断された場合に、前回計算して
得られた移動体の少なくとも位置、速度、方位、加速度
を表示する。
The previous calculation result storage means stores at least the position, speed, azimuth, and acceleration of the moving body obtained by the previous calculation, and the speed obtained by calculating the moving body by the speed abnormality judging means is abnormal. If it is determined, at least the position, velocity, azimuth, and acceleration of the moving body obtained by the previous calculation are displayed.

【0007】[0007]

【作用】本発明のGPS受信機によれば、前記速度異常
判断手段によって前記計算して得られた移動体の速度、
加速度が移動体の限界値を越える場合に計算して得られ
た速度が異常と判断される。これにより反射物、電離層
等によるマルチパスの影響を検知できる。前記前回計算
結果記憶手段によって前回計算して得た移動体の少なく
とも位置、速度、方位、加速度が記憶され、前記速度異
常判断手段で移動体の速度、加速度が異常と判断された
場合に、前回計算して得られた移動体の少なくとも位
置、速度、方位、加速度が表示される。したがって、移
動体の位置、速度、方位、加速度等の真の値だけを表示
し、反射物、電離層等によるマルチパスの影響を受けた
異常な値を表示しないことが可能になる。
According to the GPS receiver of the present invention, the speed of the moving body obtained by the calculation by the speed abnormality judging means,
When the acceleration exceeds the limit value of the moving body, the speed obtained by calculation is judged to be abnormal. As a result, it is possible to detect the influence of multipath due to the reflector, the ionosphere, and the like. At least the position, speed, azimuth, and acceleration of the moving body previously calculated by the previous calculation result storage unit are stored, and if the speed abnormality determining unit determines that the speed and acceleration of the moving body are abnormal, At least the position, velocity, azimuth, and acceleration of the moving body obtained by the calculation are displayed. Therefore, it is possible to display only the true values such as the position, velocity, azimuth, and acceleration of the moving body, and not display the abnormal values affected by multipath due to the reflector, the ionosphere, and the like.

【0008】[0008]

【実施例】以下本発明の実施例について図面を参照して
説明する。図1は本発明の実施例に係るGPS受信機を
示す図である。本図に示すGPS受信機は、先ずアンテ
ナ1を具備する。該アンテナ1は複数の人工衛星からC
/Aコードで変調された送信信号をシーケンシャルに受
信する。尚、マルチに受信する方法もある。この送信信
号では1575.42MHzの搬送波がC/Aコードと
呼ばれるディジタルコードで位相変調される。このC/
Aコードは疑似雑音符号(PN)と呼ばれるもので、3
6種のパターンがあり、各衛星に異なるC/Aコードが
割り当てられており、ユーザには知られているものであ
る。上記位相変調はスペクトラム拡散というものであ
り、同一周波数でも各衛星の識別を可能としている。ま
た上記C/Aコードには、「航法メッセージ」と呼ばれ
る測位に必要なデータが重ねて乗せてある。この航法メ
ッセージには、各衛星の軌道情報、衛星に搭載されてい
る原子時計の補正値、電離層による伝播遅延補正計数、
全衛星の概略情報等が含まれている。なお衛星の地上局
では、衛星の正確な軌道要素の測定系をもち、正確な軌
道を保つための運行管理のほかに、GPS機能維持のた
め、。時間基準、軌道要素、位置補正パラメータ等の日
例修正を行い、精度管理を行っている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a GPS receiver according to an embodiment of the present invention. The GPS receiver shown in this figure is first equipped with an antenna 1. The antenna 1 is C from a plurality of satellites.
The transmission signals modulated with the / A code are sequentially received. There is also a method of receiving in multiple. In this transmission signal, a carrier of 1575.42 MHz is phase-modulated by a digital code called C / A code. This C /
The A code is called a pseudo noise code (PN) and is 3
There are 6 types of patterns, and different C / A codes are assigned to each satellite, which is known to the user. The above-mentioned phase modulation is called spread spectrum, and it is possible to identify each satellite even at the same frequency. Further, data required for positioning called "navigation message" is superimposed on the C / A code. This navigation message contains the orbital information of each satellite, the correction value of the atomic clock mounted on the satellite, the propagation delay correction count by the ionosphere,
It contains general information about all satellites. In addition, the satellite ground station has a measurement system for accurate orbital elements of the satellite, and in addition to operation management to maintain an accurate orbit, to maintain the GPS function. The daily reference such as time base, orbital element, position correction parameter, etc. is corrected to control the quality.

【0009】図1に戻り、前記アンテナ1に接続される
RF増幅器2は前記アンテナ1により受信したRF信号
を増幅する。局発用発振器4は前記RF増幅器2からの
信号の周波数1.575.42MHzを中間周波数4.
092MHzの信号(IF信号)に変換するために局発
用の信号を形成する。前記RF増幅器2に接続されるミ
クサ3はRF増幅器2からのRF信号を前記局発用発振
器4からの信号で混合してRF信号を中間周波数信号に
変換する。前記ミクサ3に接続される中間周波フィルタ
増幅器5はミクサ3で変換された信号を約110dB増
幅する。前記中間周波フィルタ増幅器5に接続されるA
/D変換器6(Analog to Digital Converter)は中間周
波フィルタ増幅器6で増幅されたアナログ信号を1ビッ
トのディジタル信号に変換する。前記A/D変換器6の
ディジタル信号を入力するスペクトラム逆拡散復調手段
7は、衛星電波に周波数を合わせると同時に各衛星に対
応するC/Aコードを発生してC/Aコードに位相を合
わせることによりスペクトルの逆拡散を行いデータを復
調する。このスペクトラム逆拡散復調手段7はDSP
(Digital Signal Processor) で形成される。
Returning to FIG. 1, the RF amplifier 2 connected to the antenna 1 amplifies the RF signal received by the antenna 1. The local oscillator 4 converts the frequency of the signal from the RF amplifier 2 from 1.575.42 MHz to an intermediate frequency of 4.75.
A signal for local oscillation is formed in order to convert it to a 092 MHz signal (IF signal). The mixer 3 connected to the RF amplifier 2 mixes the RF signal from the RF amplifier 2 with the signal from the local oscillator 4 and converts the RF signal into an intermediate frequency signal. The intermediate frequency filter amplifier 5 connected to the mixer 3 amplifies the signal converted by the mixer 3 by about 110 dB. A connected to the intermediate frequency filter amplifier 5
A / D converter 6 (Analog to Digital Converter) converts the analog signal amplified by the intermediate frequency filter amplifier 6 into a 1-bit digital signal. The spectrum despread demodulation means 7 for inputting the digital signal of the A / D converter 6 adjusts the frequency to the satellite radio wave and at the same time generates the C / A code corresponding to each satellite and adjusts the phase to the C / A code. As a result, the spectrum is despread and the data is demodulated. This spectrum despread demodulation means 7 is a DSP
(Digital Signal Processor).

【0010】次にスペクトラム逆拡散復調手段7で復調
されたデータを入力する航法メッセージ解読手段20
は、衛星と受信点の真の距離に対して誤差を含んでいる
疑似距離RP を求める疑似距離導出手段8を具備する。
該疑似距離導出手段8では疑似距Rp は、各衛星に搭載
されている原子時計に正確に同期したタイミングでC/
Aコードが送られてきているので、C/Aコードの位相
シフト量から算出される。前記疑似距離導出手段8から
各衛星の疑似距離を得た位置計算手段9は、以下のよう
にして受信機の三次元測位を行う。すなわち、各衛星の
軌道情報、衛星に搭載されている原子時計の補正値、電
離層による伝播遅延の補正計数、全衛星概略の軌道情報
等から、衛星と受信位置を三次元座標で表す。ここで、
x、y、zを受信点の座標、u、v、wを衛星の座標と
し、各4個の衛星について、疑似距離Rpi,座標ui 、
vi 、wi (i=1,2,3,4) とすると、下記式が成立する。
Next, the navigation message decoding means 20 for inputting the data demodulated by the spectrum despread demodulation means 7
Comprises a pseudorange deriving means 8 for obtaining a pseudorange RP containing an error with respect to the true distance between the satellite and the receiving point.
In the pseudo distance deriving means 8, the pseudo distance Rp is C / at a timing accurately synchronized with an atomic clock mounted on each satellite.
Since the A code is sent, it is calculated from the phase shift amount of the C / A code. The position calculating means 9, which has obtained the pseudo distance of each satellite from the pseudo distance deriving means 8, performs the three-dimensional positioning of the receiver as follows. That is, the satellite and the receiving position are represented by three-dimensional coordinates from the orbit information of each satellite, the correction value of the atomic clock mounted on the satellite, the correction count of the propagation delay due to the ionosphere, the orbit information of all the satellites. here,
Let x, y, z be the coordinates of the receiving point, u, v, w be the coordinates of the satellite, and pseudo-distance Rpi, coordinates ui, for each of the four satellites.
Assuming vi and wi (i = 1,2,3,4), the following equation holds.

【0011】[0011]

【数1】 [Equation 1]

【0012】ここで、衛星の位置ui 、vi 、wi (i=
1,2,3,4) は航法メッセージの中の軌道パラメータから
ケプラーの方程式を解いて求めれることができる。Cは
高速を、Δtr はGPS基準時間と受信器時計のずれを
表す。したがって上記式を解くことにより受信点の三次
元測位(経度、緯度、高度)が可能になる。次にスペク
トラム逆拡散復調手段7からの周波数データを入力する
ドップラー測定手段10は、前述の衛星送信周波数15
75.42MHzからのドップラーシフト量を各衛星に
ついて求める。衛星及び移動体との移動速度に伴って周
波数は最大±5KHz程度のドップラーシフトを受ける
が、移動体のみの速度によるものは数Hzである。前記
ドップラー測定手段10で得られた各衛星のドップラー
シフト量を得た移動速度方位計算手段11はドップラー
シフト量を速度ベクトルに変換し、移動体の速度ベクト
ルVを各衛星と移動体と速度ベクトルVi (i=1,2,3,4)
を、以下のようにして、求める。
Here, the satellite positions ui, vi, wi (i =
1,2,3,4) can be obtained by solving the Kepler equation from the orbital parameters in the navigation message. C represents high speed, and Δtr represents a deviation between the GPS reference time and the receiver clock. Therefore, by solving the above equation, three-dimensional positioning (longitude, latitude, altitude) of the receiving point becomes possible. Next, the Doppler measuring means 10 for inputting the frequency data from the spectrum despreading demodulation means 7 receives the satellite transmission frequency 15 described above.
The Doppler shift amount from 75.42 MHz is calculated for each satellite. The frequency undergoes a Doppler shift of about ± 5 KHz at the maximum according to the moving speed of the satellite and the moving body, but the frequency depends on the speed of only the moving body is several Hz. The moving velocity azimuth calculating unit 11 which has obtained the Doppler shift amount of each satellite obtained by the Doppler measuring unit 10 converts the Doppler shift amount into a velocity vector, and converts the velocity vector V of the moving body to each satellite, the moving body and the velocity vector. Vi (i = 1,2,3,4)
Is calculated as follows.

【0013】ベクトルV=ベクトルV1 +ベクトルV2
+ベクトルV3 +ベクトルV4 このベクトルVの方向から移動体の方位が得られ、絶対
値|ベクトルV|から移動体の速度が得られる。前記移
動速度方位計算手段11から移動体の速度を得た速度異
常判断手段12は移動体の計算された速度が異常か否か
を判断する。速度が異常か否かの目安は車両、船舶の通
常の速度の最大値に余裕を考慮した値とする。なお、加
速度は前記速度ベクトルを微分して得られる。
Vector V = vector V1 + vector V2
+ Vector V3 + Vector V4 The direction of the moving body is obtained from the direction of the vector V, and the velocity of the moving body is obtained from the absolute value | vectorV |. The speed abnormality determining means 12, which has obtained the speed of the moving body from the moving speed direction calculating means 11, judges whether or not the calculated speed of the moving body is abnormal. A guideline for whether or not the speed is abnormal is a value that considers the margin in the maximum value of the normal speed of the vehicle or ship. The acceleration is obtained by differentiating the velocity vector.

【0014】前記速度異常判断手段12によってオン・
オフを制御されるスイッチ13は速度異常判断手段12
によって移動体の速度が正常と判断された場合に前記移
動速度方位計算手段11の移動体の速度、方位、加速度
のデータ及び位置計算手段9の移動体の位置データを通
過させる。逆に前記速度異常判断手段12により移動体
の速度が異常と判断されると該スイッチ13は前記デー
タの通過を阻止する。前記スイッチ13に接続される前
回計算結果記憶手段14は速度異常判断手段12で速度
が正常と判断された位置、速度、方位、加速度等のデー
タを記憶し、高速シーケンシャルにより新たなデータが
得られる毎にデータの記憶を更新する。前記速度異常判
断手段12によりオン・オフを制御されるスイッチ15
は、速度異常判断手段12により速度が正常と判断され
た場合には前記位置計算手段9及び移動速度方位計算手
段11からの位置、速度、方位、加速度データを通過さ
せ、速度異常判断手段12により速度が異常と判断され
た場合には前回計算結果記憶手段14からの位置、速
度、方位、加速度データを通過させる。前記スイッチ1
5に接続される位置、速度等の表示器16は、スイッチ
15により択一的に選択された位置計算手段9及び移動
速度方位計算手段11のデータ又は前回計算結果記憶手
段14のデータを表示する。なお、前記無線機20出手
段8からスイッチ15からなる航法メッセージ解読手段
20はマイクロコンピュータで形成され、該マイクロコ
ンピュータは前記DSPの制御、測位計算を行う中央演
算装置、外部との通信を行うインタフェース、ROM(R
ead Only Memory)、RAM(Random Access Memory)等で
構成される。
ON by the speed abnormality judging means 12
The switch 13 controlled to be turned off is the speed abnormality determination means 12
When it is determined that the speed of the moving body is normal, the moving speed, direction, and acceleration data of the moving speed direction calculating means 11 and the position data of the moving body of the position calculating means 9 are passed. On the contrary, when the speed abnormality judging means 12 judges that the speed of the moving body is abnormal, the switch 13 blocks the passage of the data. The previous calculation result storage means 14 connected to the switch 13 stores the data such as position, speed, azimuth, acceleration, etc., where the speed is judged to be normal by the speed abnormality judgment means 12, and new data can be obtained by high speed sequential operation. The data storage is updated every time. A switch 15 whose on / off is controlled by the speed abnormality judging means 12.
When the speed abnormality judging means 12 judges that the speed is normal, the speed abnormality judging means 12 allows the position, speed, azimuth and acceleration data from the position calculating means 9 and the moving speed direction calculating means 11 to pass through. When it is determined that the speed is abnormal, the position, speed, azimuth and acceleration data from the previous calculation result storage means 14 is passed. Switch 1
A display device 16 for position, speed, etc. connected to 5 displays the data of the position calculation means 9 and the moving speed azimuth calculation means 11 or the data of the previous calculation result storage means 14 which are alternatively selected by the switch 15. . The navigation message decoding means 20 including the radio 20 output means 8 to the switch 15 is formed by a microcomputer, and the microcomputer controls the DSP, a central processing unit that performs positioning calculation, and an interface that communicates with the outside. , ROM (R
It is configured by an ead only memory), a RAM (Random Access Memory), and the like.

【0015】図2は本実施例の一連の動作を説明するフ
ローチャートである。本図に示すように、ステップ1に
おいて、スペクトラム逆拡散復調手段7でのC/Aコー
ドの位相シフト量に基づいて疑似距離を計算し、ステッ
プ2においてドップラーシフト量を求め、ステップ3に
おいて前記ステップ1で各衛星に位置と移動体に対する
に対する疑似距離とから移動体の位置を導出する。ステ
ップ4において、各衛星のドップラーシフト量から移動
体の速度ベクトルを求めこれを合成して移動体の速度を
求める。ステップ5において移動体の速度が車両、船舶
等の速度として上限値(例えば300km/h)を越え
る場合には計算した速度が異常と判断する。このように
大きな速度では通常の車両等は走行しないからである。
ステップ6において、測定された速度が正常ならば、そ
の位置、速度、方位、加速度データを記憶する。ステッ
プ7において、その正常な位置、速度、方位データが表
示される。ステップ8において、前記ステップ5で、速
度が異常と判断されたら、ステップ6で記憶した正常な
位置、速度、方位、加速度データを読み出して表示す
る。測定されたドップラーシフトがマルチパスの影響を
受けて、異常な速度が算出される場合には電波到来の経
路の急峻な変化として判定し、その異常速度等は表示さ
れず前回の速度等が表示される。したがって移動体の速
度を関係のないマルチパスの影響を除去でき、無意味な
データの表示がなくなり安定した表示を行うことができ
る。
FIG. 2 is a flow chart for explaining a series of operations of this embodiment. As shown in the figure, in step 1, the pseudo distance is calculated based on the phase shift amount of the C / A code in the spectrum despread demodulation means 7, the Doppler shift amount is obtained in step 2, and the step is performed in step 3 In step 1, the position of the moving body is derived from the position of each satellite and the pseudo distance to the moving body. In step 4, the velocity vector of the moving body is obtained from the Doppler shift amount of each satellite, and these are combined to obtain the velocity of the moving body. In step 5, if the speed of the moving body exceeds the upper limit value (for example, 300 km / h) as the speed of the vehicle, the ship, etc., the calculated speed is judged to be abnormal. This is because a normal vehicle or the like does not travel at such a high speed.
In step 6, if the measured speed is normal, the position, speed, azimuth, and acceleration data are stored. In step 7, the normal position, speed and bearing data are displayed. If it is determined in step 5 that the speed is abnormal in step 8, the normal position, speed, azimuth and acceleration data stored in step 6 is read out and displayed. If the measured Doppler shift is affected by multipath and an abnormal speed is calculated, it is judged as a sharp change in the path of the radio wave arrival and the abnormal speed is not displayed, but the previous speed is displayed. To be done. Therefore, the influence of multipath unrelated to the speed of the moving body can be removed, meaningless display of data is eliminated, and stable display can be performed.

【0016】[0016]

【発明の効果】以上説明したように本発明によれば、計
算して得られた移動体の速度が移動体の限界値を越える
場合に計算して得られた速度の異常を判断し、前回計算
して得た移動体の少なくとも位置、速度、方位、加速度
を記憶し、移動体の速度が異常と判断された場合に、前
回計算して得られた移動体の少なくとも位置、速度、方
位を表示するので、移動体の位置、速度、方位、加速度
の実際の値だけを表示し、反射物、電離層等によるマル
チパスの影響を受けた異常な値を表示しないことが可能
になる。
As described above, according to the present invention, when the calculated velocity of the moving body exceeds the limit value of the moving body, the abnormality of the calculated velocity is judged, If at least the position, speed, direction and acceleration of the moving body obtained by calculation are stored and the speed of the moving body is judged to be abnormal, at least the position, speed and direction of the moving body obtained by the previous calculation are stored. Since it is displayed, it is possible to display only the actual values of the position, velocity, azimuth, and acceleration of the moving body, and not the abnormal values affected by multipath due to reflectors, ionosphere, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係るGPS受信機を示す図で
ある。
FIG. 1 is a diagram showing a GPS receiver according to an embodiment of the present invention.

【図2】本実施例の一連の動作を説明するフローチャー
トである。
FIG. 2 is a flowchart illustrating a series of operations according to the present exemplary embodiment.

【符号の説明】[Explanation of symbols]

1…アンテナ 7…スペクトラム逆拡散復調手段 8…疑似距離導出手段 9…位置計算手段 10…ドップラー測定手段 11…移動速度方位計算手段 12…速度異常判断手段 13、15…スイッチ 14…前回計算結果記憶手段 DESCRIPTION OF SYMBOLS 1 ... Antenna 7 ... Spectrum despreading demodulation means 8 ... Pseudo distance derivation means 9 ... Position calculation means 10 ... Doppler measurement means 11 ... Moving speed direction calculation means 12 ... Speed abnormality determination means 13, 15 ... Switch 14 ... Storage of previous calculation result means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数の衛星からの信号を受信し受信デー
タから計算して移動体の少なくとも位置、速度、方位、
加速度を表示するGPS受信機であって、 前記計算して得られた移動体の速度が移動体の限界値を
越える場合に計算して得られた速度を異常と判断する速
度異常判断手段(12)と、 前回計算して得た移動体の少なくとも位置、速度、方
位、加速度を記憶し、前記速度異常判断手段(12)に
よって移動体の計算されて得た速度が異常と判断された
場合に、前回計算して得られた移動体の少なくとも位
置、速度、方位、加速度を表示する前回計算結果記憶手
段(14)とを備えるGPS受信機。
1. At least the position, velocity, and azimuth of a moving body, which is obtained by receiving signals from a plurality of satellites and calculating from received data.
A GPS receiver for displaying acceleration, the speed abnormality determining means (12) for determining that the calculated speed is abnormal when the calculated speed of the moving body exceeds a limit value of the moving body. ) And at least the position, velocity, azimuth and acceleration of the moving body obtained by the previous calculation are stored, and when the calculated velocity of the moving body is judged to be abnormal by the speed abnormality judging means (12). A GPS receiver including a previous calculation result storage means (14) for displaying at least the position, speed, azimuth, and acceleration of the moving body obtained by the previous calculation.
JP4216152A 1992-08-13 1992-08-13 Gps receiver Pending JPH0666916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4216152A JPH0666916A (en) 1992-08-13 1992-08-13 Gps receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4216152A JPH0666916A (en) 1992-08-13 1992-08-13 Gps receiver

Publications (1)

Publication Number Publication Date
JPH0666916A true JPH0666916A (en) 1994-03-11

Family

ID=16684103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4216152A Pending JPH0666916A (en) 1992-08-13 1992-08-13 Gps receiver

Country Status (1)

Country Link
JP (1) JPH0666916A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690314A1 (en) * 1994-06-30 1996-01-03 Matsushita Electric Industrial Co., Ltd. System for obtaining a velocity of a moving object from a speed sensor with adjustment of a speed conversion coefficient
JPH0843515A (en) * 1994-08-02 1996-02-16 Nippondenso Co Ltd Gps receiving apparatus
JPH0894733A (en) * 1994-09-26 1996-04-12 Japan Radio Co Ltd Gps receiver
JPH09230024A (en) * 1996-02-21 1997-09-05 Aisin Seiki Co Ltd Positioning device using gps satellite
JP2001051040A (en) * 1999-08-09 2001-02-23 Nippon Telegr & Teleph Corp <Ntt> Position detector
JP2006126018A (en) * 2004-10-29 2006-05-18 Alpine Electronics Inc Device and method for calculating position of moving body
US7136015B2 (en) 2004-04-06 2006-11-14 Alpine Electronics, Inc. Method and apparatus for satellite positioning
JP2008247246A (en) * 2007-03-30 2008-10-16 Kyosan Electric Mfg Co Ltd Train position abnormality detection system
JP2011053166A (en) * 2009-09-04 2011-03-17 Clarion Co Ltd Positioning method and device
JP2012127899A (en) * 2010-12-17 2012-07-05 Isuzu Motors Ltd Positioning accuracy determining device
JP2013035350A (en) * 2011-08-04 2013-02-21 Honda Motor Co Ltd Outboard motor control apparatus
JP2013035349A (en) * 2011-08-04 2013-02-21 Honda Motor Co Ltd Outboard motor control apparatus
KR101388112B1 (en) * 2012-10-15 2014-05-27 충남대학교산학협력단 System and method for Lane Number Recognition
JP2015004678A (en) * 2013-06-20 2015-01-08 インテル アイピー コーポレイション Vehicle positioning in high-reflection environment
JP2015014473A (en) * 2013-07-03 2015-01-22 三菱重工業株式会社 On-vehicle device and spoofing detection method
CN111538043A (en) * 2020-05-29 2020-08-14 国网浙江省电力有限公司检修分公司 Method and device for eliminating non-through-view satellite in complex environment and electronic equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63223585A (en) * 1987-03-13 1988-09-19 Mitsubishi Electric Corp Vehicle on-board type navigator device
JPH0429079A (en) * 1990-05-25 1992-01-31 Pioneer Electron Corp Position measuring system for on-vehicle gps receiver

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63223585A (en) * 1987-03-13 1988-09-19 Mitsubishi Electric Corp Vehicle on-board type navigator device
JPH0429079A (en) * 1990-05-25 1992-01-31 Pioneer Electron Corp Position measuring system for on-vehicle gps receiver

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690314A1 (en) * 1994-06-30 1996-01-03 Matsushita Electric Industrial Co., Ltd. System for obtaining a velocity of a moving object from a speed sensor with adjustment of a speed conversion coefficient
US5686925A (en) * 1994-06-30 1997-11-11 Matsushita Electric Industrial Co., Ltd. System for obtaining a velocity of a moving object from a speed sensor with an improved adjustment of a speed conversion coefficient
JPH0843515A (en) * 1994-08-02 1996-02-16 Nippondenso Co Ltd Gps receiving apparatus
JPH0894733A (en) * 1994-09-26 1996-04-12 Japan Radio Co Ltd Gps receiver
JPH09230024A (en) * 1996-02-21 1997-09-05 Aisin Seiki Co Ltd Positioning device using gps satellite
JP2001051040A (en) * 1999-08-09 2001-02-23 Nippon Telegr & Teleph Corp <Ntt> Position detector
US7136015B2 (en) 2004-04-06 2006-11-14 Alpine Electronics, Inc. Method and apparatus for satellite positioning
JP2006126018A (en) * 2004-10-29 2006-05-18 Alpine Electronics Inc Device and method for calculating position of moving body
JP2008247246A (en) * 2007-03-30 2008-10-16 Kyosan Electric Mfg Co Ltd Train position abnormality detection system
JP2011053166A (en) * 2009-09-04 2011-03-17 Clarion Co Ltd Positioning method and device
JP2012127899A (en) * 2010-12-17 2012-07-05 Isuzu Motors Ltd Positioning accuracy determining device
JP2013035350A (en) * 2011-08-04 2013-02-21 Honda Motor Co Ltd Outboard motor control apparatus
JP2013035349A (en) * 2011-08-04 2013-02-21 Honda Motor Co Ltd Outboard motor control apparatus
KR101388112B1 (en) * 2012-10-15 2014-05-27 충남대학교산학협력단 System and method for Lane Number Recognition
JP2015004678A (en) * 2013-06-20 2015-01-08 インテル アイピー コーポレイション Vehicle positioning in high-reflection environment
JP2015014473A (en) * 2013-07-03 2015-01-22 三菱重工業株式会社 On-vehicle device and spoofing detection method
CN111538043A (en) * 2020-05-29 2020-08-14 国网浙江省电力有限公司检修分公司 Method and device for eliminating non-through-view satellite in complex environment and electronic equipment

Similar Documents

Publication Publication Date Title
JP3408593B2 (en) Method and apparatus for estimating satellite position in satellite based navigation system
JP3361863B2 (en) Method and apparatus for improving position estimation accuracy in satellite-based navigation systems
JP3390794B2 (en) Vehicle tracking system using Global Positioning System (GPS) satellites
JP3361864B2 (en) Method and apparatus for determining the position of a vehicle using a satellite-based navigation system
US5606506A (en) Method and apparatus for improving the accuracy of position estimates in a satellite based navigation system using velocity data from an inertial reference unit
KR101037059B1 (en) Global navigation satellite system
JP3062301B2 (en) GPS navigation device
JPH0666916A (en) Gps receiver
US6476762B2 (en) Method for performing positioning and an electronic device
US6417800B1 (en) Method for determining reference time error and an electronic device
JPH09178508A (en) Unit being used with two antennas on movable platform, method for determining orientation of head of mobile and method for executing determination
JPH0777570A (en) Method and apparatus for detecting cycle slip in satellite-base-station navigation system
KR101638210B1 (en) Method for optimising an acquisition of a spread-spectrum signal from a satellite by a mobile receiver
EP1506430A1 (en) Determining the position of a receiver and/ or the system time of a positioning system
JP2001272451A (en) Device and method for gps reception, recording medium with recorded software for gps reception, and navigation system
JP2013127470A (en) Method of positioning receiver, positioning system, and electronic apparatus
US20030058162A1 (en) Method for performing positioning and an electronic device
EP1512028B1 (en) Aiding in a satellite positioning system
JP3557024B2 (en) Positioning device
US7046193B2 (en) Software GPS based integrated navigation
JP3609099B2 (en) GPS receiver
JP2006126005A (en) Global positioning system receiving system and position measuring method
JP3708689B2 (en) DGPS receiver
JP4334104B2 (en) Car navigation system
JPH0735839A (en) Navigation apparatus

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010612