JP2006126005A - Global positioning system receiving system and position measuring method - Google Patents

Global positioning system receiving system and position measuring method Download PDF

Info

Publication number
JP2006126005A
JP2006126005A JP2004314536A JP2004314536A JP2006126005A JP 2006126005 A JP2006126005 A JP 2006126005A JP 2004314536 A JP2004314536 A JP 2004314536A JP 2004314536 A JP2004314536 A JP 2004314536A JP 2006126005 A JP2006126005 A JP 2006126005A
Authority
JP
Japan
Prior art keywords
field strength
electric field
gps
theoretical
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004314536A
Other languages
Japanese (ja)
Inventor
Hiroaki Iwami
宏明 岩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alpine Electronics Inc
Original Assignee
Alpine Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alpine Electronics Inc filed Critical Alpine Electronics Inc
Priority to JP2004314536A priority Critical patent/JP2006126005A/en
Publication of JP2006126005A publication Critical patent/JP2006126005A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a "GPS receiving system and a position measuring method" suppressing inconvenience in which positioning calculation is unavailable, and improving the positioning accuracy. <P>SOLUTION: There are provided: a theoretical receiving electric field intensity calculation part 4 calculating a theoretical receiving electric field intensity range for every plurality of GPS satellites; and a positioning calculation part 3 for calculating positions by using only signal of which the actual receiving electric field intensity detected with a receiving electric field intensity detection part 7 is within the theoretical receiving electric field intensity range, among signals from each GPS satellite which are actually received with a signal receiver 1. By excluding from the positioning calculation, only signal possibly abnormal in receiving electric field intensity and truely including an error component, the inconvenience in which positioning calculation is unavaible because the number of usable GPS signals is too small is suppressed. By the positioning calculation using signal from GPS satellites scattered in as wide range as possible, positioning error due to geometrical calculation is reduced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はGPS受信システムおよび位置測定方法に関し、特に、複数のGPS衛星から送られてくる電波をGPS受信機で受信してn次元測位処理によって移動体の絶対位置を測定するGPS受信システムに用いて好適なものである。   The present invention relates to a GPS reception system and a position measurement method, and more particularly, to a GPS reception system that receives radio waves transmitted from a plurality of GPS satellites with a GPS receiver and measures an absolute position of a moving object by n-dimensional positioning processing. And suitable.

従来、ナビゲーション装置を始めとする移動体の位置を検出するための位置検出手段として、距離センサおよび角度センサを用いて移動体の相対位置を測定する慣性航法(自立航法)と、複数のGPS(Global Positioning System)衛星から送られてくる電波をGPS受信機で受信してn次元測位処理によって移動体の絶対位置を測定する衛星航法(GPS航法)とが実用化されている。   Conventionally, as position detection means for detecting the position of a moving body such as a navigation device, inertial navigation (self-contained navigation) that measures the relative position of the moving body using a distance sensor and an angle sensor, and a plurality of GPS ( Global Positioning System) Satellite navigation (GPS navigation) has been put into practical use in which radio waves transmitted from satellites are received by a GPS receiver and the absolute position of a moving object is measured by n-dimensional positioning processing.

このうち、自立航法を利用した測位システムは、比較的低コストで移動体の位置を測定できるが、高精度に位置測定ができない欠点がある。一方、GPS航法を利用した測位システムは、一般的には自立航法に比べて高精度に位置測定を行うことが可能である。しかしながら、GPS衛星から送られてくる電波が、外来ノイズの影響や、伝搬路障害物またはマルチパスの影響を受けると、GPS受信機の受信信号にエラー成分が含まれることによって測位誤差が増大してしまうという欠点があった。   Among these, a positioning system using self-contained navigation can measure the position of a moving body at a relatively low cost, but has a drawback that the position cannot be measured with high accuracy. On the other hand, a positioning system using GPS navigation can generally perform position measurement with higher accuracy than self-contained navigation. However, if radio waves sent from GPS satellites are affected by external noise, propagation path obstacles, or multipaths, positioning errors increase due to the inclusion of error components in the received signals of GPS receivers. There was a drawback that it would.

従来、マルチパスの影響を受けて測位誤差が大きくなってしまうという欠点を回避するために、仰角の高いGPS衛星からの信号だけで測位計算を行うようにした技術が提案されている(例えば、特許文献1参照)。
特開平6−281721号公報
Conventionally, in order to avoid the disadvantage that the positioning error increases due to the influence of multipath, a technique has been proposed in which positioning calculation is performed only with a signal from a GPS satellite having a high elevation angle (for example, Patent Document 1).
JP-A-6-281721

特許文献1に記載の技術では、市街地のように高さの高い建造物が道路沿いに多く存在している場所では、仰角の低いGPS衛星から受信される信号はマルチパスの影響を受けているものとして一律に排除している。しかしながら、GPS衛星の仰角が低くても、マルチパスの影響を受けずにGPS受信機に届く良好な信号も存在する。それにもかかわらず、仰角の低いGPS衛星から送信された信号を測位計算の際に一律に排除すると、使用できる信号の数が少なくなって、測位計算そのものができなくなってしまうことがあるという問題があった。   In the technique described in Patent Document 1, a signal received from a GPS satellite with a low elevation angle is affected by a multipath in a place where there are many tall buildings along the road such as an urban area. It is uniformly excluded as a thing. However, even if the elevation angle of the GPS satellite is low, there are also good signals that reach the GPS receiver without being affected by multipath. Nevertheless, if signals transmitted from GPS satellites with a low elevation angle are uniformly excluded during positioning calculation, the number of signals that can be used decreases, and positioning calculation itself may not be possible. there were.

また、仰角の高いGPS衛星から受信される信号だけで測位計算をすると、狭い範囲内に存在するGPS衛星からの信号だけが測位計算に使用されることとなり、ドップ値が大きくなって、幾何学的な計算の誤差が大きくなってしまう。そのため、仮にマルチパスの影響を低減できても、却って測位誤差が大きくなってしまうことがあるという問題もあった。   In addition, if positioning calculation is performed using only signals received from GPS satellites with a high elevation angle, only signals from GPS satellites that exist within a narrow range will be used for positioning calculations, and the Dop value will increase, resulting in geometric The error of the general calculation becomes large. Therefore, even if the influence of multipath can be reduced, there is a problem that the positioning error may increase.

本発明は、このような問題を解決するために成されたものであり、真にエラー成分が含まれる信号だけを測位計算から排除することにより、使用可能なGPS信号の数が少なくて測位計算ができないという不都合を抑制できるようにするとともに、GPS航法を利用した位置測定の精度を向上させることができるようにすることを目的とする。   The present invention has been made to solve such problems, and by eliminating only signals that truly contain error components from the positioning calculation, the number of usable GPS signals is small and the positioning calculation is performed. It is an object of the present invention to be able to suppress the inconvenience of being unable to perform and improve the accuracy of position measurement using GPS navigation.

上記した課題を解決するために、本発明では、複数のGPS衛星とGPS受信機との距離に基づいて、理論的な受信電界強度範囲をGPS衛星毎に算出し、GPS受信機により実際に受信している各GPS衛星からの信号のうち、受信電界強度が理論的な受信電界強度の範囲内に入っている信号だけを用いて測位計算を行うようにしている。   In order to solve the above-described problems, in the present invention, a theoretical reception electric field strength range is calculated for each GPS satellite based on the distance between a plurality of GPS satellites and a GPS receiver, and is actually received by the GPS receiver. Among the signals from each GPS satellite, the positioning calculation is performed using only the signals whose received electric field strength is within the theoretical range of the received electric field strength.

上記のように構成した本発明によれば、GPS受信機にて受信された各GPS衛星からの信号の受信電界強度が、外来ノイズや伝搬路障害物、マルチパス等の影響がなければ受信できたであろう理論的な電界強度の範囲から外れた場合にのみ、当該受信信号が測位計算から排除されることとなる。そのため、仰角の低いGPS衛星からの受信信号を測位計算から一律に排除する従来技術と異なり、受信電界強度が異常で真にエラー成分の含まれる信号だけを測位計算から排除することができる。   According to the present invention configured as described above, the received electric field strength of the signal from each GPS satellite received by the GPS receiver can be received if there is no influence from external noise, propagation path obstacles, multipaths, and the like. The received signal is excluded from the positioning calculation only when it falls outside the range of the theoretical electric field strength that would have been expected. Therefore, unlike the prior art that uniformly excludes a received signal from a GPS satellite having a low elevation angle from the positioning calculation, only a signal having an abnormal received electric field intensity and containing a true error component can be excluded from the positioning calculation.

これにより、不必要に多くのGPS信号を排除することがなくなり、使用可能なGPS信号の数が少なくて測位計算ができないという不都合を抑制することができる。また、仰角の低いGPS衛星から送られてくる信号であっても、GPS受信機での受信電界強度が異常でなければ測位計算に使用されるので、測位計算に採用されるGPS衛星が広範囲に散らばることになってドップ値が小さくなり、幾何学的な計算による測位誤差を小さくして位置測定の精度を向上させることができる。   As a result, unnecessary GPS signals are not excluded, and it is possible to suppress the inconvenience that positioning calculation cannot be performed due to the small number of usable GPS signals. Also, even if the signal is sent from a GPS satellite with a low elevation angle, it is used for positioning calculation unless the received electric field strength at the GPS receiver is abnormal, so a wide range of GPS satellites are used for positioning calculation. As a result, the Dopp value becomes small, and the positioning error due to geometric calculation can be reduced to improve the accuracy of position measurement.

以下、本発明によるGPS受信システムの一実施形態を図面に基づいて説明する。図1は、本実施形態によるGPS受信機10の機能構成例を示すブロック図である。図2は、本実施形態によるGPS受信機10と複数のGPS衛星S1〜S8との位置関係を示す模式図である。現在、地球の周りには24個のGPS衛星が回っているが、図2では説明の便宜上、8個のGPS衛星S1〜S8のみを図示している。そのうち実際の測位に必要な衛星の数は最低3個、通常は4個以上である。   Hereinafter, an embodiment of a GPS receiving system according to the present invention will be described with reference to the drawings. FIG. 1 is a block diagram illustrating a functional configuration example of the GPS receiver 10 according to the present embodiment. FIG. 2 is a schematic diagram showing a positional relationship between the GPS receiver 10 according to the present embodiment and a plurality of GPS satellites S1 to S8. Currently, 24 GPS satellites are rotating around the earth, but for convenience of explanation, only eight GPS satellites S1 to S8 are illustrated in FIG. Of these, the number of satellites required for actual positioning is at least 3, usually 4 or more.

図2において、複数のGPS衛星S1〜S8は、電波を発射するときの正確な時刻情報とその場所を表す位置情報とを電波に乗せて送信しながら地球の周りを回っている。本実施形態のGPS受信機10は、例えば車載用のナビゲーション装置に搭載され、複数のGPS衛星S1〜S8から発射された電波を受信して自分の位置を測定する。   In FIG. 2, a plurality of GPS satellites S <b> 1 to S <b> 8 travel around the earth while transmitting accurate time information and position information representing the place when the radio wave is emitted. The GPS receiver 10 of the present embodiment is mounted on, for example, an in-vehicle navigation device, and receives radio waves emitted from a plurality of GPS satellites S1 to S8 and measures its own position.

図1において、1は信号受信部であり、複数のGPS衛星(図1では図示せず)から電波にて送られてくる信号(上述のGPS衛星S1〜S8が電波を発射するときの時刻情報と衛星位置情報とを含む)を、受信アンテナ2を介して受信する。3は測位計算部であり、3次元測位処理あるいは2次元測位処理を行ってGPS受信機10の絶対位置および絶対方位を計算する(絶対方位は、信号のドップラーまたは現時点における絶対位置と1サンプリング時間ΔT前の絶対位置との差分から計算する)。なお、この測位計算自体は、公知の手法を採用することが可能である。   In FIG. 1, reference numeral 1 denotes a signal receiving unit, which is a signal transmitted by radio waves from a plurality of GPS satellites (not shown in FIG. 1) (time information when the above-mentioned GPS satellites S1 to S8 emit radio waves). And the satellite position information) are received via the receiving antenna 2. Reference numeral 3 denotes a positioning calculation unit which calculates the absolute position and the absolute direction of the GPS receiver 10 by performing a three-dimensional positioning process or a two-dimensional positioning process (the absolute direction is the signal Doppler or the current absolute position and one sampling time). (Calculated from the difference from the absolute position before ΔT). This positioning calculation itself can employ a known method.

4は理論的受信電界強度算出部であり、GPS受信機10と複数のGPS衛星S1〜S8との距離r1〜r8に基づいて、各GPS衛星S1〜S8から送られてくる信号のそれぞれについて理論的な受信電界強度範囲を算出する。以下に、この理論的な受信電界強度範囲の算出方法について詳しく説明する。理論的な受信電界強度範囲を算出する際には、まず、GPS受信機10と複数のGPS衛星S1〜S8との距離r1〜r8をそれぞれ求める。   Reference numeral 4 denotes a theoretical reception electric field strength calculation unit, which theoretically calculates the signals transmitted from the GPS satellites S1 to S8 based on the distances r1 to r8 between the GPS receiver 10 and the plurality of GPS satellites S1 to S8. A typical received electric field strength range is calculated. Hereinafter, this theoretical method for calculating the received electric field strength range will be described in detail. When calculating the theoretical reception field strength range, first, the distances r1 to r8 between the GPS receiver 10 and the plurality of GPS satellites S1 to S8 are obtained.

この距離r1〜r8は、例えば、信号受信部1により受信されたGPS信号の中に含まれている各GPS衛星S1〜S8の位置情報と、測位計算部3により計算されるGPS受信機10の位置情報とから求めることができる。なお、理論的な受信電界強度範囲を算出する際に、実際の受信電界強度が理論値から外れる信号を排除することはまだ行っていないので、測位計算部3により計算されるGPS受信機10の位置情報には測位誤差が含まれている可能性がある。しかし、この測位誤差は高々100m程度であり、2万km以上もあるGPS衛星S1〜S8との距離r1〜r8に比べて極めて小さい値なので、距離r1〜r8を求めるときにこの程度の誤差は無視することが可能である。   The distances r1 to r8 are, for example, the position information of the GPS satellites S1 to S8 included in the GPS signal received by the signal receiver 1 and the GPS receiver 10 calculated by the positioning calculator 3. It can be obtained from the position information. In addition, when calculating the theoretical received electric field strength range, the signal having the actual received electric field strength deviating from the theoretical value has not yet been excluded, so that the GPS receiver 10 calculated by the positioning calculation unit 3 The position information may include a positioning error. However, this positioning error is about 100 m at most, and is extremely small compared to the distances r1 to r8 with the GPS satellites S1 to S8 which are more than 20,000 km. It can be ignored.

また、GPS受信機10と複数のGPS衛星S1〜S8との間の距離r1〜r8は、GPS衛星S1〜S8で発射された電波がGPS受信機10に届くまでの時間を測って計算することも可能である。すなわち、GPS衛星S1〜S8が電波を発射したときの正しい時刻が分かり、かつ、GPS受信機10の時計が正確ならば、電波が発射された時刻と受信した時刻との差および電波の速度から、GPS受信機10と各GPS衛星S1〜S8との距離r1〜r8が求められる。この手法を適用する場合、GPS受信機10は、電波の受信時刻を計時するための機能を備えている。   The distances r1 to r8 between the GPS receiver 10 and the plurality of GPS satellites S1 to S8 are calculated by measuring the time until the radio waves emitted from the GPS satellites S1 to S8 reach the GPS receiver 10. Is also possible. That is, if the correct time when the GPS satellites S1 to S8 emit radio waves is known and the clock of the GPS receiver 10 is accurate, the difference between the time when the radio waves are emitted and the time when the radio waves are received and the speed of the radio waves are obtained. The distances r1 to r8 between the GPS receiver 10 and the respective GPS satellites S1 to S8 are obtained. When this method is applied, the GPS receiver 10 has a function for measuring the reception time of radio waves.

GPS受信機10と各GPS衛星S1〜S8との距離r1〜r8が分かれば、次の(式1)からGPS受信機10における理論的な受信電界強度(外来ノイズや伝搬路障害物、マルチパス等の影響がなければ受信できるハズの電界強度の理論値)が求められる。
R=(λ/4πd)2・PS ・・・(式1)
ここで、PRは理論的な受信電力、λは電波の波長、dはGPS受信機10と各GPS衛星S1〜S8との距離r1〜r8、PSは各GPS衛星S1〜S8の送信電力(L1C/A定格で480ワット)である。
If the distances r1 to r8 between the GPS receiver 10 and each of the GPS satellites S1 to S8 are known, the theoretical reception electric field strength (external noise, propagation path obstacle, multipath, etc.) in the GPS receiver 10 is obtained from the following (Equation 1). If there is no such influence, the theoretical value of the electric field strength of the haze that can be received is obtained.
P R = (λ / 4πd) 2 · P S (Formula 1)
Here, P R is the theoretical received power, lambda is wavelength radio wave, d is the distance between the GPS receiver 10 and the GPS satellites S1 to S8 R1 to R8, P S is the transmit power of each of the GPS satellites S1 to S8 (L1C / A rating is 480 watts).

このように、GPS受信機10と各GPS衛星S1〜S8との距離r1〜r8さえ分かれば、理論的な受信電界強度は求められる。ただし、より正確な理論値を求めるために、複数のGPS衛星S1〜S8から発射された電波が電離層や大気圏を通過するときに減衰する信号強度の減衰率や、受信アンテナ2の指向性パターンに基づくアンテナゲインを加味して理論的な受信電界強度を求めるようにしても良い。図1の構成はその例を示している。   As described above, if the distances r1 to r8 between the GPS receiver 10 and each of the GPS satellites S1 to S8 are known, the theoretical received electric field strength can be obtained. However, in order to obtain a more accurate theoretical value, the attenuation rate of the signal intensity that attenuates when radio waves emitted from a plurality of GPS satellites S1 to S8 pass through the ionosphere or the atmosphere, and the directivity pattern of the receiving antenna 2 are used. The theoretical received electric field strength may be obtained in consideration of the antenna gain based on it. The configuration of FIG. 1 shows an example.

複数のGPS衛星S1〜S8から発射された電波は、電離層や大気圏(熱圏や中間圏に存在する電離層、成層圏、対流圏)を通過するときに減衰を受ける。大気圏の状態は、季節や時刻、地域に応じて変化し、それに伴って電波の減衰率も変わる。したがって、このような大気圏での減衰率も加味して理論的な受信電界強度を求めるのが好ましい。   Radio waves emitted from a plurality of GPS satellites S1 to S8 are attenuated when passing through the ionosphere and the atmosphere (ionosphere, stratosphere, troposphere existing in the thermosphere and mesosphere). The state of the atmosphere changes according to the season, time, and region, and the radio wave attenuation rate changes accordingly. Therefore, it is preferable to obtain the theoretical received electric field strength in consideration of the attenuation rate in the atmosphere.

電離層/大気圏モデルテーブル情報記憶部5は、このような大気圏の状態をパラメータとしたモデル的な減衰率をテーブル情報として記憶している。大気圏による信号減衰の影響を考慮する場合、理論的受信電界強度算出部4は、次の(式2)に示すように、電離層/大気圏モデルテーブル情報記憶部5に記憶されている信号強度の減衰率を乗じて理論的な受信電界強度を算出する。
R=(λ/4πd)2・PS・G ・・・(式2)
ここで、Gは電離層内の減衰率、Gは成層圏内の減衰率、Gは対流圏内の減衰率である。
The ionosphere / atmosphere model table information storage unit 5 stores a model-like attenuation rate using such an atmosphere state as a parameter as table information. When considering the influence of signal attenuation due to the atmosphere, the theoretical reception electric field intensity calculation unit 4 attenuates the signal intensity stored in the ionosphere / atmosphere model table information storage unit 5 as shown in the following (Equation 2). Multiply the rate to calculate the theoretical received field strength.
P R = (λ / 4πd) 2 · P S · G 1 G 2 G 3 (Expression 2)
Here, G 1 is the attenuation factor in the ionosphere, G 2 is the attenuation factor in the stratosphere, and G 3 is the attenuation factor in the troposphere.

すなわち、理論的受信電界強度算出部4は、測位計算部3により計算されたGPS受信機10の位置情報と、図示しない時計により計時された日時情報とに基づいて、それらの情報に合致する減衰率(季節や時刻、地域に応じた減衰率)を電離層/大気圏モデルテーブル情報記憶部5から読み出す。そして、読み出した減衰率を用いて(式2)に従って理論的な受信電界強度を算出する。   That is, the theoretical reception electric field strength calculation unit 4 is based on the position information of the GPS receiver 10 calculated by the positioning calculation unit 3 and the date / time information measured by a clock (not shown), and the attenuation that matches the information. The rate (attenuation rate according to the season, time, and region) is read from the ionosphere / atmosphere model table information storage unit 5. Then, using the read attenuation rate, the theoretical received electric field strength is calculated according to (Equation 2).

なお、GPS衛星の仰角が高い場合は、電波が大気圏を通過する距離は短くなる。一方、GPS衛星の仰角が低い場合は、電波が大気圏を通過する距離は長くなる。そのため、GPS衛星の仰角によって、大気圏の通過時に電波が影響を受ける度合いが変わってくる。そこで、電離層/大気圏モデルテーブル情報記憶部5は、位置情報や日時情報に加えて、GPS衛星の仰角情報をパラメータとしたモデル的な減衰率をテーブル情報として記憶するようにしても良い。   When the elevation angle of the GPS satellite is high, the distance that radio waves pass through the atmosphere is short. On the other hand, when the elevation angle of the GPS satellite is low, the distance that radio waves pass through the atmosphere becomes long. Therefore, the degree to which radio waves are affected when passing through the atmosphere varies depending on the elevation angle of the GPS satellite. Therefore, the ionosphere / atmosphere model table information storage unit 5 may store a model-like attenuation rate using the elevation angle information of the GPS satellite as a parameter in addition to position information and date / time information as table information.

この場合、理論的受信電界強度算出部4は、信号受信部1により受信された信号の中に含まれている各GPS衛星S1〜S8の位置情報と、測位計算部3により計算されるGPS受信機10の位置情報とから、各GPS衛星S1〜S8の仰角と方位を算出する。そして、このように算出した各GPS衛星S1〜S8の仰角・方位情報と、測位計算部3により計算されたGPS受信機10の位置情報と、時計により計時された日時情報と基づいて、それらの情報に合致する減衰率を電離層/大気圏モデルテーブル情報記憶部5から読み出し、読み出した減衰率を用いて(式2)に従って理論的な受信電界強度を算出する。   In this case, the theoretical reception electric field strength calculation unit 4 includes the position information of the GPS satellites S1 to S8 included in the signal received by the signal reception unit 1 and the GPS reception calculated by the positioning calculation unit 3. From the position information of the aircraft 10, the elevation angle and direction of each of the GPS satellites S1 to S8 are calculated. Then, based on the elevation angle / azimuth information of the GPS satellites S1 to S8 calculated in this way, the position information of the GPS receiver 10 calculated by the positioning calculation unit 3, and the date / time information measured by the clock, The attenuation rate that matches the information is read from the ionosphere / atmosphere model table information storage unit 5, and the theoretical received electric field strength is calculated according to (Equation 2) using the read attenuation rate.

また、受信アンテナ2には、図3に示すようなアンテナ特有の指向性パターンが存在する。そのため、受信アンテナ2がどの方向から電波を受信するか、すなわち、受信アンテナ2から見た各GPS衛星S1〜S8の仰角および方位角によって受信利得(アンテナゲイン)が変化し、受信電界強度に差異が現れる。したがって、このようなアンテナゲインも加味して理論的な受信電界強度を求めるのがより好ましい。   Further, the receiving antenna 2 has a directivity pattern specific to the antenna as shown in FIG. Therefore, the reception gain (antenna gain) varies depending on the direction from which the reception antenna 2 receives radio waves, that is, the elevation angle and azimuth angle of each of the GPS satellites S1 to S8 viewed from the reception antenna 2, and the reception electric field strength differs. Appears. Therefore, it is more preferable to obtain the theoretical received electric field strength in consideration of such an antenna gain.

アンテナゲインテーブル情報記憶部6は、図3のような受信アンテナ2の指向性パターンとGPS衛星の仰角および方位角とをパラメータとしたモデル的なアンテナゲインをテーブル情報として記憶している。アンテナゲインの影響を考慮する場合、理論的受信電界強度算出部4は、まず、信号受信部1により受信された信号の中に含まれている各GPS衛星S1〜S8の位置情報と、測位計算部3により計算されるGPS受信機10の位置情報とから、各GPS衛星S1〜S8の仰角および方位角を算出する。   The antenna gain table information storage unit 6 stores, as table information, a model antenna gain using the directivity pattern of the receiving antenna 2 as shown in FIG. 3 and the elevation angle and azimuth angle of the GPS satellite as parameters. When considering the influence of the antenna gain, the theoretical reception electric field strength calculation unit 4 firstly calculates the position information of the GPS satellites S1 to S8 included in the signal received by the signal reception unit 1 and the positioning calculation. From the position information of the GPS receiver 10 calculated by the unit 3, the elevation angle and azimuth angle of each of the GPS satellites S1 to S8 are calculated.

その後、求めた各GPS衛星S1〜S8の仰角および方位角に基づいて、受信アンテナ2の指向性パターンに応じたアンテナゲインをアンテナゲインテーブル情報記憶部6から読み出す。そして、次の(式3)に示すように、この読み出したアンテナゲインを乗じて理論的な受信電界強度範囲を算出する。
R=(λ/4πd)2・PS・GR ・・・(式3)
ここで、GRはアンテナゲインである。
Thereafter, the antenna gain corresponding to the directivity pattern of the receiving antenna 2 is read from the antenna gain table information storage unit 6 based on the obtained elevation angle and azimuth angle of each of the GPS satellites S1 to S8. Then, as shown in the following (Equation 3), the theoretical received electric field strength range is calculated by multiplying the read antenna gain.
P R = (λ / 4πd) 2 · P S · G R (Equation 3)
Here, G R is the antenna gain.

なお、電離層/大気圏での減衰率と受信アンテナ2のアンテナゲインとの両方を考慮する場合、理論的受信電界強度算出部4は、次の(式4)に示すように、電離層/大気圏モデルテーブル情報記憶部5に記憶されている信号強度の減衰率Gと、アンテナゲインテーブル情報記憶部6に記憶されているアンテナゲインGRとを乗じて理論的な受信電界強度を算出する。
R=(λ/4πd)2・PS・G・GR ・・・(式4)
When both the ionosphere / atmosphere attenuation factor and the antenna gain of the receiving antenna 2 are taken into account, the theoretical received electric field strength calculation unit 4 calculates the ionosphere / atmosphere model table as shown in the following (Equation 4). information calculated attenuation factor G 1 G 2 G 3 of the signal intensity stored in the storage unit 5, the theoretical received field strength multiplied by the antenna gain G R which is stored in the antenna gain table information storage section 6 To do.
P R = (λ / 4πd) 2 · P S · G 1 G 2 G 3 · G R (Formula 4)

以上の手法でGPS衛星毎の理論的な受信電界強度が求められるが、電離層や大気圏の影響を考慮したモデルの誤差や、アンテナ指向性の固体ばらつき等があるため、信号受信部1により理想的な状況下でGPS信号を受信できた場合でも、そのときの実際の受信電界強度は、求められた理論的な受信電界強度と必ずしも一致しない場合がある。この誤差を吸収するために、求めた理論値の前後に所定の許容範囲を設け、理論値を含む所定の範囲を理論的な受信電界強度範囲として設定する。   Although the theoretical reception electric field strength for each GPS satellite is obtained by the above method, there is a model error considering the influence of the ionosphere and the atmosphere, individual variations in antenna directivity, and the like. Even when a GPS signal can be received under various circumstances, the actual received electric field strength at that time may not always match the calculated theoretical received electric field strength. In order to absorb this error, a predetermined allowable range is provided before and after the obtained theoretical value, and a predetermined range including the theoretical value is set as a theoretical received electric field strength range.

図4は、この理論的な受信電界強度範囲の例を示す概念図である。図4において、X1〜X8はGPS衛星S1〜S8のそれぞれについて求めた理論的な受信電界強度を示している。図4の例では、この理論値X1〜X8を中心として、プラス方向およびマイナス方向にそれぞれY[dB](例えば、2[dB])の許容範囲を設定し、理論値X1〜X8を中心とした4dBの範囲を理論的な受信電界強度範囲として設定している。   FIG. 4 is a conceptual diagram showing an example of this theoretical reception field strength range. In FIG. 4, X1 to X8 indicate theoretical received electric field strengths obtained for the GPS satellites S1 to S8. In the example of FIG. 4, an allowable range of Y [dB] (for example, 2 [dB]) is set in the plus direction and the minus direction with the theoretical values X1 to X8 as the center, and the theoretical values X1 to X8 are the center. The 4 dB range is set as a theoretical received electric field strength range.

次いで、7は受信電界強度検出部であり、信号受信部1により実際に受信しているGPS信号の受信電界強度を、複数のGPS衛星S1〜S8からの信号のそれぞれについて検出する。8は判定部であり、受信電界強度検出部7により検出された受信電界強度が、理論的受信電界強度算出部4により算出された理論的な受信電界強度範囲内に入っているかどうかを判定する。   Next, 7 is a received electric field strength detection unit, which detects the received electric field strength of the GPS signal actually received by the signal receiving unit 1 for each of the signals from the plurality of GPS satellites S1 to S8. Reference numeral 8 denotes a determination unit that determines whether or not the reception field strength detected by the reception field strength detection unit 7 is within the theoretical reception field strength range calculated by the theoretical reception field strength calculation unit 4. .

測位計算部3は、理論的受信電界強度算出部4により理論的な受信電界強度範囲が算出された後は、判定部8による判定の結果に基づいて、信号受信部1により受信している複数のGPS衛星S1〜S8からの信号のうち、受信電界強度検出部7により検出された受信電界強度が理論的受信電界強度算出部4により算出された理論的な受信電界強度範囲に入っている信号だけを用いて、n次元測位処理によって移動体の絶対位置を測定する。   After the theoretical reception field strength calculation unit 4 calculates the theoretical reception field strength range, the positioning calculation unit 3 receives a plurality of signals received by the signal reception unit 1 based on the determination result by the determination unit 8. Among the signals from the GPS satellites S1 to S8, the signal whose received field strength detected by the received field strength detector 7 is in the theoretical received field strength range calculated by the theoretical received field strength calculator 4 The absolute position of the moving body is measured by the n-dimensional positioning process.

次に、上記のように構成した本実施形態によるGPS受信機10の動作を説明する。図5は、本実施形態によるGPS受信機10を用いた位置測定方法の動作を示すフローチャートである。図5において、まず信号受信部1は、複数のGPS衛星S1〜S8から電波にて送られてくる信号を受信する(ステップP1)。   Next, the operation of the GPS receiver 10 configured as described above according to the present embodiment will be described. FIG. 5 is a flowchart showing the operation of the position measuring method using the GPS receiver 10 according to the present embodiment. In FIG. 5, the signal receiving unit 1 first receives signals transmitted by radio waves from a plurality of GPS satellites S1 to S8 (step P1).

次に、理論的受信電界強度算出部4は、例えば、ステップS1で受信した信号の中に含まれている各GPS衛星S1〜S8の位置情報と、当該信号に基づき測位計算部3により計算されるGPS受信機10の位置情報とに基づいて、GPS受信機10と複数のGPS衛星S1〜S8との距離r1〜r8をそれぞれ求め、更にその距離情報に基づいて、各GPS衛星S1〜S8から送られてくる信号のそれぞれについてGPS受信機10における理論的な受信電界強度範囲を算出する(ステップP2)。このとき、複数のGPS衛星S1〜S8から発射された電波の大気圏における減衰率や、受信アンテナ2の指向性パターンに基づくアンテナゲインを加味して理論的な受信電界強度範囲を求めても良い。   Next, the theoretical reception electric field strength calculation unit 4 is calculated by the positioning calculation unit 3 based on the position information of each of the GPS satellites S1 to S8 included in the signal received in step S1 and the signal, for example. The distances r1 to r8 between the GPS receiver 10 and the plurality of GPS satellites S1 to S8 are obtained based on the position information of the GPS receiver 10 and the GPS satellites S1 to S8 are further determined based on the distance information. A theoretical received electric field strength range in the GPS receiver 10 is calculated for each of the transmitted signals (step P2). At this time, the theoretical reception electric field intensity range may be obtained in consideration of the attenuation rate in the atmosphere of radio waves emitted from a plurality of GPS satellites S1 to S8 and the antenna gain based on the directivity pattern of the reception antenna 2.

一方、受信電界強度検出部7は、信号受信部1により実際に受信しているGPS信号の受信電界強度を、複数のGPS衛星S1〜S8からの信号のそれぞれについて検出する(ステップP3)。なお、ステップS2の処理とステップS3の処理は同時に行っても良い。   On the other hand, the received electric field strength detector 7 detects the received electric field strength of the GPS signal actually received by the signal receiver 1 for each of the signals from the plurality of GPS satellites S1 to S8 (step P3). Note that the process of step S2 and the process of step S3 may be performed simultaneously.

理論的な受信電界強度範囲と実際の受信電界強度が求まったら、判定部8は、実際の受信電界強度が理論的な受信電界強度範囲内に入っているか否かを、複数のGPS衛星S1〜S8からの信号のそれぞれについて判定する(ステップP4)。そして、この判定結果に応じて測位計算部3は、信号受信部1により受信している複数のGPS衛星S1〜S8からのGPS信号のうち、実際の受信電界強度が理論的な受信電界強度範囲内に入っている信号だけを用いて、n次元測位処理によって移動体の絶対位置を測定する(ステップP5)。以上のようなステップP1〜P5の処理を繰り返し実行する。   When the theoretical reception field strength range and the actual reception field strength are obtained, the determination unit 8 determines whether or not the actual reception field strength is within the theoretical reception field strength range. A determination is made for each of the signals from S8 (step P4). Then, according to the determination result, the positioning calculation unit 3 has a theoretical received electric field strength range in which the actual received electric field strength is a theoretical signal among the GPS signals from the plurality of GPS satellites S1 to S8 received by the signal receiving unit 1. The absolute position of the moving body is measured by the n-dimensional positioning process using only the signal contained within (step P5). The processes in steps P1 to P5 as described above are repeatedly executed.

以上詳しく説明したように、本実施形態では、複数のGPS衛星S1〜S8のそれぞれ毎に理論的な受信電界強度範囲を算出し、信号受信部1により実際に受信している各GPS衛星からの信号のうち、実際の受信電界強度が理論的な受信電界強度範囲から外れる信号については、エラー成分を含む可能性があるとして測位計算から排除し、理論的な受信電界強度範囲内に入っている信号だけを用いて測位計算するようにしている。   As described above in detail, in the present embodiment, a theoretical reception electric field strength range is calculated for each of the plurality of GPS satellites S1 to S8, and the signal from the GPS satellites actually received by the signal receiving unit 1 Signals whose actual received field strength is out of the theoretical received field strength range are excluded from the positioning calculation because they may contain error components, and are within the theoretical received field strength range. Positioning is calculated using only signals.

そのため、仰角の低いGPS衛星からの受信信号を測位計算から一律に排除する従来技術と異なり、受信電界強度が異常で真にエラー成分の含まれる可能性のある信号だけを測位計算から排除することができる。これにより、使用可能なGPS信号の数が少なくて測位計算ができないという不都合を抑制することができる。また、できるだけ広範囲に散らばったGPS衛星からの信号を使って測位計算を行うことができるので、幾何学的な計算による測位誤差を小さくして位置測定の精度を向上させることができる。   Therefore, unlike the conventional technology that uniformly excludes received signals from GPS satellites with low elevation angles from the positioning calculation, only signals that have an abnormal received electric field strength and that may truly contain error components are excluded from the positioning calculation. Can do. Accordingly, it is possible to suppress the inconvenience that the positioning calculation cannot be performed due to the small number of usable GPS signals. In addition, since the positioning calculation can be performed using signals from GPS satellites dispersed as widely as possible, the positioning error due to the geometric calculation can be reduced and the accuracy of the position measurement can be improved.

なお、上記実施形態では、図1に示す機能構成を全てGPS受信機10が備える例について説明したが、本発明はこれに限定されない。例えば、信号受信部1と受信アンテナ2だけをGPS受信機が備え、それ以外の構成3〜8を、GPS受信機が適用される移動体(例えば、車載用ナビゲーション装置)に備えることにより、全体としてGPS受信システムを構成するようにしても良い。   In the above embodiment, the example in which the GPS receiver 10 has all the functional configurations shown in FIG. 1 has been described, but the present invention is not limited to this. For example, the GPS receiver includes only the signal receiver 1 and the receiving antenna 2, and the other configurations 3 to 8 are provided in a mobile body (for example, an in-vehicle navigation device) to which the GPS receiver is applied. The GPS reception system may be configured as follows.

また、上記実施形態では、大気圏の減衰率モデルとして、電離層内の減衰率G、成層圏内の減衰率G、対流圏内の減衰率Gを別々に用意する例について説明したが、これらをあらかじめ乗じて1つの減衰率としてまとめて用意するようにしても良い。 In the above embodiment, as the atmosphere of the attenuation factor models, attenuation factor G 1 in the ionosphere, attenuation factor G 2 in the stratosphere, an example has been described to prepare separately attenuation factor G 3 in the troposphere, these You may make it prepare in advance as one attenuation factor by multiplying beforehand.

また、上記実施形態では、電離層/大気圏モデルテーブル情報記憶部5およびアンテナゲインテーブル情報記憶部6にあらかじめ必要な情報を記憶しておく例について説明したが、本発明はこれに限定されない。例えば、インターネット上のサーバ装置などに電離層/大気圏モデルテーブル情報記憶部5およびアンテナゲインテーブル情報記憶部6を備えておき、理論的な受信電界強度範囲を算出する際にサーバ装置からインターネットを介して必要な情報をリアルタイムにダウンロードするようにしても良い。   Moreover, although the said embodiment demonstrated the example which stores previously required information in the ionosphere / atmosphere model table information storage part 5 and the antenna gain table information storage part 6, this invention is not limited to this. For example, an ionosphere / atmosphere model table information storage unit 5 and an antenna gain table information storage unit 6 are provided in a server device or the like on the Internet, and when calculating a theoretical received electric field strength range from the server device via the Internet. Necessary information may be downloaded in real time.

また、上記実施形態では、受信電界強度検出部7により検出された実際の受信電界強度が理論的受信電界強度算出部4により算出された理論的な受信電界強度範囲に入っているという条件を満たすか否かの判定を行う例について説明したが、次のような条件を加えても良い。すなわち、受信電界強度として必要な最低値(例えば、−130[dBm])をあらかじめ設定しておき、受信電界強度検出部7により検出された受信電界強度がこの最低値以上でなければならないという条件である。   In the above embodiment, the condition that the actual received electric field strength detected by the received electric field strength detector 7 is in the theoretical received electric field strength range calculated by the theoretical received electric field strength calculator 4 is satisfied. Although the example of determining whether or not is described, the following conditions may be added. That is, a condition that a minimum value (for example, −130 [dBm]) necessary for the received electric field strength is set in advance, and the received electric field strength detected by the received electric field strength detection unit 7 must be equal to or higher than the minimum value. It is.

この場合、測位計算部3は、信号受信部1により受信している複数のGPS衛星S1〜S8からのGPS信号のうち、受信電界強度検出部7により検出された実際の受信電界強度が最低値以上であり、かつ、受信電界強度検出部7により検出された受信電界強度が理論的受信電界強度算出部4により算出された理論的な受信電界強度範囲に入っている信号だけを用いて、n次元測位処理によって移動体の絶対位置を測定する。このようにすれば、理論的な受信電界強度範囲に入っていてもS/N比の低い信号は測位計算から排除することができ、測位精度を更に向上させることができる。   In this case, the positioning calculation unit 3 has the lowest actual received electric field strength detected by the received electric field strength detection unit 7 among the GPS signals from the plurality of GPS satellites S1 to S8 received by the signal receiving unit 1. Using only the signals that are above and the received electric field strength detected by the received electric field strength detector 7 is in the theoretical received electric field strength range calculated by the theoretical received electric field strength calculator 4, n The absolute position of the moving object is measured by the dimension positioning process. In this way, a signal with a low S / N ratio can be excluded from the positioning calculation even within the theoretical received electric field strength range, and the positioning accuracy can be further improved.

その他、上記実施形態は、何れも本発明を実施するにあたっての具体化の一例を示したものに過ぎず、これによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその精神、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。   In addition, each of the above-described embodiments is merely an example of the embodiment for carrying out the present invention, and the technical scope of the present invention should not be construed in a limited manner. In other words, the present invention can be implemented in various forms without departing from the spirit or main features thereof.

本発明は、複数のGPS衛星から送られてくる電波をGPS受信機で受信してn次元測位処理によって移動体の絶対位置を測定するGPS受信システムに有用である。   The present invention is useful for a GPS receiving system that receives radio waves transmitted from a plurality of GPS satellites with a GPS receiver and measures the absolute position of a moving object by n-dimensional positioning processing.

本実施形態によるGPS受信機の機能構成例を示すブロック図である。It is a block diagram which shows the function structural example of the GPS receiver by this embodiment. 本実施形態によるGPS受信機と複数のGPS衛星との位置関係を示す模式図である。It is a schematic diagram which shows the positional relationship of the GPS receiver by this embodiment, and several GPS satellites. 受信アンテナの指向性パターンの例を示す図である。It is a figure which shows the example of the directivity pattern of a receiving antenna. 理論的な受信電界強度範囲の例を示す概念図である。It is a conceptual diagram which shows the example of a theoretical receiving electric field strength range. 本実施形態によるGPS受信機を用いた位置測定方法の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the position measuring method using the GPS receiver by this embodiment.

符号の説明Explanation of symbols

1 信号受信部
2 受信アンテナ
3 測位計算部
4 理論的受信電界強度算出部
5 電離層/大気圏モデルテーブル情報記憶部
6 アンテナゲインテーブル情報記憶部
7 受信電界強度検出部
8 判定部
10 GPS受信機
DESCRIPTION OF SYMBOLS 1 Signal receiving part 2 Reception antenna 3 Positioning calculation part 4 Theoretical reception electric field strength calculation part 5 Ionosphere / atmosphere model table information storage part 6 Antenna gain table information storage part 7 Received electric field intensity detection part 8 Judgment part 10 GPS receiver

Claims (5)

複数のGPS衛星から電波にて送られてくる信号を受信する信号受信部と、
上記複数のGPS衛星との距離に基づいて、各GPS衛星から送られてくる信号のそれぞれについて理論的な受信電界強度範囲を算出する理論的受信電界強度算出部と、
上記信号受信部により実際に受信している信号の受信電界強度を、上記複数のGPS衛星からの信号のそれぞれについて検出する受信電界強度検出部と、
上記信号受信部により受信している上記複数のGPS衛星からの信号のうち、上記受信電界強度検出部により検出された受信電界強度が上記理論的受信電界強度算出部により算出された理論的な受信電界強度範囲に入っている信号だけを用いて、n次元測位処理によって移動体の絶対位置を測定する測位計算部とを備えたことを特徴とするGPS受信システム。
A signal receiving unit that receives signals transmitted from a plurality of GPS satellites by radio waves;
A theoretical reception field strength calculation unit that calculates a theoretical reception field strength range for each of the signals transmitted from each GPS satellite based on the distance to the plurality of GPS satellites;
A received electric field strength detecting unit that detects a received electric field strength of a signal actually received by the signal receiving unit for each of the signals from the plurality of GPS satellites;
Theoretical reception in which the received electric field strength detected by the received electric field strength detector among the signals from the plurality of GPS satellites received by the signal receiver is calculated by the theoretical received electric field strength calculator. A GPS receiving system, comprising: a positioning calculation unit that measures an absolute position of a moving body by n-dimensional positioning processing using only a signal that falls within an electric field strength range.
上記理論的受信電界強度算出部は、上記複数のGPS衛星から電波にて送られてくる信号が大気圏を通過するときに減衰する信号強度の減衰率を乗じて上記理論的な受信電界強度範囲を算出することを特徴とする請求項1に記載のGPS受信システム。 The theoretical received electric field strength calculating unit multiplies the signal received by radio waves from the plurality of GPS satellites by the attenuation factor of the signal strength that is attenuated when passing through the atmosphere. The GPS receiving system according to claim 1, wherein the GPS receiving system is calculated. 上記理論的受信電界強度算出部は、上記複数のGPS衛星の仰角および方位角に基づいて、上記信号受信部が備える受信アンテナの指向性パターンに応じたアンテナゲインを求め、上記アンテナゲインを乗じて上記理論的な受信電界強度範囲を算出することを特徴とする請求項1または2に記載のGPS受信システム。 The theoretical reception electric field strength calculation unit obtains an antenna gain according to a directivity pattern of a reception antenna included in the signal reception unit based on an elevation angle and an azimuth angle of the plurality of GPS satellites, and multiplies the antenna gain. The GPS reception system according to claim 1, wherein the theoretical reception electric field intensity range is calculated. 上記測位計算部は、上記信号受信部により受信している上記複数のGPS衛星からの信号のうち、上記受信電界強度検出部により検出された受信電界強度が所定値以上であり、かつ、上記受信電界強度検出部により検出された受信電界強度が上記理論的受信電界強度算出部により算出された理論的な受信電界強度範囲に入っている信号だけを用いて、n次元測位処理によって移動体の絶対位置を測定することを特徴とする請求項1〜3の何れか1項に記載のGPS受信システム。 The positioning calculation unit has a reception electric field strength detected by the reception electric field strength detection unit of the signals from the plurality of GPS satellites received by the signal reception unit that is a predetermined value or more, and the reception Using only the signals whose received field strength detected by the field strength detector is within the theoretical received field strength range calculated by the theoretical received field strength calculator, the absolute value of the moving object is obtained by n-dimensional positioning processing. The GPS receiving system according to any one of claims 1 to 3, wherein a position is measured. 複数のGPS衛星から電波にて送られてくる信号をGPS受信機にて受信する第1のステップと、
上記複数のGPS衛星と上記GPS受信機との距離に基づいて、各GPS衛星から送られてくる信号のそれぞれについて上記GPS受信機における理論的な受信電界強度範囲を算出する第2のステップと、
上記GPS受信機により実際に受信している信号の受信電界強度を、上記複数のGPS衛星からの信号のそれぞれについて検出する第3のステップと、
上記GPS受信機により受信している上記複数のGPS衛星からの信号のうち、上記第3のステップで検出された受信電界強度が上記第2のステップで算出された理論的な受信電界強度範囲に入っている信号だけを用いて、n次元測位処理によって移動体の絶対位置を測定する第4のステップとを有することを特徴とする位置測定方法。
A first step of receiving at a GPS receiver signals transmitted by radio waves from a plurality of GPS satellites;
A second step of calculating a theoretical reception field strength range in the GPS receiver for each of the signals transmitted from each GPS satellite based on the distance between the plurality of GPS satellites and the GPS receiver;
A third step of detecting, for each of the signals from the plurality of GPS satellites, the received electric field strength of the signal actually received by the GPS receiver;
Of the signals from the plurality of GPS satellites received by the GPS receiver, the received electric field strength detected in the third step is within the theoretical received electric field strength range calculated in the second step. And a fourth step of measuring the absolute position of the moving body by an n-dimensional positioning process using only the input signal.
JP2004314536A 2004-10-28 2004-10-28 Global positioning system receiving system and position measuring method Withdrawn JP2006126005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004314536A JP2006126005A (en) 2004-10-28 2004-10-28 Global positioning system receiving system and position measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004314536A JP2006126005A (en) 2004-10-28 2004-10-28 Global positioning system receiving system and position measuring method

Publications (1)

Publication Number Publication Date
JP2006126005A true JP2006126005A (en) 2006-05-18

Family

ID=36720889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004314536A Withdrawn JP2006126005A (en) 2004-10-28 2004-10-28 Global positioning system receiving system and position measuring method

Country Status (1)

Country Link
JP (1) JP2006126005A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303825A (en) * 2006-05-08 2007-11-22 Victor Co Of Japan Ltd Satellite positioning device
JP2010223594A (en) * 2009-03-19 2010-10-07 Casio Computer Co Ltd Gps receiver, and gps signal-receiving method and program
US7898474B2 (en) 2006-07-20 2011-03-01 Seiko Epson Corporation Positioning device, method of controlling positioning device, and recording medium having program for controlling positioning device recorded thereon
JP2012112815A (en) * 2010-11-25 2012-06-14 Getac Technology Corporation Satellite state determination method and software
JP2013079955A (en) * 2011-09-30 2013-05-02 Maici Electronic (Shanghai) Ltd Method, apparatus and system with error correction for inertial navigation system
US9529090B2 (en) 2010-09-08 2016-12-27 Getac Technology Corporation Method of satellite status judgment
CN112313542A (en) * 2018-06-15 2021-02-02 松下知识产权经营株式会社 Positioning method and positioning terminal

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303825A (en) * 2006-05-08 2007-11-22 Victor Co Of Japan Ltd Satellite positioning device
JP4650334B2 (en) * 2006-05-08 2011-03-16 日本ビクター株式会社 Satellite positioning device
US7898474B2 (en) 2006-07-20 2011-03-01 Seiko Epson Corporation Positioning device, method of controlling positioning device, and recording medium having program for controlling positioning device recorded thereon
US8068055B2 (en) 2006-07-20 2011-11-29 Seiko Epson Corporation Positioning device, method of controlling positioning device, and recording medium having program for controlling positioning device recorded thereon
JP2010223594A (en) * 2009-03-19 2010-10-07 Casio Computer Co Ltd Gps receiver, and gps signal-receiving method and program
US9529090B2 (en) 2010-09-08 2016-12-27 Getac Technology Corporation Method of satellite status judgment
JP2012112815A (en) * 2010-11-25 2012-06-14 Getac Technology Corporation Satellite state determination method and software
JP2013079955A (en) * 2011-09-30 2013-05-02 Maici Electronic (Shanghai) Ltd Method, apparatus and system with error correction for inertial navigation system
KR101470082B1 (en) * 2011-09-30 2014-12-05 마이시 일렉트로닉 (상하이) 엘티디 A method, apparatus and system with error correction for inertial navigation system
CN112313542A (en) * 2018-06-15 2021-02-02 松下知识产权经营株式会社 Positioning method and positioning terminal

Similar Documents

Publication Publication Date Title
EP2162758B1 (en) Method and device for trilateration using los link prediction and pre-measurement los path filtering
KR101340788B1 (en) Wireless position determination using adjusted round trip time measurements
US20090201208A1 (en) Wireless transmitter location determining system and related methods
US9229111B2 (en) Method for estimating the direction of arrival of navigation signals at a receiver after reflection by walls in a satellite positioning system
JP2001305210A (en) Position detection device
US20080180315A1 (en) Methods and systems for position estimation using satellite signals over multiple receive signal instances
Morales et al. DGPS, RTK-GPS and StarFire DGPS performance under tree shading environments
WO2006132003A1 (en) Gps reception device and gps positioning correction method
KR101437346B1 (en) Positioning method of GPS receiver, Recording medium storing a program for performing the method and GPS receiver
JP2006242911A (en) Position detector
JP2008530551A5 (en)
US9612340B1 (en) Systems, methods, devices and subassemblies for creating and delivering crowd-sourced GNSS models
KR20170027779A (en) Positioning and navigation receiver with a confidence index
KR101638210B1 (en) Method for optimising an acquisition of a spread-spectrum signal from a satellite by a mobile receiver
JP2021047054A (en) Positioning system, server, positioning method, program, device to be positioned and moving body
KR20160009277A (en) Movable positioning apparatus and method for measuring positioning thereof
EP3757620A1 (en) Systems for and methods of nullsteering in a receiver
JPH0666916A (en) Gps receiver
JP2006126005A (en) Global positioning system receiving system and position measuring method
JP2011163817A (en) Positioning apparatus and program
KR101221931B1 (en) Method and device for creating satellite measurement of ship using inertial sensor in weak signal environment
KR101605357B1 (en) Method for measuring position and positioning apparatus therefor
JP2010145178A (en) Moving body position specification device
JP2010112759A (en) Mobile body positioning apparatus
JP2019168257A (en) Moving body information estimation device and program

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108