JPH09287435A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine

Info

Publication number
JPH09287435A
JPH09287435A JP8097193A JP9719396A JPH09287435A JP H09287435 A JPH09287435 A JP H09287435A JP 8097193 A JP8097193 A JP 8097193A JP 9719396 A JP9719396 A JP 9719396A JP H09287435 A JPH09287435 A JP H09287435A
Authority
JP
Japan
Prior art keywords
exhaust gas
photocatalyst
methanol
internal combustion
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8097193A
Other languages
Japanese (ja)
Other versions
JP3755185B2 (en
Inventor
Reiko Domeki
礼子 百目木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP09719396A priority Critical patent/JP3755185B2/en
Publication of JPH09287435A publication Critical patent/JPH09287435A/en
Application granted granted Critical
Publication of JP3755185B2 publication Critical patent/JP3755185B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2086Activating the catalyst by light, photo-catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust emission control device of an internal combustion engine wherein methanol is produced from carbon dioxide and water in exhaust gas from the engine using a photo-catalyzer and nitrogen oxide in the exhaust gas is reduced using the produced methanol as a reducing agent. SOLUTION: On a pass 32 for exhaust gas from an internal combustion engine 30, a photo-catalyzer 34 and a reducing catalyzer 36 are disposed in turn from the upper stream. Using carbon dioxide and water in the exhaust gas, methanol is produced, thereafter this methanol is applied to a reducing catalyzer 36 as a reducing agent, allowing nitrogen oxide in the exhaust gas to rarefy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の排ガス
浄化装置に関し、該内燃機関からの排ガス中の二酸化炭
素(CO2 )と水(H2 O)とから光触媒を用いてメタ
ノール(CH3 OH)を生成させ、上記で生成されたメ
タノールを還元剤として窒素酸化物(NO X )を低減す
る内燃機関の排ガス浄化装置に関する。
TECHNICAL FIELD The present invention relates to exhaust gas from an internal combustion engine.
Regarding purification device, carbon dioxide in exhaust gas from the internal combustion engine
Elementary (COTwo) And water (HTwoO) and a photocatalyst
Knoll (CHThreeOH) is generated, and the
Nitrogen oxides (NO) using tanol as a reducing agent X)
The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine.

【0002】[0002]

【従来の技術】周知のように、現在ディーゼルエンジ
ン,希薄混合気燃焼のガソリンエンジン等のリーンバー
ンエンジンの排ガス等、酸素を過剰に含む排ガス中の窒
素酸化物(NOX)の除去を対象とした触媒が種々提案
されているが、いずれも窒素酸化物の除去率と耐久性に
おいて問題があり、その実用化には暫く時間を要するも
のと考えられている。
As it is known, currently diesel engine, and directed to removal of exhaust gas or the like of a lean burn engine such as a gasoline engine of lean-burn, oxygen and nitrogen oxides in the exhaust gas containing excess (NO X) Various catalysts have been proposed, but all of them have problems in the removal rate of nitrogen oxides and durability, and it is considered that it will take some time before they are put into practical use.

【0003】又、上記過剰酸素を含む排ガスには、酸素
とNOXとHCの微妙なバランス下でのみ浄化性能を示
す三元触媒を使用することができない。一方、軽油を排
ガス中に噴射することにより多少の上記窒素酸化物を除
去できる触媒があるが、この軽油を添加する触媒の場合
の問題点としては、浄化率が低いことである。
[0003] Further, above the excess oxygen exhaust gas containing, it can not be used a three-way catalyst shows purification performance only delicate balance of oxygen and NO X and HC. On the other hand, there is a catalyst capable of removing some of the above nitrogen oxides by injecting light oil into the exhaust gas, but a problem with the catalyst to which this light oil is added is that the purification rate is low.

【0004】上記軽油は種々のハイドロカーボンからな
っているが、その中で最も有効なハイドロカーボンとし
て有効に作用するものが少なく、又有効な還元剤に転化
する触媒もない。又、軽油を添加する触媒では、軽油を
触媒に噴射するために、その分燃費が低下する欠点を有
している。
The above light oil is composed of various types of hydrocarbons, but few of them effectively act as the most effective hydrocarbons, and there is no catalyst for converting them into effective reducing agents. Further, the catalyst to which light oil is added has a drawback that fuel efficiency is reduced because the light oil is injected to the catalyst.

【0005】又、上記過剰酸素を含む排ガスにおいて
は、還元剤を添加しても添加された還元剤が直接酸化し
てしまいNO又はNO2を還元することができないため
窒素酸化物が低減されない。 (窒素酸化物の還元) NOX+HC→N2 +H2 O+COX (酸素過剰下) HC+O2 →H2 O+COX 又、現在排ガス中のHCの有効な還元剤に転化する手段
が確立されておらず、ある種のHCをいれてやれば、多
少活性化できるため、ある程度の上記窒素酸化物の浄化
を行うことができるが、上記HC(還元剤)を添加する
ための該HCを貯蔵するタンクが必要であり、該タンク
の交換やHC(還元剤)を補給をしなければならない欠
点があり、未だ有効なHC(還元剤)を上記エンジンに
搭載するには至っていない。
In the exhaust gas containing the above-mentioned excess oxygen,
Even if a reducing agent is added, the added reducing agent will be directly oxidized.
NO or NOTwoCannot be reduced
Nitrogen oxides are not reduced. (Reduction of nitrogen oxides) NOX+ HC → NTwo+ HTwoO + COX (Under oxygen excess) HC + OTwo→ HTwoO + COX  Also, means for converting HC in the exhaust gas into an effective reducing agent
Is not established, and if a certain amount of HC is added,
Since it can be activated a little, the nitrogen oxides can be purified to some extent.
However, the above HC (reducing agent) is added.
A tank for storing the HC for
It is necessary to replace the fuel and replenish the HC (reducing agent).
There is a point, and still effective HC (reducing agent) is applied to the above engine.
It has not been installed yet.

【0006】上記のような現状のなかで、上記ディーゼ
ルエンジン等のリーンバーンエンジンの排ガス等、酸素
を過剰に含む排ガス中の窒素酸化物の還元除去方法とし
て提案がなされているが、例えば特開平6−19813
2号公報がある。該公報記載の技術は、過剰の酸素が存
在する酸化雰囲気中、メタノールの存在下において、錫
を含有しているアルミナ触媒と窒素酸化物を含む排ガス
とを接触させることにより上記窒素酸化物を還元除去す
るものであり、これはメタノールそのものを、特別に設
けたタンクに貯蔵し保持しておくものである。
Under the current circumstances as described above, a method for reducing and removing nitrogen oxides in exhaust gas containing excess oxygen such as exhaust gas of lean burn engines such as diesel engines has been proposed. 6-19813
No. 2 publication is available. The technique described in the publication reduces the nitrogen oxides by contacting an alumina catalyst containing tin and an exhaust gas containing nitrogen oxides in the presence of methanol in an oxidizing atmosphere containing excess oxygen. This is to remove the methanol itself, which is stored and held in a special tank.

【0007】又、その他の従来例として、自動車の排気
ガス浄化装置として光触媒を用いた提案がなされている
が、例えば実開平4−76924号公報がある。該公報
記載の技術は、図5に示したように中・高温の排ガスを
浄化する中・高用三元触媒2と、紫外線の照射により排
ガスを浄化する光触媒4と、排気ガスの光触媒4への流
路を開閉する開閉弁5と、光触媒4に紫外線を照射する
紫外線照射ランプ3と、温度センサ9で排ガス温度を検
知し、該排ガスが所定温度未満の低温であれば、開閉弁
5を開いて低温の該排ガスを光触媒4に導くと共に紫外
線照射ランプ3を点灯させて光触媒4に紫外線を照射さ
せる制御部7とを備えたものである。
Further, as another conventional example, a proposal using a photocatalyst as an exhaust gas purifying apparatus for an automobile has been proposed, for example, Japanese Utility Model Laid-Open No. 4-76924. The technology described in the publication is applied to a three-way catalyst 2 for medium and high use for purifying medium and high temperature exhaust gas, a photocatalyst 4 for purifying exhaust gas by irradiation of ultraviolet rays, and a photocatalyst 4 for exhaust gas as shown in FIG. The on-off valve 5 for opening and closing the flow path of the exhaust gas, the ultraviolet irradiation lamp 3 for irradiating the photocatalyst 4 with ultraviolet rays, and the temperature sensor 9 detect the exhaust gas temperature. A control unit 7 is provided which opens the low temperature exhaust gas to the photocatalyst 4 and turns on the ultraviolet irradiation lamp 3 to irradiate the photocatalyst 4 with ultraviolet rays.

【0008】上記実開平4−76924号公報記載の技
術では、温度センサ9で排ガスの温度を検知し、排ガス
温度が摂氏300度未満であれば、制御部7は電磁弁1
0にON信号を出力し、ダイアフラム8に吸気圧力Pを
作用させ開閉弁5を開き、排ガスを光触媒4に導くと共
に、紫外線ランプ3を点灯させて紫外線を照射せしめる
ものである。
In the technique described in Japanese Utility Model Laid-Open No. 4-76924, the temperature sensor 9 detects the temperature of the exhaust gas, and if the exhaust gas temperature is less than 300 degrees Celsius, the control unit 7 causes the solenoid valve 1 to operate.
The ON signal is output to 0, the intake pressure P is applied to the diaphragm 8 to open the opening / closing valve 5, the exhaust gas is guided to the photocatalyst 4, and the ultraviolet lamp 3 is turned on to irradiate the ultraviolet rays.

【0009】従って、上記において、先ず中・高温用触
媒2でHC,CO,NOX をある程度浄化せしめ、ここ
での浄化は未だ不十分であるため、更に排ガスを光触媒
4で紫外線照射ランプ3の照射によりHC,CO,NO
X の浄化を行ない低温時の排ガスを浄化する。又、温度
センサ9が摂氏300度以上の中・高温の排ガスを検知
すれば、制御部7は電磁弁10にOFF信号を出力し、
吸気圧力Pの供給を停止して開閉弁5を閉じて排気管1
と上流バイバス管11との連通を閉じると共に、紫外線
照射ランプ3を消灯させる。
Therefore, in the above, first, the medium and high temperature catalysts 2 are used to purify HC, CO, and NO x to some extent. Since the purification here is still insufficient, the exhaust gas is further converted by the photocatalyst 4 into the ultraviolet irradiation lamp 3. HC, CO, NO by irradiation
Purify X to purify exhaust gas at low temperature. If the temperature sensor 9 detects medium or high temperature exhaust gas of 300 degrees Celsius or more, the control unit 7 outputs an OFF signal to the solenoid valve 10,
The supply of intake pressure P is stopped, the on-off valve 5 is closed, and the exhaust pipe 1
And the communication with the upstream bypass pipe 11 is closed, and the ultraviolet irradiation lamp 3 is turned off.

【0010】そして、排ガスは光触媒4には導かれずに
中・高用温触媒2に導かれHC,CO,NOX NOを浄
化するものである。この為、上記装置では、エンジンの
始動直後の短い時間の間のみ紫外線を照射をさせ、又排
ガスが中・高温となればその有害成分を中・高温用触媒
2で浄化するため、使用温度範囲が制限されないように
したものである。
The exhaust gas is not guided to the photocatalyst 4 but is guided to the medium / high temperature catalyst 2 to purify HC, CO and NO x NO. Therefore, in the above device, ultraviolet rays are radiated only for a short time immediately after the start of the engine, and when the exhaust gas becomes medium or high temperature, its harmful components are purified by the medium or high temperature catalyst 2. Is not restricted.

【0011】上記のように、実開平4−76924号公
報記載の技術は、排ガスの低温時における上記窒素酸化
物を光触媒4の作用により除去するものであり、この光
触媒4自身が上記紫外線照射により窒素酸化物を除去す
る作用を有する組成から形成されているものである。
又、上記の他に上記光触媒自身から直接メタノールを生
成する、工業製品としての薬品を製造するものも知られ
ている。
As described above, the technique described in Japanese Utility Model Publication No. 4-76924 removes the above nitrogen oxides by the action of the photocatalyst 4 when the exhaust gas is at a low temperature. It is formed of a composition having a function of removing nitrogen oxides.
In addition to the above, it is also known to produce chemicals as industrial products by directly producing methanol from the photocatalyst itself.

【0012】更に、ボイラー等から排出される二酸化炭
素による地球の温暖化を低減するために、二酸化炭素を
メタノールとして生成し固定化した有用物質を製造し、
再利用しようとするものもある。
Further, in order to reduce the global warming caused by carbon dioxide emitted from a boiler or the like, a useful substance in which carbon dioxide is produced and immobilized as methanol is produced,
Some are trying to reuse.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の上記特開平6−198132号公報記載の技
術では、上記排ガス中にメタノールを直接噴射するもの
であるから、メタノールを貯蔵するタンクを特別に設け
なければならず、特に自動車の場合には総重量の増加と
なるから、燃費悪化となり、又メタノールタンク及びそ
の供給のための維持管理がかかりコストの増大となる欠
点がある。
However, in the conventional technique described in the above-mentioned Japanese Patent Laid-Open No. 6-198132, since the methanol is directly injected into the exhaust gas, a tank for storing the methanol is special. In particular, in the case of an automobile, the total weight increases, which leads to deterioration of fuel efficiency and maintenance costs for the methanol tank and its supply, resulting in an increase in cost.

【0014】上記の実開平4−76924号公報記載の
技術は、排ガスの低温時における上記窒素酸化物を光触
媒4の作用により除去するものであり、この光触媒4自
身が上記紫外線照射により窒素酸化物を除去する作用を
有する組成から形成されているものであり、しかも上記
エンジンの始動直後の排ガスの低温時のみにしか使用し
ないもので、該排ガス浄化装置全体から考慮すると有効
に活用しているものではなく、コストが嵩むことにな
る。
The technique described in Japanese Utility Model Laid-Open No. 4-76924 described above removes the nitrogen oxides by the action of the photocatalyst 4 when the exhaust gas is at a low temperature. Formed from a composition having the action of removing the exhaust gas, and is used only when the temperature of the exhaust gas is low immediately after the engine is started, and is effectively utilized in consideration of the exhaust gas purifying apparatus as a whole. Instead, the cost will increase.

【0015】又、その他の従来例として説明したもの
は、単なる薬品としてのメタノールの製造方法であり、
又地球の温暖化を低減するために、二酸化炭素をメタノ
ールとして生成し固定化した有用物質を製造し、再利用
できるようにしたものである。従って、上記したいずれ
の従来技術も、例えば自動車に搭載されるエンジンの排
ガス浄化装置のように、軽量,コンパクトで且つコスト
の安価な上記装置を製造しようとする技術思想は示唆さ
れておらず、又その何等の記載もない。
Further, the other conventional example is a method for producing methanol as a mere chemical,
Further, in order to reduce global warming, carbon dioxide is produced as methanol and immobilized, and a useful substance is manufactured and reused. Therefore, in any of the above-mentioned conventional techniques, such as an exhaust gas purifying apparatus for an engine mounted on an automobile, a lightweight, compact and technical idea of manufacturing the above-mentioned device at low cost is not suggested, Moreover, there is no description of anything.

【0016】又、上記排ガス通路中の排ガスの中に含有
する成分からメタノールを生成し、その生成されたメタ
ノールを還元剤として、上記排ガス通路の下流に設けら
れた還元触媒に流入せしめ、上記排ガス中の上記NOX
を除去するという技術思想にもとづく上記装置を製造す
ることができる示唆する記載もない。本発明は、このよ
うな課題に鑑み創案されたもので、内燃機関からの排ガ
ス中の二酸化炭素(CO2 )と水(H2 O)とから光触
媒を用いてメタノール(CH 3 OH)を生成させ、上記
で生成されたメタノールを還元剤として窒素酸化物(N
X )を低減する内燃機関の排ガス浄化装置を提供する
ことを目的とする。
Further, it is contained in the exhaust gas in the exhaust gas passage.
To produce methanol from the
A reducing agent is used as a reducing agent, and is installed downstream of the exhaust gas passage.
The NO in the exhaust gas.X
Manufacturing the above device based on the technical idea of removing
There is no suggestion that can be made. The present invention is this
It was created in consideration of such problems, and
Carbon dioxide (COTwo) And water (HTwoO) and light touch
Methanol (CH ThreeOH) is generated and
Nitrogen oxide (N
OX) To provide an exhaust gas purifying device for an internal combustion engine
The purpose is to:

【0017】[0017]

【課題を解決するための手段】このため、請求項1記載
の本発明の内燃機関の排ガス浄化装置は、内燃機関の排
ガス通路に上流側から順に、光触媒及び還元触媒が配設
され、上記光触媒で上記排ガス中からメタノール(CH
3 OH)を生成し、上記還元触媒でこの生成されたメタ
ノールを還元剤として使用して該NOX を除去できるよ
うに構成されていることを特徴としている。
Therefore, in the exhaust gas purifying apparatus for an internal combustion engine according to the present invention as defined in claim 1, a photocatalyst and a reducing catalyst are arranged in this order from the upstream side in the exhaust gas passage of the internal combustion engine. From the above exhaust gas to methanol (CH
3 OH) to generate a, it is characterized in that it is configured to remove the NO X using the generated methanol by the reduction catalyst as a reducing agent.

【0018】請求項2記載の本発明の内燃機関の排ガス
浄化装置は、請求項1記載の構成において、該還元触媒
が配設されている排ガス通路部分よりも下流側の排ガス
通路部分に、酸化触媒が配設されたことを特徴としてい
る。請求項3記載の本発明の内燃機関の排ガス浄化装置
は、内燃機関の排ガス通路に上流側から順に、光触媒及
び還元触媒が配設されると共に、該光触媒が配設されて
いる排ガス通路部分よりも下流側の排ガス通路部分にお
ける排ガス中の窒素酸化物濃度を検出する窒素酸化物濃
度検出手段と、該光触媒に光を照射する光源と、該光触
媒の下流側の該窒素酸化物濃度検出手段で検出された検
出結果に基づいて、該光源における該光触媒への光量を
制御する制御手段とを備え、上記光触媒で上記排ガス中
からメタノール(CH3 OH)を生成し、この生成され
たメタノールを上記還元触媒の還元剤として使用するこ
とで該NOX が除去できるように構成されていることを
特徴としている。
According to a second aspect of the present invention, there is provided the exhaust gas purifying apparatus for an internal combustion engine according to the first aspect, wherein the exhaust gas passage portion downstream of the exhaust gas passage portion in which the reduction catalyst is disposed is oxidized. It is characterized in that a catalyst is provided. An exhaust gas purifying apparatus for an internal combustion engine according to a third aspect of the present invention is arranged such that a photocatalyst and a reducing catalyst are sequentially arranged from an upstream side in an exhaust gas passage of the internal combustion engine, and an exhaust gas passage portion in which the photocatalyst is arranged is disposed. And a nitrogen oxide concentration detecting means for detecting the nitrogen oxide concentration in the exhaust gas in the exhaust gas passage portion on the downstream side, a light source for irradiating the photocatalyst with light, and the nitrogen oxide concentration detecting means on the downstream side of the photocatalyst. A control means for controlling the amount of light to the photocatalyst in the light source based on the detected detection result, wherein the photocatalyst produces methanol (CH 3 OH) from the exhaust gas, and the produced methanol is produced as described above. It is characterized in that the NO x can be removed by using it as a reducing agent of a reduction catalyst.

【0019】請求項4記載の本発明の内燃機関の排ガス
浄化装置は、内燃機関の排ガス通路に上流側から順に、
光触媒及び還元触媒が配設されると共に、該光触媒が配
設されている排ガス通路部分よりも下流側の排ガス通路
部分における排ガス中の窒素酸化物濃度を検出する窒素
酸化物濃度検出手段と、該光触媒が配設されている排ガ
ス通路部分よりも下流側の排ガス通路部分における排ガ
ス中のハイドロカーボン濃度検出手段と、該光触媒に光
を照射する光源と、該光触媒の下流側の該窒素酸化物濃
度検出手段及び該ハイドロカーボン濃度検出手段で検出
された検出結果に基づいて、該光源における該光触媒へ
の光量を制御する制御手段とを備え、上記光触媒で上記
排ガス中からメタノール(CH3 OH)を生成し、この
生成されたメタノールを上記還元触媒の還元剤として使
用することで該NOX が除去できるように構成されてい
ることを特徴としている。
According to a fourth aspect of the present invention, there is provided an exhaust gas purifying apparatus for an internal combustion engine, wherein an exhaust gas passage of the internal combustion engine is sequentially arranged from an upstream side.
A photocatalyst and a reducing catalyst are provided, and a nitrogen oxide concentration detecting means for detecting the nitrogen oxide concentration in the exhaust gas in the exhaust gas passage portion on the downstream side of the exhaust gas passage portion in which the photocatalyst is provided, Hydrocarbon concentration detecting means in the exhaust gas in the exhaust gas passage portion downstream of the exhaust gas passage portion where the photocatalyst is disposed, a light source for irradiating the photocatalyst with light, and the nitrogen oxide concentration downstream of the photocatalyst Based on the detection result detected by the detection means and the hydrocarbon concentration detection means, a control means for controlling the amount of light to the photocatalyst in the light source, and methanol (CH 3 OH) from the exhaust gas in the photocatalyst. generated, the generated methanol and characterized by being constituted such that the NO X can be removed by using as a reducing agent for the reduction catalyst There.

【0020】請求項5記載の本発明の内燃機関の排ガス
浄化装置は、請求項1,3,4のいずれかに記載の構成
において、該光触媒が二酸化チタン系の触媒として構成
されるとともに、該還元触媒が銀系,アルミナ系の触媒
として構成されたことを特徴としている。
According to a fifth aspect of the present invention, there is provided an exhaust gas purifying apparatus for an internal combustion engine according to the first or third aspect, wherein the photocatalyst is a titanium dioxide-based catalyst, and The reduction catalyst is characterized by being composed of silver-based and alumina-based catalysts.

【0021】[0021]

【発明の実施の形態】以下、図1〜4により、本発明の
実施の形態について説明すると、図1は本発明の内燃機
関の排ガス浄化装置をディーゼルエンジンに適用した場
合を模式的に示した説明図、図2は図1の光触媒の構造
を示す説明図であり、(A)は図1の光触媒の断面を示
す概略説明図、(B)は図2(A)の2B−2B線に沿
う断面図、図3は本発明の実施形態の応用例を示す図1
と同様の状態を示す説明図、図4は本発明の実施形態の
その他の応用例を示す図3と同様の状態を示す説明図で
ある。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to FIGS. 1 to 4. FIG. 1 schematically shows a case where the exhaust gas purifying apparatus for an internal combustion engine of the present invention is applied to a diesel engine. 2 is an explanatory view showing the structure of the photocatalyst of FIG. 1, (A) is a schematic explanatory view showing a cross section of the photocatalyst of FIG. 1, and (B) is a line 2B-2B of FIG. 2 (A). FIG. 1 is a sectional view taken along the line of FIG.
And FIG. 4 is an explanatory diagram showing a state similar to FIG. 3 showing another application example of the embodiment of the present invention.

【0022】図1に示したように、ディーゼルエンジン
30の排ガス通路32には二酸化チタン(Ti O2 )系
の材料で形成された光触媒34が接続されており、その
下流に排気管32を介してアルミナ系,銀(Ag)系等
の材料で形成された還元触媒36が接続されている。更
に、還元触媒36の下流の排ガス通路32に、窒素酸化
物濃度検出手段38とハイドロカーボン濃度検出手段4
0が設けられ制御手段45に接続され、これらの検出さ
れた出力信号により光触媒34の光源44の照射量が制
御される。
As shown in FIG. 1, a photocatalyst 34 formed of a titanium dioxide (TiO 2 ) based material is connected to the exhaust gas passage 32 of the diesel engine 30, and an exhaust pipe 32 is provided downstream of the photocatalyst 34. A reduction catalyst 36 made of an alumina-based material, a silver (Ag) -based material, or the like is connected. Further, in the exhaust gas passage 32 downstream of the reduction catalyst 36, the nitrogen oxide concentration detecting means 38 and the hydrocarbon concentration detecting means 4 are provided.
0 is provided and is connected to the control means 45, and the irradiation amount of the light source 44 of the photocatalyst 34 is controlled by these detected output signals.

【0023】又、制御手段45は、窒素酸化物濃度検出
手段38、ハイドロカーボン濃度検出手段40の内少な
くとも窒素酸化物濃度検出手段38で検出れた検出結果
の出力信号により、上記光触媒34への光量を制御する
CPU等を内蔵している。又、上記の窒素酸化物濃度検
出手段38とハイドロカーボン濃度検出手段40で検出
された上記の窒素酸化物濃度とハイドロカーボン濃度と
の比率で窒素酸化物の浄化率とハイドロカーボン濃度を
計算して、その値に相当する出力信号を制御手段45に
より制御し、上記光源からの光量が調整されるように構
成されている。
Further, the control means 45 outputs to the photocatalyst 34 the output signal of the detection result detected by at least the nitrogen oxide concentration detecting means 38 among the nitrogen oxide concentration detecting means 38 and the hydrocarbon concentration detecting means 40. It has a built-in CPU, etc. that controls the amount of light. Further, the purification rate of nitrogen oxides and the hydrocarbon concentration are calculated by the ratio of the nitrogen oxide concentration and the hydrocarbon concentration detected by the nitrogen oxide concentration detecting means 38 and the hydrocarbon concentration detecting means 40. The output signal corresponding to the value is controlled by the control means 45, and the light amount from the light source is adjusted.

【0024】次に、光触媒34の構成を、図2について
説明する。光触媒34は、触媒室54aと光源室54b
とを形成するケーシング54と、触媒室54aに配設さ
れる光触媒本体50と、光源室54bに配設される光源
44とから形成されている。そして、光触媒本体50の
両端を金網に石綿等の断熱材を含有せしめて圧縮成形さ
れたワイヤメッシュ型ガスケット52が、ケーシング5
4内の支持部54c,54dと光触媒50との間に圧縮
された状態になるように配設されている。
Next, the structure of the photocatalyst 34 will be described with reference to FIG. The photocatalyst 34 includes a catalyst chamber 54a and a light source chamber 54b.
And a photocatalyst body 50 disposed in the catalyst chamber 54a, and a light source 44 disposed in the light source chamber 54b. Then, the wire mesh type gasket 52 obtained by compression-molding the both ends of the photocatalyst main body 50 with a wire mesh containing a heat insulating material such as asbestos is used as the casing 5
The photocatalyst 50 is arranged between the supporting portions 54c and 54d inside the photocatalyst 4 in a compressed state.

【0025】又、上記の触媒室54aと光源室54bと
の境界には、耐熱性、耐振動性、耐衝撃性の、例えば石
英ガラスや光線を発散する凹レンズ等の光透過部材58
が触媒室54aの外周に取付けられている。従って、図
2(A),(B)に示したように上記排ガスが光触媒3
4を通過しても、上記の光透過部材58と触媒50で包
囲される間隙54eは、メッシュ型ガスケット52によ
り密閉されているので、上記排ガスが浸入することがな
いように構成され、光源44からの光の透過を妨げるら
れることがない。
At the boundary between the catalyst chamber 54a and the light source chamber 54b, a light transmitting member 58 having heat resistance, vibration resistance and impact resistance, such as quartz glass or a concave lens for diverging light rays, is used.
Are attached to the outer periphery of the catalyst chamber 54a. Therefore, as shown in FIGS. 2 (A) and 2 (B), the exhaust gas is photocatalyst 3
The gap 54e surrounded by the light transmitting member 58 and the catalyst 50 is closed by the mesh type gasket 52 even after passing through 4, so that the exhaust gas does not enter, and the light source 44 is provided. It does not interfere with the transmission of light from.

【0026】又、ワイヤメッシュ型ガスケット52は耐
熱性,弾性力性,気密性等があるので、耐熱,耐振動,
耐衝撃から保護され、間隙54eに排ガスが浸入しない
ように光触媒本体50が支持されている。又、ワイヤメ
ッシュ型ガスケット52は、上記のものに限られるもの
ではなく、耐熱性,弾性力性,気密性,耐振動性,耐衝
撃性等があり、光触媒本体50を担持できる固定部材で
あればよい。
Further, since the wire mesh type gasket 52 has heat resistance, elasticity, airtightness, etc., heat resistance, vibration resistance,
The photocatalyst body 50 is supported so as to be protected from impact resistance and prevent the exhaust gas from entering the gap 54e. Further, the wire mesh type gasket 52 is not limited to the above-mentioned one, but may be a fixing member having heat resistance, elasticity, airtightness, vibration resistance, impact resistance, etc. and capable of carrying the photocatalyst body 50. Good.

【0027】又、触媒室54aの外周を包囲するように
光源室54bが設けられ、上記の光透過部材58に対応
するように開口54fが設けられると共に、この開口5
4f及び光透過部材58を介して上記光が光触媒本体5
0に到達できるように、光源室54bに光源44が設け
られている。又、上記の光触媒本体50に対して光源4
4が特に小さい場合には、光透過部材58を光線を発散
させる凹レンズを使用すれば、この凹レンズ58により
小さい光を発散させ大きな光触媒本体50に対して全体
的に上記光を照射することができる。
Further, a light source chamber 54b is provided so as to surround the outer periphery of the catalyst chamber 54a, an opening 54f is provided so as to correspond to the light transmitting member 58, and the opening 5f is provided.
The light is transferred to the photocatalyst body 5 via the 4 f and the light transmitting member 58.
The light source 44 is provided in the light source chamber 54b so as to reach 0. In addition, the light source 4 is provided for
When 4 is particularly small, if a concave lens for diverging light rays is used as the light transmitting member 58, smaller light can be diverged to the concave lens 58 and the light can be irradiated to the large photocatalyst main body 50 as a whole. .

【0028】又、光触媒本体50を円筒形状ではなく、
楕円筒状に形成すれば、薄い形状に形成できるので、上
記光の透過率のよい小型の光触媒34にすることができ
る。又、図2に示したように光触媒本体50の中に耐熱
性の優れた光源を、詳細には図示しないが、配設すれば
光触媒50の活性化を促進することができる。上記の光
源44は通常使用されるランプ,蛍光灯等でよく,又光
ファイバを光触媒本体50の外周に沿って光源室54b
に配設し,離れた部位に設けられた光源から光を伝達せ
しめてもよく、又バッテリ電源や太陽光線のエネルギを
利用することができる。
Further, the photocatalyst body 50 is not in a cylindrical shape,
If it is formed in an elliptic cylindrical shape, it can be formed in a thin shape, so that the photocatalyst 34 having a small light transmittance can be obtained. Although not shown in detail, a light source having excellent heat resistance is provided in the photocatalyst body 50 as shown in FIG. 2, whereby activation of the photocatalyst 50 can be promoted. The light source 44 may be a commonly used lamp, a fluorescent lamp, or the like, and an optical fiber is provided along the outer periphery of the photocatalyst body 50 to form a light source chamber 54b.
Alternatively, the light may be transmitted from a light source provided at a remote location, and the energy of a battery power source or sunlight can be used.

【0029】本実施形態は上記のように構成されている
ので、エンジン30からの排ガスが排ガス通路32を介
して光触媒34に入ると光源44からの光を受けて、光
触媒本体50の二酸化チタン(TiO2 )と排ガス中の
CO2 とH2 Oとが作用して次の化学式に示したように
メタノール(CH3 OH)が生成される。 CO2 +H2 O→CH3 OH この生成メタノール(CH3 OH)が還元触媒剤とし
て、下流側のアルミナ系,銀系(Ag系)等で形成され
た還元触媒36に流れ、上記排ガス中のNOX と反応せ
しめて次の化学式に示したように、NOxを高い効率で
除去することができるものである。
Since the present embodiment is configured as described above, when the exhaust gas from the engine 30 enters the photocatalyst 34 through the exhaust gas passage 32, it receives the light from the light source 44 and the titanium dioxide ( TiO 2 ) and CO 2 and H 2 O in the exhaust gas act to produce methanol (CH 3 OH) as shown in the following chemical formula. CO 2 + H 2 O → CH 3 OH This generated methanol (CH 3 OH) flows as a reduction catalyst agent to the downstream reduction catalyst 36 formed of alumina-based, silver-based (Ag-based) or the like, and is contained in the exhaust gas. As shown in the following chemical formula by reacting with NO x , NO x can be removed with high efficiency.

【0030】 NOX +CH3 OH→N2 +H2 O+COx 又、光触媒50を通過後、窒素酸化物濃度検出手段3
8、ハイドロカーボン濃度検出手段40で検出し、排ガ
ス中のNOX とHCの濃度の比率でNOX の浄化率とH
Cの量を制御手段45で計算して、その値に相当する出
力信号が出力され光量が調整されるので、光源44のエ
ネルギを最低限に押さえることができる。
NO x + CH 3 OH → N 2 + H 2 O + CO x Further , after passing through the photocatalyst 50, the nitrogen oxide concentration detecting means 3
8. The concentration of NO x and HC in the exhaust gas detected by the hydrocarbon concentration detecting means 40, and the NO x purification rate and H
Since the amount of C is calculated by the control means 45 and an output signal corresponding to the value is output and the amount of light is adjusted, the energy of the light source 44 can be suppressed to the minimum.

【0031】又、上記では窒素酸化物濃度検出手段3
8,ハイドロカーボン濃度検出手段40からの検出信号
を用いて、光源44の制御量を決定したが、これに限ら
れるものではなく、窒素酸化物濃度検出手段38により
上記NOX 量を浄化するためのメタノールの必要量を制
御手段45で計算し、光源44の作動時間を制御するよ
うにしても、上記と同様の作用効果を奏することができ
るものである。
Further, in the above, the nitrogen oxide concentration detecting means 3 is used.
8, by using the detection signal from the hydrocarbon concentration detector 40, has been determined a control amount of the light source 44 is not limited to this, for purifying the amount of NO X by the nitrogen oxide concentration detection means 38 Even when the required amount of methanol is calculated by the control means 45 and the operation time of the light source 44 is controlled, the same effect as the above can be obtained.

【0032】上記実施形態では還元触媒36の下流側に
HC,NOX の窒素酸化物濃度検出手段38、ハイドロ
カーボン濃度検出手段40を設けたが、上記の光触媒5
0と還元触媒36との間に設けても、上記と同様の作用
効果を奏することができるものである。次に、上記本発
明の実施形態の応用例を図3について説明するが、上記
実施形態と実質的に同一部位には同一符号を付して説明
する。
[0032] HC to the downstream side of the reduction catalyst 36 in the above embodiment, NO X in the nitrogen oxide concentration detection means 38 is provided with the hydrocarbon concentration detector 40, the above-mentioned photocatalyst 5
Even if it is provided between 0 and the reduction catalyst 36, the same effects as the above can be obtained. Next, an application example of the above-described embodiment of the present invention will be described with reference to FIG. 3, and substantially the same parts as those in the above-described embodiment will be denoted by the same reference numerals.

【0033】図3に示したものは、基本原理は図1に示
したものと同様であるので上記の窒素酸化物濃度検出手
段38,ハイドロカーボン濃度検出手段40は記載して
いないが、上記実施形態と同様に配設すれば同様の作用
効果が奏せられることは言うまでもない。従って、上記
実施形態と相違する点について説明すると、本応用例は
上記実施形態に対して窒素酸化物濃度検出手段38の下
流側の排ガス通路32を介して上記メタノールを酸化せ
しめる酸化触媒60を配設したものである。
Since the basic principle of the one shown in FIG. 3 is the same as that shown in FIG. 1, the nitrogen oxide concentration detecting means 38 and the hydrocarbon concentration detecting means 40 are not described, but the above-mentioned embodiment is carried out. It is needless to say that the same operational effect can be obtained by arranging in the same manner as the form. Therefore, to explain the difference from the above embodiment, the present application example has an oxidation catalyst 60 which oxidizes the methanol via the exhaust gas passage 32 on the downstream side of the nitrogen oxide concentration detecting means 38 in the embodiment. It was set up.

【0034】本応用例は上記のように構成されているの
で、エンジン30からの排ガスを図1で説明したよう
に、光触媒50で排ガス中のCO2 とH2 Oとにより上
記のようにメタノール(CH3 OH)を生成し、この生
成されたメタノールを還元剤として還元触媒36に流入
せしめ、この生成されたメタノールで上記排ガス中のN
X を還元して、NOX +CH3 OH→N2 +H2 O+
COX のようにNOX を除去するものである。
Since this application example is configured as described above, the exhaust gas from the engine 30 is converted to methanol by the photocatalyst 50 by CO 2 and H 2 O in the exhaust gas as described above with reference to FIG. (CH 3 OH) is produced, and the produced methanol is caused to flow into the reduction catalyst 36 as a reducing agent, and the produced methanol is used to produce N in the exhaust gas.
O x is reduced to NO x + CH 3 OH → N 2 + H 2 O +
It removes NO x like CO x .

【0035】更に、還元触媒36でNOX が除去された
排ガス中には余ったメタノールが存在しているが、還元
触媒36の下流側に配設されている酸化触媒60で次の
化学式、CH3 OH+O2 →CO2 +H2 Oのように酸
化し、無害なCO2 とするものである。従って、本実施
形態の応用例では、エンジンの排ガス中の成分から生成
されるメタノール(CH3 OH)を還元剤とした時、上
記銀系、アルミナ系等の還元触媒等において、高いNO
x の浄化率が得られ、軽油、及びHC等の添加の必要が
なく運転コストを低減することができる。
Further, although the exhaust gas from which NO X has been removed by the reduction catalyst 36 has excess methanol, the oxidation catalyst 60 disposed on the downstream side of the reduction catalyst 36 has the following chemical formula: CH 3 OH + O 2 → CO 2 + H 2 O is oxidized to form harmless CO 2 . Therefore, in the application example of the present embodiment, when methanol (CH 3 OH) generated from components in the exhaust gas of the engine is used as the reducing agent, high NO in the above-mentioned silver-based, alumina-based reducing catalyst and the like.
The purification rate of x can be obtained, and the operation cost can be reduced without the need to add light oil, HC and the like.

【0036】又、前記した図1に示す本発明の実施形態
の還元触媒36の下流側に酸化触媒60を配設した場合
及び上記応用例の場においても、上記酸化触媒60に電
気ヒータ62を配設しておけば、エンジン30の始動時
のような排ガス温度が低温時におけるNOX とCO2
少なくHCが多い状態の時に、温度検出手段64を酸化
触媒60の近傍のいずれかの適宜部位に設けて上記温度
を検出し、該温度に応じた出力信号を図1に示した制御
手段45に伝達せしめ、電気ヒータ62をON,OFF
して低温時に酸化触媒60を通過する排ガス中のHCに
対して酸化を促進するようにでき、低温時のHCを効果
的に除去することができる。
Also, when the oxidation catalyst 60 is disposed downstream of the reduction catalyst 36 of the embodiment of the present invention shown in FIG. 1 described above and in the case of the above application example, the electric heater 62 is attached to the oxidation catalyst 60. By disposing the temperature detecting means 64 in the vicinity of the oxidation catalyst 60 when the exhaust gas temperature is low and the amount of NO x and CO 2 is small and the amount of HC is large when the engine 30 is started. The electric heater 62 is provided at a part to detect the temperature, and an output signal corresponding to the temperature is transmitted to the control means 45 shown in FIG.
As a result, it is possible to accelerate the oxidation of HC in the exhaust gas passing through the oxidation catalyst 60 at low temperature, and it is possible to effectively remove HC at low temperature.

【0037】又、排ガス中の煤を除去したい場合には、
上記の本発明の実施形態及び応用例のどちらの場合で
も、図4に示したようにエンジン30と光触媒34との
間に、上記煤を除去するためのトラップフィルタ70を
配設すればよい。従って、本発明はエンジンの排ガスの
低温時から中・高温時に渡って、上記排ガスを浄化する
ことができるものである。
When it is desired to remove the soot in the exhaust gas,
In either of the above-described embodiments and application examples of the present invention, a trap filter 70 for removing the soot may be arranged between the engine 30 and the photocatalyst 34 as shown in FIG. Therefore, the present invention is capable of purifying the exhaust gas from a low temperature to a medium / high temperature of the exhaust gas of the engine.

【0038】前記した従来装置のように、特別に設けた
軽油,HC,CH3 OHを上記排ガス中に噴射したりす
る機器を必要としたり、又上記の軽油,HC,CH3
Hの貯蔵用タンクや上記軽油の場合には上記した特別な
軽油タンクを設けない場合には燃料用の軽油タンクを増
大しりする必要がないので、コストも安く、それらの日
常の整備管理も全く必要としない。
Like the above-mentioned conventional apparatus, a device for injecting light oil, HC, CH 3 OH, which is specially provided, into the exhaust gas is required, or the above light oil, HC, CH 3 O is used.
In the case of the H storage tank or the above diesel oil, it is not necessary to increase the diesel oil tank for fuel unless the above-mentioned special diesel oil tank is provided. Therefore, the cost is low and the daily maintenance and management of them is completely unnecessary. do not need.

【0039】しかも本発明は、エンジンの排ガス中の成
分から生成されるメタノール(CH 3 OH)を還元剤と
するので、銀系、アルミナ系触媒等において、高いNO
x 浄化率が得られ、上記のように軽油、及びHC等の添
加の必要がなく運転コストを低減することができる。
又、運転条件によって、NOx 及びHCの排ガス中の濃
度が異なるが、窒素酸化物濃度検出手段38及びハイド
ロカーボン濃度検出手段40で濃度を検出し、光触媒3
4に与えるエネルギを調整することにより、反応に必要
な適量のCH3OHを生成することができるため、エネ
ルギを節約が可能で余剰のCH3 OHが上記排気系外に
排出されることが低減できる。
Moreover, the present invention is directed to the formation in the exhaust gas of the engine.
Methanol (CH ThreeOH) as a reducing agent
Therefore, high NO in silver-based and alumina-based catalysts, etc.
xA purification rate is obtained, and as described above, addition of light oil, HC, etc.
It is possible to reduce the operating cost without the need to add.
Also, depending on the operating conditions, NOxAnd HC concentration in exhaust gas
The nitrogen oxide concentration detecting means 38 and the hide are different in degree.
The photocatalyst 3 detects the concentration with the carbon concentration detector 40.
Necessary for reaction by adjusting the energy given to 4
Proper amount of CHThreeSince OH can be generated,
It is possible to save Rugi and surplus CHThreeOH is outside the exhaust system
Emissions can be reduced.

【0040】又、本発明では、H2 Oを分解するので、
還元触媒36に及ぼすH2 Oの悪影響が少ない。又、上
記排ガス中には高濃度のCO2 、H2 Oが存在するた
め、光触媒50における転化率が多少低くても還元剤と
して十分な量が期待できる。そして、従来のエンジン3
0又は車両をそのまま使用できるもので、その作用効果
は従来のエンジンでは、得ることができないものであ
る。
Further, in the present invention, since H 2 O is decomposed,
The adverse effect of H 2 O on the reduction catalyst 36 is small. Further, since high concentrations of CO 2 and H 2 O exist in the exhaust gas, a sufficient amount as a reducing agent can be expected even if the conversion rate in the photocatalyst 50 is somewhat low. And the conventional engine 3
0 or the vehicle can be used as it is, and its action and effect cannot be obtained by the conventional engine.

【0041】[0041]

【発明の効果】以上詳述したように、請求項1記載の本
発明の内燃機関の排ガス浄化装置によれば、内燃機関の
排ガス通路に上流側から順に、光触媒及び還元触媒が配
設され、上記光触媒で上記排ガス中からメタノール(C
3 OH)を生成し、この生成されたメタノールを上記
還元触媒の還元剤として使用し該NOX を除去できるよ
うに構成されているので、この生成メタノール(CH3
OH)が還元触媒剤として、下流側の還元触媒に流れ、
上記排ガス中のNOX と反応せしめて、NOxを高い効
率で除去することができるものである。
As described above in detail, according to the exhaust gas purifying apparatus for an internal combustion engine of the present invention as set forth in claim 1, the photocatalyst and the reducing catalyst are arranged in the exhaust gas passage of the internal combustion engine in order from the upstream side, Methanol (C
H 3 OH) generates, since the generated methanol is configured to remove the NO X was used as the reducing agent in the reducing catalyst, the methanol produced (CH 3
OH) flows as a reduction catalyst to the reduction catalyst on the downstream side,
By reacting with NO X in the exhaust gas, it is capable of removing NOx at a high efficiency.

【0042】請求項2記載の本発明の内燃機関の排ガス
浄化装置によれば、請求項1記載の構成において、上記
還元触媒が配設されている排ガス通路部分よりも下流側
の排ガス通路部分に、酸化触媒が配設されているので、
上記還元触媒でNOX が除去された排ガス中に余ったメ
タノールが存在している場合、上記還元触媒の下流側に
配設されている酸素触媒で酸化し、無害なCO2 とする
ことができる。
According to the exhaust gas purifying apparatus for an internal combustion engine of the present invention as set forth in claim 2, in the structure as set forth in claim 1, the exhaust gas passage portion on the downstream side of the exhaust gas passage portion in which the reduction catalyst is disposed. , Because the oxidation catalyst is installed,
When there is excess methanol in the exhaust gas from which NO X has been removed by the reduction catalyst, it can be oxidized by an oxygen catalyst arranged downstream of the reduction catalyst to produce harmless CO 2. .

【0043】請求項3記載の本発明の内燃機関の排ガス
浄化装置によれば、内燃機関の排ガス通路に上流側から
順に、光触媒及び還元触媒が配設されると共に、該光触
媒が配設されている排ガス通路部分よりも下流側の排ガ
ス通路部分における排ガス中の窒素酸化物濃度を検出す
る窒素酸化物濃度検出手段と、該光触媒に光を照射する
光源と、該光触媒の下流側の該窒素酸化物濃度検出手段
で検出された検出結果に基づいて、該光源における該光
触媒への光量を制御する制御手段とを備え、上記光触媒
で上記排ガス中からメタノール(CH3 OH)を生成
し、この生成されたメタノールを上記還元触媒の還元剤
として使用することで該NOX を除去できるように構成
されているので、上記光触媒で上記排ガス中からメタノ
ール(CH 3 OH)を生成せしめ、この生成メタノール
(CH3 OH)が還元触媒剤として、下流側の還元触媒
に流れ、上記排ガス中のNOX と反応せしめて、NOx
を高い効率で除去することができるものである。
Exhaust gas from the internal combustion engine of the present invention according to claim 3
According to the purifying device, the exhaust gas passage of the internal combustion engine from the upstream side
The photocatalyst and the reduction catalyst are arranged in this order, and
Exhaust gas on the downstream side of the exhaust gas passage where the medium is placed
The concentration of nitrogen oxides in the exhaust gas in the exhaust passage is detected.
And means for irradiating the photocatalyst with light.
Light source and means for detecting the concentration of nitrogen oxides downstream of the photocatalyst
The light in the light source based on the detection result detected in
And a control means for controlling the amount of light to the catalyst,
From the above exhaust gas to methanol (CHThreeOH) is generated
The produced methanol is used as a reducing agent for the reduction catalyst.
By using as NOXConfigured to remove
Therefore, the photocatalyst is used to
(CH ThreeOH) is produced, and this produced methanol
(CHThreeOH) as the reduction catalyst, and the reduction catalyst on the downstream side
To NO in the exhaust gasXReact with NOx
Can be removed with high efficiency.

【0044】又、上記窒素酸化物濃度検出手段により検
出された上記NOX 量を浄化するためのメタノールの必
要量を上記制御手段で計算し、且つ上記光源の作動時間
を制御するので、上記光源のエネルギーを最低限に抑え
ることができる。請求項4記載の本発明の内燃機関の排
ガス浄化装置によれば、内燃機関の排ガス通路に上流側
から順に、光触媒及び還元触媒が配設されると共に、該
光触媒が配設されている排ガス通路部分よりも下流側の
排ガス通路部分における排ガス中の窒素酸化物濃度を検
出する窒素酸化物濃度検出手段と、該光触媒が配設され
ている排ガス通路部分よりも下流側の排ガス通路部分に
おける排ガス中のハイドロカーボン濃度検出手段と、該
光触媒に光を照射する光源と、該光触媒の下流側の該窒
素酸化物濃度検出手段及び該ハイドロカーボン濃度検出
手段で検出された検出結果に基づいて、該光源における
該光触媒への光量を制御する制御手段とを備え、上記光
触媒で上記排ガス中からメタノール(CH3 OH)を生
成し、この生成されたメタノールを上記還元触媒の還元
剤として使用することで該NOX が除去できるように構
成されているので、上記光触媒で上記排ガス中からメタ
ノール(CH3 OH)が生成せしめ、この生成メタノー
ル(CH3 OH)が還元触媒剤として、下流側の還元触
媒に流れ、上記排ガス中のNOX と反応せしめて、NO
xを高い効率で除去することができるものである。
Further, the necessary amount of methanol for purifying the NO x amount detected by the nitrogen oxide concentration detecting means is calculated by the controlling means, and the operating time of the light source is controlled, so that the light source is controlled. Can minimize the energy of. According to the exhaust gas purifying apparatus for an internal combustion engine of the present invention as set forth in claim 4, a photocatalyst and a reduction catalyst are arranged in this order from the upstream side in the exhaust gas passage of the internal combustion engine, and the exhaust gas passage in which the photocatalyst is arranged. Nitrogen oxide concentration detecting means for detecting the nitrogen oxide concentration in the exhaust gas in the exhaust gas passage portion downstream of the portion, and the exhaust gas in the exhaust gas passage portion downstream of the exhaust gas passage portion where the photocatalyst is arranged The hydrocarbon concentration detecting means, a light source for irradiating the photocatalyst with light, and the light source based on the detection results detected by the nitrogen oxide concentration detecting means and the hydrocarbon concentration detecting means on the downstream side of the photocatalyst. and control means for controlling the amount of light to the photocatalyst in, generates methanol (CH 3 OH) from the flue gas in the photocatalyst, the generated methanol Since serial The NO X by using as a reducing agent for the reduction catalyst is configured to be removed, methanol from the flue gas in the photocatalyst (CH 3 OH) is yielding, this product methanol (CH 3 OH) As a reduction catalyst flows to the reduction catalyst on the downstream side, reacts with NO X in the exhaust gas, and NO
x can be removed with high efficiency.

【0045】又、光触媒を通過後、窒素酸化物濃度検出
手段及びハイドロカーボン濃度検出手段で検出した上記
排ガス中のNOX 及びHCの濃度の比率でNOX の浄化
率をHCの量を制御手段で計算して、その値に相当する
出力信号が出力され、上記光量が調整されるので、光源
のエネルギを最低限に抑えることができる。請求項5記
載の本発明の内燃機関の排ガス浄化装置によれば、請求
項1,3,4記載の構成において、該光触媒が二酸化チ
タン系の触媒として構成されると共に、該還元触媒が銀
系,アルミナ系の触媒として構成されているので、エン
ジンからの排ガスが排ガス通路を介して光触媒に入ると
光源からの光を受けて、光触媒の二酸化チタン(TiO
2 )と排ガス中のCO2 とH2 Oとが作用してメタノー
ル(CH3 OH)が生成される。
Further, after passing through the photocatalyst, the NO x purification rate and the amount of HC are controlled by the ratio of the concentrations of NO x and HC in the exhaust gas detected by the nitrogen oxide concentration detecting means and the hydrocarbon concentration detecting means. Since the output signal corresponding to the calculated value is output and the light amount is adjusted, the energy of the light source can be minimized. According to the exhaust gas purifying apparatus for an internal combustion engine of the present invention as set forth in claim 5, in the configuration of claims 1, 3 and 4, the photocatalyst is configured as a titanium dioxide-based catalyst and the reduction catalyst is a silver-based catalyst. , Since it is configured as an alumina-based catalyst, when exhaust gas from the engine enters the photocatalyst through the exhaust gas passage, it receives light from a light source, and the titanium dioxide (TiO 2) of the photocatalyst is received.
2 ) and CO 2 and H 2 O in the exhaust gas act to generate methanol (CH 3 OH).

【0046】この生成メタノール(CH3 OH)が還元
触媒剤として、下流側の銀系,アルミナ系で形成された
還元触媒に流れ、上記排ガス中のNOX と反応せしめて
NOxを高い効率で除去することができるものである。
The produced methanol (CH 3 OH) flows as a reduction catalyst into the downstream silver-based and alumina-based reducing catalyst and reacts with NO x in the exhaust gas to remove NO x with high efficiency. Is what you can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態を模式的に示した概要説明図
である。
FIG. 1 is a schematic explanatory view schematically showing an embodiment of the present invention.

【図2】図1の光触媒の構造を模式的に示した概略説明
図であり、(A)は図1の光触媒の断面を示す概略説明
図、(B)は図2(A)の2B−2B線に沿う概略断面
図であり、左半分のみ示す。
2 is a schematic explanatory view schematically showing the structure of the photocatalyst of FIG. 1, (A) is a schematic explanatory view showing a cross section of the photocatalyst of FIG. 1, (B) is 2B- of FIG. 2 (A). It is a schematic sectional drawing which follows the 2B line, and shows only a left half.

【図3】本発明の実施形態の応用例を模式的に示す図1
と同様の状態を示す説明図である。
FIG. 3 is a schematic diagram showing an application example of an embodiment of the present invention.
It is explanatory drawing which shows the state similar to.

【図4】本発明の実施形態のその他の応用例を模式的に
示す図3と同様の状態を示す概略説明図である。
FIG. 4 is a schematic explanatory view showing a state similar to FIG. 3 schematically showing another application example of the embodiment of the present invention.

【図5】従来例の自動車用排ガス浄化装置を示す説明図
である。
FIG. 5 is an explanatory view showing a conventional exhaust gas purifying apparatus for automobiles.

【符号の説明】[Explanation of symbols]

30 エンジン 32 排ガス通路 34 光触媒 36 還元触媒 38 窒素酸化物濃度検出手段 40 ハイドロカーボン濃度検出手段 44 光源 45 制御手段 50 光触媒本体 52 ワイヤメッシュ型ガスケット 54 ケーシング 54a 触媒室 54b 光源室 54c 支持部 54d 支持部 54e 間隙 54f 開口 60 酸化触媒 58 光透過部材 60 酸化触媒 62 電気ヒーター 64 温度検出手段 70 トラップフィルタ 30 engine 32 exhaust gas passage 34 photocatalyst 36 reduction catalyst 38 nitrogen oxide concentration detection means 40 hydrocarbon concentration detection means 44 light source 45 control means 50 photocatalyst body 52 wire mesh type gasket 54 casing 54a catalyst chamber 54b light source chamber 54c support portion 54d support portion 54e Gap 54f Opening 60 Oxidation catalyst 58 Light transmission member 60 Oxidation catalyst 62 Electric heater 64 Temperature detection means 70 Trap filter

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排ガス通路に上流側から順
に、光触媒及び還元触媒が配設され、上記光触媒で上記
排ガス中からメタノール(CH3 OH)を生成し、この
生成されたメタノールを上記還元触媒の還元剤として使
用し該NOX を除去できるように構成されていることを
特徴とする、内燃機関の排ガス浄化装置。
1. A photocatalyst and a reduction catalyst are arranged in this order from the upstream side in an exhaust gas passage of an internal combustion engine, and the photocatalyst produces methanol (CH 3 OH) from the exhaust gas, and the produced methanol is reduced by the reduction. An exhaust gas purifying apparatus for an internal combustion engine, characterized by being used as a reducing agent for a catalyst and capable of removing the NO X.
【請求項2】 該還元触媒が配設されている排ガス通路
部分よりも下流側の排ガス通路部分に、酸化触媒が配設
されたことを特徴とする、請求項1記載の内燃機関の排
ガス浄化装置。
2. An exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein an oxidation catalyst is provided in an exhaust gas passage portion downstream of the exhaust gas passage portion in which the reduction catalyst is provided. apparatus.
【請求項3】 内燃機関の排ガス通路に上流側から順
に、光触媒及び還元触媒が配設されると共に、 該光触媒が配設されている排ガス通路部分よりも下流側
の排ガス通路部分における排ガス中の窒素酸化物濃度を
検出する窒素酸化物濃度検出手段と、 該光触媒に光を照射する光源と、 該光触媒の下流側の該窒素酸化物濃度検出手段で検出さ
れた検出結果に基づいて、該光源における該光触媒への
光量を制御する制御手段とを備え、 上記光触媒で上記排ガス中からメタノール(CH3
H)を生成し、この生成されたメタノールを上記還元触
媒の還元剤として使用することで該NOX を除去できる
ように構成されていることを特徴とする、内燃機関の排
ガス浄化装置。
3. A photocatalyst and a reducing catalyst are arranged in this order from the upstream side in the exhaust gas passage of the internal combustion engine, and the exhaust gas in the exhaust gas passage portion downstream of the exhaust gas passage portion in which the photocatalyst is arranged. A nitrogen oxide concentration detecting means for detecting the nitrogen oxide concentration, a light source for irradiating the photocatalyst with light, and the light source based on the detection result detected by the nitrogen oxide concentration detecting means on the downstream side of the photocatalyst. and control means for controlling the amount of light to the photocatalyst in methanol from the flue gas in the photocatalyst (CH 3 O
H) is produced, and the produced methanol is used as a reducing agent for the reduction catalyst to remove the NO x , and an exhaust gas purifying apparatus for an internal combustion engine.
【請求項4】 内燃機関の排ガス通路に上流側から順
に、光触媒及び還元触媒が配設されると共に、 該光触媒が配設されている排ガス通路部分よりも下流側
の排ガス通路部分における排ガス中の窒素酸化物濃度を
検出する窒素酸化物濃度検出手段と、 該光触媒が配設されている排ガス通路部分よりも下流側
の排ガス通路部分における排ガス中のハイドロカーボン
濃度検出手段と、 該光触媒に光を照射する光源と、 該光触媒の下流側の該窒素酸化物濃度検出手段及び該ハ
イドロカーボン濃度検出手段で検出された検出結果に基
づいて、該光源における該光触媒への光量を制御する制
御手段とを備え、 上記光触媒で上記排ガス中からメタノール(CH3
H)を生成し、この生成されたメタノールを上記還元触
媒の還元剤として使用することで該NOX を除去できる
ように構成されていることを特徴とする、内燃機関の排
ガス浄化装置。
4. A photocatalyst and a reduction catalyst are arranged in this order from the upstream side in the exhaust gas passage of the internal combustion engine, and the exhaust gas in the exhaust gas passage portion downstream of the exhaust gas passage portion in which the photocatalyst is arranged. A nitrogen oxide concentration detecting means for detecting the nitrogen oxide concentration, a hydrocarbon concentration detecting means in the exhaust gas in the exhaust gas passage portion downstream of the exhaust gas passage portion where the photocatalyst is arranged, and a light for the photocatalyst. A light source for irradiating, and a control means for controlling the amount of light to the photocatalyst in the light source based on the detection result detected by the nitrogen oxide concentration detecting means and the hydrocarbon concentration detecting means on the downstream side of the photocatalyst. The exhaust gas is mixed with methanol (CH 3 O 2) by the photocatalyst.
H) is produced, and the produced methanol is used as a reducing agent for the reduction catalyst to remove the NO x , and an exhaust gas purifying apparatus for an internal combustion engine.
【請求項5】 該光触媒が二酸化チタン系の触媒として
構成されるとともに、該還元触媒が銀系,アルミナ系の
触媒として構成されたことを特徴とする、請求項1,
3,4のいずれかに記載の内燃機関の排ガス浄化装置。
5. The photocatalyst is configured as a titanium dioxide-based catalyst, and the reduction catalyst is configured as a silver-based or alumina-based catalyst.
The exhaust gas purifying apparatus for an internal combustion engine according to any one of 3 and 4.
JP09719396A 1996-04-18 1996-04-18 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP3755185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09719396A JP3755185B2 (en) 1996-04-18 1996-04-18 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09719396A JP3755185B2 (en) 1996-04-18 1996-04-18 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH09287435A true JPH09287435A (en) 1997-11-04
JP3755185B2 JP3755185B2 (en) 2006-03-15

Family

ID=14185759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09719396A Expired - Fee Related JP3755185B2 (en) 1996-04-18 1996-04-18 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3755185B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000071867A1 (en) * 1999-05-20 2000-11-30 Institute For Advanced Engineering Purification system of exhaust gas of internal combustion engine
WO2001024914A1 (en) * 1999-10-07 2001-04-12 Volkswagen Aktiengesellschaft Arrangement and method for controlling photochemical exhaust gas cleaning equipment of internal combustion engines
KR100303977B1 (en) * 1998-10-20 2001-12-17 김덕중 Method and apparatus for reducing harmful exhaust gas of vehicle
EP1541822A2 (en) 2003-12-09 2005-06-15 General Electric Company Method and system for radiation-based reduction of particulate matter
EP1719883A1 (en) * 2005-05-07 2006-11-08 Neophotech Inc. System and method for purifying exhaust gas of diesel engine
JP2011179440A (en) * 2010-03-02 2011-09-15 Isuzu Motors Ltd Exhaust emission purifying control equipment
GB2513223A (en) * 2014-02-07 2014-10-22 Daimler Ag Method for treatment of an exhaust gas from an engine and exhaust gas system
JP2019122908A (en) * 2018-01-15 2019-07-25 国立研究開発法人 海上・港湾・航空技術研究所 Treatment method of unburned methane gas and unburned methane gas treatment device
KR102155628B1 (en) * 2019-05-14 2020-09-14 이덕기 Nitrogen oxide and particulate matter removal device in semiconductor manufacturing process
JP2021148041A (en) * 2020-03-18 2021-09-27 本田技研工業株式会社 Exhaust emission control system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101635780B1 (en) * 2015-04-27 2016-07-04 금오공과대학교 산학협력단 Urea and metanol conversion apparatus with photosynthetic of carbon dioxide and nitrogen oxide including exhaust gas
KR101670961B1 (en) 2016-08-16 2016-10-31 오원춘 Carbon dioxide capture method using a Alcohol converting system
KR101686574B1 (en) * 2016-08-16 2017-01-02 오원춘 Carbon dioxide capture system using a Alcohol converting apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100303977B1 (en) * 1998-10-20 2001-12-17 김덕중 Method and apparatus for reducing harmful exhaust gas of vehicle
WO2000071867A1 (en) * 1999-05-20 2000-11-30 Institute For Advanced Engineering Purification system of exhaust gas of internal combustion engine
US7070744B2 (en) 1999-05-20 2006-07-04 Institute For Advanced Engineering Purification system of exhaust gases of an internal combustion engine
WO2001024914A1 (en) * 1999-10-07 2001-04-12 Volkswagen Aktiengesellschaft Arrangement and method for controlling photochemical exhaust gas cleaning equipment of internal combustion engines
EP1541822A2 (en) 2003-12-09 2005-06-15 General Electric Company Method and system for radiation-based reduction of particulate matter
EP1541822A3 (en) * 2003-12-09 2010-01-06 General Electric Company Method and system for radiation-based reduction of particulate matter
EP1719883A1 (en) * 2005-05-07 2006-11-08 Neophotech Inc. System and method for purifying exhaust gas of diesel engine
JP2011179440A (en) * 2010-03-02 2011-09-15 Isuzu Motors Ltd Exhaust emission purifying control equipment
GB2513223A (en) * 2014-02-07 2014-10-22 Daimler Ag Method for treatment of an exhaust gas from an engine and exhaust gas system
JP2019122908A (en) * 2018-01-15 2019-07-25 国立研究開発法人 海上・港湾・航空技術研究所 Treatment method of unburned methane gas and unburned methane gas treatment device
KR102155628B1 (en) * 2019-05-14 2020-09-14 이덕기 Nitrogen oxide and particulate matter removal device in semiconductor manufacturing process
JP2021148041A (en) * 2020-03-18 2021-09-27 本田技研工業株式会社 Exhaust emission control system

Also Published As

Publication number Publication date
JP3755185B2 (en) 2006-03-15

Similar Documents

Publication Publication Date Title
US7316106B2 (en) Method for processing combustion exhaust gas containing soot particles and NOx
US6775972B2 (en) Purification of exhaust gases
EP2230002B1 (en) NOx reduction catalyst and exhaust system using the same
JP4507901B2 (en) Exhaust gas purification system and exhaust gas purification method thereof
JP3755185B2 (en) Exhaust gas purification device for internal combustion engine
EP1719883A1 (en) System and method for purifying exhaust gas of diesel engine
WO2000021646A1 (en) System and method for purifying exhaust gases
US8240139B2 (en) Method for purifying nitrogen oxide in exhaust gas and exhaust system operating the same
US20080028754A1 (en) Methods and apparatus for operating an emission abatement assembly
KR20110014524A (en) Exhaust gas purifing apparatus
JP2006242020A (en) Exhaust emission control device
JP2010242515A (en) Exhaust emission control system and exhaust emission control method
KR20110023158A (en) Exhaust system
JP2007009718A (en) Exhaust emission control device
JP5676093B2 (en) Exhaust system
US20060048506A1 (en) System for processing combustion exhaust gas containing soot particles and NOx
KR101091633B1 (en) Denitrification catalyst and exhaust system using the same
KR100763411B1 (en) Catalytic converter with multi-arrangement type for diesel engine
JP2001140630A (en) Exhaust emission control device for internal combustion engine
JP2001029746A (en) Apparatus for occluding and removing nitrogen oxide
US20100037591A1 (en) Method and Device for Purifying an Exhaust Gas Flow of a Lean-Burning Internal Combustion Engine
KR200278523Y1 (en) NOx Reduction System using Photocatalyst Reactor
US11686236B1 (en) Device for the reduction of ammonia and nitrogen oxides emissions
JP5188477B2 (en) Exhaust purification device
KR100911586B1 (en) CO reduction apparatus for SCR

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees