JPH092827A - Production of glass lens - Google Patents

Production of glass lens

Info

Publication number
JPH092827A
JPH092827A JP15456595A JP15456595A JPH092827A JP H092827 A JPH092827 A JP H092827A JP 15456595 A JP15456595 A JP 15456595A JP 15456595 A JP15456595 A JP 15456595A JP H092827 A JPH092827 A JP H092827A
Authority
JP
Japan
Prior art keywords
glass lens
forming
film
molding material
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15456595A
Other languages
Japanese (ja)
Inventor
Shinichi Nishikawa
愼一 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP15456595A priority Critical patent/JPH092827A/en
Publication of JPH092827A publication Critical patent/JPH092827A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B40/00Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it
    • C03B40/02Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it by lubrication; Use of materials as release or lubricating compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PURPOSE: To provide a method for producing a glass lens aiming at the prevention of a melt adhesion to a forming surface, a cloudiness and a crack by press forming a material for glass lens forming on which surface where a functional surface is formed, a thin membrane having a peeling off function is formed, after removing the part where the thin membrane is not formed before the press forming. CONSTITUTION: This method for producing a glass lens is constituted by forming a thin membrane material having 10-1000Å thickness and a peeling off function on the surface of a material for glass lens forming prefabricated to the shape approximately resembling to a finished shape. At that time, since a peripheral part for supporting the forming material must be held in the membrane forming device, a non-membrane-coated part where no membrane is formed at the peripheral held part, is produced. After removing this part where no membrane is formed, by grinding to get rid of the part where the material for forming and the surface of the die directly come into contact with each other, the press forming is performed and the melt adhesion to the surface of the die on the surface of the material for the forming, etc., are totally prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、加圧成形後に精密研磨
加工を要しないガラスレンズの製造方法に関する。さら
に詳しくは、レンズ等の光学素子の加圧成形において、
ガラスレンズ成形用素材と型表面との融着を防止し、曇
りや割れのない良好なガラスレンズを製造することので
きる方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a glass lens which does not require precision polishing after pressure molding. More specifically, in pressure molding of optical elements such as lenses,
The present invention relates to a method capable of preventing fusion between a glass lens molding material and a mold surface and producing a good glass lens free from fogging and cracks.

【0002】[0002]

【従来の技術】レンズ等の光学素子を簡易に生産性良く
成形する方法として、リヒートプレス法が注目されてい
る。リヒートプレス法は、予め目的のガラスレンズの形
状に溶融固化することにより近似させたガラス素材を成
形用型内に投入し、型内を加熱し、該ガラス素材が成形
可能な状態になったところでこれを加圧し、成形された
ガラスレンズが型内に保持された状態でこれを冷却し、
ガラスレンズを成形する方法である。
2. Description of the Related Art The reheat press method has attracted attention as a method for easily molding an optical element such as a lens with high productivity. The reheat press method is a method in which a glass material that has been approximated by melting and solidifying it into a desired glass lens shape in advance is put into a molding die, and the inside of the mold is heated, where the glass material becomes a moldable state. Press this and cool it while the molded glass lens is held in the mold,
This is a method of molding a glass lens.

【0003】ところが、このような加圧成形法によって
ガラスレンズを成形した場合、ガラスレンズ成形用素材
とこれを加圧成形する型の表面とが高温で比較的長時間
密着した状態で接触するため、これらの面で反応や熱に
よる変質および/または融着(以下、融着等という。)
が起こり、ガラスレンズ表面に割れや曇りが発生し、良
好な光学レンズを得ることはできなかった。
However, when a glass lens is molded by such a pressure molding method, the glass lens molding material and the surface of the mold for pressure molding the glass lens are in contact with each other at a high temperature for a relatively long period of time. In these respects, alteration and / or fusion due to reaction or heat (hereinafter referred to as fusion, etc.)
Occurred, and the glass lens surface was cracked or fogged, and a good optical lens could not be obtained.

【0004】かかる融着等を防止するために、特公平3
−53260号公報ではガラスレンズ成形用素材の機能
面が成形される面に離型機能を有する薄膜を加圧成形に
先立って設けておき、成形後に該薄膜を除去する方法が
開示されている。
In order to prevent such fusion, etc.
JP-A-53260 discloses a method in which a thin film having a releasing function is provided on a surface of a glass lens molding material on which a functional surface is molded, prior to pressure molding, and the thin film is removed after molding.

【0005】また、特公昭62−50413号公報では
ガラスレンズ成形用素材の機能面が成形される面に離型
機能を有し、かつ、除去する必要のない反射防止膜を構
成し得る薄膜を加圧成形に先立って設けておく成形方法
が開示されている。
Further, Japanese Patent Publication No. 62-50413 discloses a thin film which has a releasing function on the surface on which the functional surface of the glass lens molding material is molded and which can constitute an antireflection film which does not need to be removed. A molding method provided prior to the pressure molding is disclosed.

【0006】しかしながら、いずれの場合においても薄
膜のガラスレンズ成形用素材への成膜方法として真空蒸
着法、イオンプレーティング法またはスパッタリング法
等が用いられているため、効率的にガラスレンズを生産
しようとした場合、これらの成膜法における装置内の該
成形用素材を支える保持具との関係上、どうしても該成
形用素材表面おいて、外周部に保持具と重なる部分、つ
まり該薄膜の形成されない部分(以下、非成膜部分とい
う。)が生じることを回避することはできない。
However, in any case, since a vacuum deposition method, an ion plating method, a sputtering method, or the like is used as a method for forming a thin film on a material for forming a glass lens, it is attempted to efficiently produce a glass lens. In such a case, due to the relationship with the holder that supports the forming material in the apparatus in these film forming methods, the portion of the surface of the forming material that overlaps the holder, that is, the thin film is not formed. Occurrence of a portion (hereinafter referred to as a non-film formation portion) cannot be avoided.

【0007】このため、加圧成形時に該成形用素材表面
における外周部の非成膜部分が型表面と直接的に接触し
て融着等を起こし、割れや曇りのない良好な品質のガラ
スレンズを得ることはできなかった。
Therefore, during pressure molding, the non-film-forming portion of the outer peripheral portion of the surface of the molding material comes into direct contact with the mold surface to cause fusion and the like, and a glass lens of good quality without cracking or fogging. Couldn't get

【0008】また、非成膜部分をできるだけなくすため
に、イオンプレーティング法による成膜時に蒸着材料の
周り込みを利用したり、保持具を成膜時に複雑に回転さ
せたり、成形用素材の厚みによる端面のみで保持しよう
とする試みがなされてきたが、いずれの場合もコストア
ップとなり量産性に乏しい結果となった。
Further, in order to eliminate the non-film-forming portion as much as possible, the surrounding of the vapor deposition material is used during the film formation by the ion plating method, the holder is complicatedly rotated during the film formation, and the thickness of the molding material is increased. Although an attempt has been made to hold only by the end face due to the above, in any case, the cost increased and the mass productivity was poor.

【0009】[0009]

【発明が解決しようとする課題】本発明は上記事情に鑑
みなされたものであり、ガラスレンズの加圧成形におい
て、ガラスレンズ成形用素材と型表面との融着等を該成
形用素材の全面にわたって防止し、曇りや割れのない良
好なガラスレンズを製造する方法を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and in the pressure molding of a glass lens, the fusion of the glass lens molding material and the mold surface, etc. is performed on the entire surface of the molding material. It is an object of the present invention to provide a method for producing a good glass lens which is free from fogging and cracks.

【0010】[0010]

【課題を解決するための手段】本発明は、機能面が成形
される面に離型機能を有する薄膜を成膜したガラスレン
ズ成形用素材を、加圧成形に先立って非成膜部分を除去
した後で、加圧成形することを特徴とするガラスレンズ
の製造方法に関する。
According to the present invention, a glass lens molding material having a thin film having a releasing function formed on a surface on which a functional surface is formed is removed from a non-film forming portion prior to pressure molding. After that, the present invention relates to a method for manufacturing a glass lens, which comprises performing pressure molding.

【0011】本発明に用いられるガラス材料としては特
に限定されず、通常ガラスレンズの原材料とされるも
の、例えば重フリントガラス、ホウケイ酸クラウンガラ
ス、フリントガラス、チタン含有フリントガラス、ラン
タン系フリントガラス、ランタン系クラウンガラス等の
光学ガラスを使用することができるが、本発明は変質ま
たは融着の起こりやすいガラス、転移温度の高いガラス
等に特に有効である。
The glass material used in the present invention is not particularly limited, and is usually used as a raw material for glass lenses, for example, heavy flint glass, borosilicate crown glass, flint glass, titanium-containing flint glass, lanthanum flint glass, Although an optical glass such as a lanthanum-based crown glass can be used, the present invention is particularly effective for a glass that easily undergoes alteration or fusion, a glass having a high transition temperature, and the like.

【0012】本発明では、かかるガラス材料をその後の
加圧成形により所望の仕上がり形状にすることのできる
基礎的な形状、例えば、仕上がり形状が凹または凸のレ
ンズである場合、容積がそれにほぼ等しい円板状、円柱
状、球面状または球形状、好ましくは仕上がり形状とほ
ぼ近似した形状に予備成形して、ガラスレンズ成形用素
材として用いる。
In the present invention, the basic shape that allows the glass material to be formed into a desired finished shape by subsequent pressure molding, for example, when the finished shape is a concave or convex lens, the volume is almost equal to that of the lens. It is preformed into a disk shape, a column shape, a spherical shape, or a spherical shape, preferably a shape that is approximately similar to the finished shape, and used as a glass lens molding material.

【0013】また、本発明では予備成形したかかるガラ
スレンズ成形用素材に従来と同様に離型機能を有する薄
膜を形成させ、その後の加圧成形時の融着等を防止す
る。
Further, in the present invention, a thin film having a releasing function is formed on the preformed glass lens molding material as in the conventional case, and fusion or the like during the subsequent pressure molding is prevented.

【0014】本発明の離型機能を有する薄膜の材料とし
ては、化学的に安定で成形用型の表面と融着等を起こさ
ず、また、非成膜部分を除去する際に剥離を起こさない
程度の強度とプリフォームとの密着性を有していれば特
に限定されず、例えば、フッ化マグネシウム、フッ化カ
ルシウム、フッ化セリウム、酸化セリウム、酸化アルミ
ニウム、酸化イットリウム、酸化チタン、酸化ランタ
ン、炭素、金、プラチナ、銀、クロム、または銅等を使
用することができる。
The material of the thin film having the releasing function of the present invention is chemically stable, does not cause fusion with the surface of the molding die, and does not cause peeling when removing the non-film-forming portion. It is not particularly limited as long as it has a degree of strength and adhesiveness with the preform, for example, magnesium fluoride, calcium fluoride, cerium fluoride, cerium oxide, aluminum oxide, yttrium oxide, titanium oxide, lanthanum oxide, Carbon, gold, platinum, silver, chrome, copper or the like can be used.

【0015】これら素材の薄膜を、上述のガラス材料か
らなる予備成形されたガラスレンズ成形用素材の表面上
に形成させるには、真空蒸着法、イオンプレーティング
法またはスパッタリング法等、通常よく薄膜の形成に用
いられる方法を使用することができる。該薄膜の膜厚は
膜材料により異なるが、通常、約10〜1000Åの広
い範囲で成形用素材と型表面との融着等を防止する離型
効果が十分に得られるため、該薄膜の成膜方法や成形に
より得られるガラスレンズの用途等を考慮して、適当な
膜厚を選択することができる。好ましくは10〜500
Åであり、さらに好ましくは20〜300Åである。膜
厚が10Å未満になると離型効果が得られなくなり、1
000Åを越えると該薄膜は加圧成形時に該成形用素材
の変形に耐えられなくなりヒビが生じてしまう。
In order to form a thin film of these materials on the surface of the preformed glass lens molding material made of the above-mentioned glass material, a vacuum deposition method, an ion plating method, a sputtering method or the like is usually used. The method used for forming can be used. Although the film thickness of the thin film varies depending on the film material, in general, a release effect of preventing fusion between the molding material and the mold surface can be sufficiently obtained in a wide range of about 10 to 1000Å. An appropriate film thickness can be selected in consideration of the film method and the use of the glass lens obtained by molding. Preferably 10-500
Å, more preferably 20 to 300 Å. When the film thickness is less than 10Å, the releasing effect cannot be obtained, and 1
When it exceeds 000Å, the thin film cannot withstand the deformation of the molding material during pressure molding, and cracks occur.

【0016】かかる方法によりガラスレンズ成形用素材
に薄膜を形成させる際、その成膜装置内では該成形用素
材の外周部はそれを支える保持部と重なるため、成膜さ
れた該成形用素材の外周部には薄膜が形成されていない
部分(非成膜部分)が生じる。
When a thin film is formed on the glass lens molding material by such a method, the outer peripheral portion of the molding material overlaps with the holding portion that supports it in the film forming apparatus. A part where the thin film is not formed (non-film forming part) occurs in the outer peripheral part.

【0017】具体的には、例えば、図3に示される装置
を用いて真空蒸着法によりガラスレンズ成形用素材
(1)に薄膜を形成させる場合、真空室(9)内に設置
されている保持具(8)は該成形用素材(1)を支え、
蒸発ボード(11)上から蒸発した薄膜材料(10)は
該成形用素材(1)に蒸着する。しかしながら、該成形
用素材(1)は落下しないように外周部で保持具(8)
に支えられているため、該成形用素材(1)表面におい
て保持具(8)と接触している部分は蒸発した薄膜材料
成分と接触できず、該薄膜は形成されない。このため、
非成膜部分が該成形用素材の外周部に生じる。
Specifically, for example, when a thin film is formed on the glass lens molding material (1) by a vacuum vapor deposition method using the apparatus shown in FIG. 3, a holding device installed in the vacuum chamber (9) is used. The tool (8) supports the molding material (1),
The thin film material (10) evaporated from the evaporation board (11) is vapor-deposited on the molding material (1). However, the holding material (8) is provided at the outer peripheral portion so that the molding material (1) does not fall.
Since it is supported by, the portion of the surface of the molding material (1) that is in contact with the holder (8) cannot contact the evaporated thin film material component, and the thin film is not formed. For this reason,
A non-film-forming portion occurs on the outer peripheral portion of the molding material.

【0018】図1(b)では、このような従来の成膜方
法によりガラスレンズ成形用素材(1)に薄膜(2)を
形成させた場合、該成形用素材の外周部は上述の如く保
持具と接触して、薄膜材料と接触できないために生じる
非成膜部分(4)を外周部に有するガラスレンズ成形用
素材(5)が例示されている。
In FIG. 1B, when the thin film (2) is formed on the glass lens molding material (1) by such a conventional film forming method, the outer peripheral portion of the molding material is held as described above. A glass lens molding material (5) having a non-film-forming portion (4) formed on the outer peripheral portion thereof due to contact with a tool and contact with a thin film material is exemplified.

【0019】加圧成形時の融着等を防止しようと、離型
機能を有する薄膜をガラスレンズ成形用素材に形成させ
ても、このように外周部における成膜が不十分であれ
ば、該外周部において該成形用素材と型表面は直接的に
接触するため、それらの間で融着等が起こり、ガラスレ
ンズ表面に割れや曇りが発生し、良好なガラスレンズを
得ることはできなくなる。
Even if a thin film having a releasing function is formed on a glass lens molding material in order to prevent fusion or the like at the time of pressure molding, if the film formation on the outer peripheral portion is insufficient, Since the molding material and the mold surface are in direct contact with each other in the outer peripheral portion, fusion or the like occurs between them, and the glass lens surface is cracked or clouded, so that a good glass lens cannot be obtained.

【0020】そこで本発明では、上述の従来の方法によ
り薄膜を形成させた非成膜部分を有するガラスレンズ成
形用素材において、加圧成形に先立って該薄膜が形成さ
れていない外周部の非成膜部分を除去し、該成形用素材
と型表面が直接的に接触する部分をなくすことにより、
該成形用素材表面における型表面との融着等を全面にわ
たって防止する。
Therefore, according to the present invention, in the glass lens molding material having the non-film-forming portion on which the thin film is formed by the above-mentioned conventional method, the non-forming of the outer peripheral portion where the thin film is not formed prior to the pressure molding. By removing the film part and eliminating the part where the molding material and the mold surface are in direct contact,
The fusion of the surface of the molding material with the surface of the mold is prevented over the entire surface.

【0021】除去方法としては、非成膜部分が除去され
れば特に限定されないが、ダイヤモンド、硬質セラミッ
ク等の砥石による研削が効果的である。
The removing method is not particularly limited as long as the non-film-forming portion is removed, but grinding with a grindstone such as diamond or hard ceramic is effective.

【0022】例えば、ダイヤモンド砥石による研削除去
の場合、図2に示すように薄膜(2)が形成されていな
い外周部、つまり非成膜部分(4)を有するガラスレン
ズ成形用素材(5)を押さえ治具(7)により保持し、
該非成膜部分をダイヤモンド砥石(6)により最も外側
から研削する。該治具の回転により該成形用素材の外周
を効果的に研削することができる。該成形用素材の厚さ
方向についての垂直断面形状が円形でなかったり、非成
膜部分がドーナツ状でない場合でも、押さえ治具(7)
を回転させずに、直線的、曲線的、または該成形用素材
の形状または該非成膜部分の形状にあわせた運動で操作
することにより、非成膜部分を研削により除去すること
ができる。しかし、通常、予備成形した該成形用素材の
厚さ方向についての垂直断面形状は円形であるため、従
来の成膜方法により成膜させたガラスレンズ成形用素材
の非成膜部分の形状はドーナツ状となることから、該治
具を回転させて効率的に研削することができる。
For example, in the case of grinding removal with a diamond grindstone, as shown in FIG. 2, a glass lens molding material (5) having an outer peripheral portion where the thin film (2) is not formed, that is, a non-film forming portion (4) is used. Hold by the holding jig (7),
The non-film-forming portion is ground from the outermost side with a diamond grindstone (6). By rotating the jig, the outer periphery of the molding material can be effectively ground. Even if the vertical cross-sectional shape of the molding material in the thickness direction is not circular or the non-film-forming portion is not donut-shaped, the pressing jig (7)
The non-film-forming portion can be removed by grinding by rotating without rotating, and by operating in a linear, curved, or motion that matches the shape of the forming material or the shape of the non-film-forming portion. However, since the vertical cross-sectional shape in the thickness direction of the preformed molding material is usually circular, the shape of the non-film-forming portion of the glass lens molding material formed by the conventional film-forming method is a donut shape. Since it has a shape, the jig can be rotated for efficient grinding.

【0023】かかる手段により非成膜部分を除去したガ
ラスレンズ成形用素材(3)は図1(a)に示されるよ
うに、該成形用素材において機能面が成形される面全体
に薄膜(2)を有している。このように、該成形用素材
が型表面と接触する全面を一様に離型機能を有する薄膜
が覆っているため、加圧成形時においても該成形用素材
と型表面との間に融着等は起こらず、良好なガラスレン
ズを得ることができる。
As shown in FIG. 1A, the glass lens molding material (3) from which the non-film-forming portion has been removed by such means has a thin film (2) formed on the entire surface on which the functional surface is molded in the molding material. )have. In this way, the entire surface of the molding material that contacts the mold surface is uniformly covered with the thin film having a mold release function, so that even during pressure molding, the fusion between the molding material and the mold surface occurs. Etc. does not occur and a good glass lens can be obtained.

【0024】上述のようにして非成膜部分を除去したガ
ラスレンズ成形用素材は、リヒートプレス法により加圧
成形され、所望の機能面(球面、非球面等)を有する光
学レンズを得ることができる。
The glass lens molding material from which the non-film-forming portion has been removed as described above is pressure-molded by the reheat press method to obtain an optical lens having a desired functional surface (spherical surface, aspherical surface, etc.). it can.

【0025】具体的には、該成形用素材をリヒートプレ
ス法により、例えば、両凹球面ガラスレンズに成形する
場合、図5に示す加圧成形装置が用いられる。
Specifically, when the molding material is molded by a reheat press method into, for example, a biconcave spherical glass lens, the pressure molding device shown in FIG. 5 is used.

【0026】該装置は、凸球面状に精密鏡面加工された
型表面を有する上型(15)およびそれを保持する保持
型(21)と、同じく凸球面状に精密加工された型表面
を有する下型(16)およびそれを保持する保持型(2
2)とを具備している。押し棒(17)により保持型
(21)は上型(15)と一体になって下方移動して、
下型(16)と一体となった保持型(22)とかん合す
る。以上の型構造体は透明石英管(18)の外周部に設
置された加熱用光源(19)により加熱され、保持型
(22)内に埋没した熱電対(20)により温度測定し
て、温度制御される。
The apparatus has an upper mold (15) having a mold surface that is precision mirror-finished into a convex spherical surface and a holding mold (21) for holding it, and a mold surface that is also precision-machined into a convex spherical shape. Lower mold (16) and holding mold (2
2) and are provided. By the push rod (17), the holding die (21) moves downward together with the upper die (15),
Mates with a holding mold (22) that is integral with the lower mold (16). The above mold structure is heated by the heating light source (19) installed on the outer periphery of the transparent quartz tube (18), and the temperature is measured by the thermocouple (20) buried in the holding mold (22) to obtain the temperature. Controlled.

【0027】前述の非成膜部分を除去したガラスレンズ
成形用素材(3)を上、下型(15、16)内に置き、
窒素またはアルゴン雰囲気下にして、加熱用光源(1
9)により上、下型(15、16)および保持型(2
1、22)と該成形用素材(3)を軟化状態に加熱した
状態で押し棒(17)を降下させ、上型(15)および
それを保持する保持型(21)に荷重を加えて加圧成形
する。成形の圧力は型の表面形状が該プリフォームに転
写するのに十分な圧力であればよい。
The glass lens molding material (3) from which the non-film-forming portion is removed is placed in the upper and lower molds (15, 16),
In a nitrogen or argon atmosphere, the heating light source (1
9) upper mold, lower mold (15, 16) and holding mold (2)
1, 22) and the molding material (3) are heated to a softened state, the push rod (17) is lowered, and a load is applied to the upper die (15) and the holding die (21) holding it. Press forming. The molding pressure may be a pressure sufficient to transfer the surface shape of the mold to the preform.

【0028】次に、押し棒(17)の圧力を除去して、
型(15、16、21、22)内に加圧成形物を包囲し
たまま冷却し、その後加圧成形物を取り出す。
Next, the pressure of the push rod (17) is removed,
The pressure-formed product is cooled while being surrounded in the mold (15, 16, 21, 22), and then the pressure-formed product is taken out.

【0029】得られたレンズと型表面との間に融着はみ
られず、上、下型(15、16)表面の凸球面形状と対
応した凹球面形状がそのまま転写されて高面精度を有し
た良好な品質の両凹球面レンズを得ることができる。こ
のように型表面が該成形用素材表面に転写され、ガラス
レンズ表面が形成されるため、型は成形用素材と対峙す
る表面層が重要であり、気孔等の欠陥がなく、緻密で鏡
面状に精密加工することができ、加熱に対して適度な硬
度および強度を有する等の型としての一般的条件を備え
ているものであれば、型の母材とその表面層の材料にお
いて特に限定する必要はない。
No fusion was observed between the obtained lens and the mold surface, and the concave spherical shapes corresponding to the convex spherical shapes of the upper and lower mold (15, 16) surfaces were directly transferred to obtain high surface accuracy. It is possible to obtain a biconcave spherical lens having good quality. Since the surface of the mold is transferred to the surface of the molding material in this way to form the glass lens surface, the surface layer of the mold facing the molding material is important, and there are no defects such as pores and it is dense and mirror-like. The material of the base material of the mold and the material of the surface layer of the mold are particularly limited as long as they can be precisely processed to have general conditions as a mold, such as having appropriate hardness and strength against heating. No need.

【0030】以上より、本発明では成膜後加圧成形に先
立って薄膜が形成されていない非成膜部分を除去するた
め、ガラスレンズ成形用素材表面の全面にわたって被膜
する必要はなくなった。これにより、全面に薄膜を形成
させるために成膜時に特別の保持具を使用したり、余分
な工程数をかける必要がなく、また、型材料についても
炭化ケイ素、硬質炭素、超硬、貴金属等一般に使用され
ている材料から適宜選択することができることになり、
本発明は経済的にも優れている。
As described above, in the present invention, it is not necessary to coat the entire surface of the glass lens molding material surface in order to remove the non-filmed portion where the thin film is not formed after the film formation and prior to the pressure molding. As a result, it is not necessary to use a special holder during film formation to form a thin film on the entire surface or to add an extra step, and the mold material can also be silicon carbide, hard carbon, super hard, precious metal, etc. It will be possible to appropriately select from commonly used materials,
The present invention is economically excellent.

【0031】加圧成形後に得られたガラスレンズの表面
には、上述の薄膜が残っているため、市販の膜剥離液に
よる洗浄、酸性水溶液、例えば、塩酸、硫酸、硝酸等ま
たはそれらの混合液等の水溶液、水酸化ナトリウム等の
アルカリ性水溶液による洗浄、または不織布による仕上
げ研磨等の方法によりガラスレンズに悪影響を及ぼすこ
となく該薄膜を剥離することができる。
Since the above-mentioned thin film remains on the surface of the glass lens obtained after the pressure molding, washing with a commercially available film peeling solution, an acidic aqueous solution such as hydrochloric acid, sulfuric acid, nitric acid or the like or a mixed solution thereof is used. The thin film can be peeled off without adversely affecting the glass lens by a method such as washing with an aqueous solution such as the above, an alkaline aqueous solution such as sodium hydroxide, or finish polishing with a non-woven fabric.

【0032】しかし、該薄膜を剥離せずにそのままで、
あるいは該薄膜の上にさらに1以上の薄膜を設けて反射
防止膜としたり、または金属ミラーとして使用する場合
等、該薄膜をそのまま機能面の構成要素として使用でき
る場合には、該薄膜の剥離工程は必要でない。
However, without peeling off the thin film,
Alternatively, when one or more thin films are further provided on the thin film to form an antireflection film, or when the thin film can be used as it is as a component of a functional surface, such as a metal mirror, a peeling step of the thin film Is not necessary.

【0033】例えば、フッ化マグネシウム膜を有するガ
ラスレンズの場合は、そのままで反射防止機能を備えた
レンズとして使用することができる。
For example, a glass lens having a magnesium fluoride film can be used as it is as a lens having an antireflection function.

【0034】本発明によるガラスレンズの製造方法は球
面レンズはもとより非球面レンズやプリズム、偏心レン
ズ等様々な光学素子にも適用可能であり、広範囲のレン
ズの製造に利用することができる。
The method of manufacturing a glass lens according to the present invention can be applied to various optical elements such as aspherical lenses, prisms, decentering lenses as well as spherical lenses, and can be used for manufacturing a wide range of lenses.

【0035】本発明によるガラスレンズの製造方法を、
さらに以下の実施例に基づいて具体的に説明する。
A method of manufacturing a glass lens according to the present invention,
Further, a concrete description will be given based on the following examples.

【0036】[0036]

【実施例】実施例1 成形用素材としてSiO2−B23−La23系ガラス
(転移温度:623℃)を円板状ガラス(直径:20m
m、厚さ:3mm)に予備成形し、該円板状ガラスの上
下面に図3に示す装置にて真空蒸着法により酸化イット
リウム薄膜(厚さ:200Å)を形成した。
EXAMPLE 1 As a molding material, SiO 2 —B 2 O 3 —La 2 O 3 based glass (transition temperature: 623 ° C.) was used as a disk-shaped glass (diameter: 20 m).
m, thickness: 3 mm), and an yttrium oxide thin film (thickness: 200Å) was formed on the upper and lower surfaces of the disk-shaped glass by the vacuum evaporation method using the apparatus shown in FIG.

【0037】具体的には、図3において円板状成形用素
材(1)を1×10-4torrの真空室(9)内に装備
されている保持具(8)に該成形用素材(1)の外周部
で支えるように設置し、電子ビーム蒸発源(11)上か
ら蒸発した薄膜材料(酸化イットリウム)(10)を該
成形用素材(1)の上下面に蒸着させた。
Specifically, in FIG. 3, the disk-shaped molding material (1) is applied to a holder (8) provided in a vacuum chamber (9) of 1 × 10 −4 torr (the molding material (1)). The thin film material (yttrium oxide) (10) evaporated from above the electron beam evaporation source (11) was vapor-deposited on the upper and lower surfaces of the molding material (1).

【0038】しかし、成膜の際、保持具(8)の影にな
っていた外周部(幅:0.5mm)には該薄膜は形成さ
れず、ガラス表面がむきだしになっていたため、図2に
示す円筒研削盤((株)シギヤ精機製作所製)を用い
て、非成膜部分(4)を研削することにより除去し、こ
れを被成形物とした。
However, at the time of film formation, the thin film was not formed on the outer peripheral portion (width: 0.5 mm) that was shaded by the holder (8), and the glass surface was exposed. The non-film-forming portion (4) was removed by grinding with a cylindrical grinder (manufactured by Shigiya Seiki Seisakusho Co., Ltd.) as shown in FIG.

【0039】すなわち、非成膜部分を有する成形用素材
(5)を押さえ治具(2)により保持し、該治具(2)
の回転により該成形用素材(5)を回転させ、ダイヤモ
ンド砥石(6)により該成形用素材(5)外周部の非成
膜部分(4)を最も外側から研削除去した。
That is, the molding material (5) having the non-film-forming portion is held by the pressing jig (2), and the jig (2) is held.
The molding material (5) was rotated by the rotation of, and the non-film-forming portion (4) on the outer peripheral portion of the molding material (5) was ground and removed from the outermost side by the diamond grindstone (6).

【0040】このようにして得られた被成形物を用いて
リヒートプレス法により、図5に示す加圧成形装置にて
ガラスレンズを作製した。
A glass lens was produced by the reheat press method using the thus obtained object to be molded by the pressure molding apparatus shown in FIG.

【0041】該装置は、凸球面状に精密鏡面加工された
型表面を有する上型(15)(材料:炭化ケイ素)およ
びそれを保持する保持型(21)(材料:炭化ケイ素)
と、同じく凸球面状に精密加工された型表面を有する下
型(16)(材料:炭化ケイ素)およびそれを保持する
保持型(22)(材料:炭化ケイ素)とを具備し、押し
棒(17)(材料:ステンレス)により保持型(21)
は上型(15)と一体になって下方移動して、下型(1
6)と一体となった保持型(22)とかん合する。以上
の型構造体は透明石英管(18)の外周部に設置された
加熱用光源(19)により加熱され、保持型(22)内
に埋没した熱電対(20)により温度測定して、温度制
御が行われる。
The apparatus comprises an upper die (15) (material: silicon carbide) having a die surface that is precision mirror-finished into a convex spherical surface, and a holding die (21) (material: silicon carbide) that holds it.
And a lower die (16) (material: silicon carbide) and a holding die (22) (material: silicon carbide) for holding the lower die (16), which also has a die surface precisely processed into a convex spherical shape, and a push rod ( 17) (material: stainless steel) holding type (21)
Moves downward together with the upper mold (15), and the lower mold (1
6) Mates with the holding mold (22) which is integrated with. The above mold structure is heated by the heating light source (19) installed on the outer periphery of the transparent quartz tube (18), and the temperature is measured by the thermocouple (20) buried in the holding mold (22) to obtain the temperature. Control is performed.

【0042】前述の被成形物(3)を上、下型(15、
16)内に置き、窒素雰囲気下にして、加熱用光源(1
9)により上、下型(15、16)および保持型(2
1、22)と共に被成形物(3)を670℃に加熱した
状態で押し棒(17)を降下させ、上型(15)および
それを保持する保持型(21)に荷重を加えて加圧成形
した(圧力:50kg/cm2、加圧時間:30秒)。
The above-mentioned molded article (3) is placed on the upper and lower molds (15,
16), placed in a nitrogen atmosphere, and heated to a light source (1
9) upper mold, lower mold (15, 16) and holding mold (2)
1, 22) and the object to be molded (3) are heated to 670 ° C., the push rod (17) is lowered, and a load is applied to the upper die (15) and the holding die (21) holding it to apply pressure. Molded (pressure: 50 kg / cm 2 , pressurization time: 30 seconds).

【0043】次に、押し棒(17)の圧力を除去して、
型(15、16、21、22)内に加圧成形物を包囲し
たまま冷却し、その後加圧成形物を取り出した。
Next, the pressure of the push rod (17) is removed,
The pressure-molded product was cooled while being surrounded in the mold (15, 16, 21, 22), and then the pressure-molded product was taken out.

【0044】得られた成形物は両凹球面ガラスレンズで
あり、レンズと型表面との間に融着等はみられず、上、
下型(15、16)表面の凸球面形状と対応した凹球面
形状が転写されて高面精度を得ており、ガラスレンズと
して良好な品質のものが得られたことが確認された。
The obtained molded product was a biconcave spherical glass lens, and no fusion or the like was observed between the lens and the mold surface.
It was confirmed that a concave spherical surface shape corresponding to the convex spherical surface shape of the lower mold (15, 16) was transferred to obtain high surface accuracy, and a glass lens of good quality was obtained.

【0045】比較例1 実施例1と同様にして得られた円板状成形用素材(直
径:20mm、厚さ:3mm)の上下面に、酸化イット
リウム薄膜(厚さ:200Å)を実施例1と同様にして
真空蒸着法により形成し、外周部に非成膜部分(幅:
0.5mm)を有する成形用素材を得た。
Comparative Example 1 An yttrium oxide thin film (thickness: 200Å) was formed on the upper and lower surfaces of a disk-shaped molding material (diameter: 20 mm, thickness: 3 mm) obtained in the same manner as in Example 1 It is formed by the vacuum vapor deposition method in the same manner as, and the non-film-forming portion (width:
A molding material having a thickness of 0.5 mm) was obtained.

【0046】次に、該成形用素材の非成膜部分を除去せ
ず、該成形用素材をそのまま被成形物として使用し、実
施例1と同様にして、図5に示す加圧成形装置により加
圧成形を行ったところ、ガラスがむきだしになっている
外周部非成膜部分と型表面との間でリング状に融着が発
生し、良好な品質のガラスレンズを得ることはできなか
った。
Then, the non-film-forming portion of the molding material was not removed, and the molding material was used as it was as a molding target, in the same manner as in Example 1 by the pressure molding device shown in FIG. When pressure molding was performed, ring-shaped fusion occurred between the peripheral non-film-forming portion where the glass was exposed and the mold surface, and a glass lens of good quality could not be obtained. .

【0047】実施例1および比較例1より、従来通りに
作製した非成膜部分を有する成形用素材から該非成膜部
分を除去することにより、成形用素材表面における型表
面と接触する全ての面が離型機能を有する薄膜で覆われ
ることとなり、その後の加圧成形時における融着等を防
止できることが明らかとなった。
From Example 1 and Comparative Example 1, by removing the non-film-forming portion from the molding material having the non-film-forming portion produced in the conventional manner, all the surfaces of the molding material surface that come into contact with the mold surface are removed. It was revealed that the film was covered with a thin film having a releasing function, and fusion or the like during the subsequent pressure molding could be prevented.

【0048】実施例2 ガラスレンズ成形用素材としてP23−Al23−R2
O−F系ガラス(転移温度:480℃)を用いたこと以
外、実施例1と同様にして、円板状ガラス(直径:20
mm、厚さ:3mm)を得た。
Example 2 As a material for molding a glass lens, P 2 O 3 --Al 2 O 3 --R 2
A disk-shaped glass (diameter: 20) was used in the same manner as in Example 1 except that an OF glass (transition temperature: 480 ° C.) was used.
mm, thickness: 3 mm) was obtained.

【0049】該円板状成形用素材の上下面に図4に示す
装置にてRFマグネトロンスパッタリング法によりフッ
化マグネシウム薄膜(厚さ:50Å)を形成した。
Magnesium fluoride thin films (thickness: 50Å) were formed on the upper and lower surfaces of the disk-shaped molding material by the RF magnetron sputtering method using the apparatus shown in FIG.

【0050】具体的には、スパッタガスとしてアルゴ
ン、ターゲット(12)材料としてフッ化マグネシウム
を用い、室温下でガラスレンズ成形用素材(1)を保持
具(8)に該成形用素材の外周部で支えるように設置し
た。そして、真空室(9)内にアルゴンをガス導入バル
ブ(13)より導入し、放電圧力7×10-3Torr、
高周波13.56MHz、放電電力200Wにてフッ化
マグネシウム薄膜を成形用素材(1)の上下面に形成さ
せた。
Specifically, argon is used as the sputter gas, magnesium fluoride is used as the target (12) material, and the glass lens molding material (1) is held at room temperature on the holder (8) at the outer peripheral portion of the molding material. It was installed so that it would be supported by. Then, argon was introduced into the vacuum chamber (9) through the gas introduction valve (13), and the discharge pressure was 7 × 10 −3 Torr,
A magnesium fluoride thin film was formed on the upper and lower surfaces of the molding material (1) at a high frequency of 13.56 MHz and a discharge power of 200 W.

【0051】しかし、実施例1と同様に成膜の際、保持
具の影になっていた外周部(幅:0.3mm)には該薄
膜は形成されず、ガラス表面がむきだしになっていたた
め、実施例1と同様にして、円筒研削盤により該成形用
素材の非成膜部分を研削除去し、これを被成形物とし
た。
However, as in Example 1, when the film was formed, the thin film was not formed on the outer peripheral portion (width: 0.3 mm) that was shaded by the holder, and the glass surface was exposed. Then, in the same manner as in Example 1, the non-film-forming portion of the forming material was ground and removed by a cylindrical grinding machine to obtain a molding target.

【0052】そして、図5に示される加圧成形装置にお
いて、上型および下型材料を超硬、これらの保持型材料
を高密度炭素、透明石英管(18)をセラミック管(2
8)、加熱用光源(19)を高周波コイルを伴った誘導
加熱源(29)とした図6に示される加圧成形装置を用
いたことと、加圧成形条件としてアルゴン雰囲気下、加
圧温度530℃、加圧時間15秒としたこと以外、実施
例1と同様にして、非成膜部分を除去した該被成形物を
用いて、リヒートプレス法によりガラスレンズを作製し
た。
In the pressure molding apparatus shown in FIG. 5, the upper mold material and the lower mold material are superhard, these holding mold materials are high density carbon, the transparent quartz tube (18) is the ceramic tube (2).
8) Using the pressure molding apparatus shown in FIG. 6 in which the heating light source (19) is an induction heating source (29) with a high frequency coil, and the pressure molding conditions are an argon atmosphere and a pressure temperature. A glass lens was produced by a reheat press method using the molding target from which the non-film-forming portion was removed, in the same manner as in Example 1 except that the pressing time was 530 ° C. and the pressing time was 15 seconds.

【0053】得られた成形物は両凹球面ガラスレンズで
あり、レンズと型表面との間に融着等はみられず、上、
下型(25、26)表面の凸球面形状と対応した凹球面
形状が転写されて高面精度を得ており、ガラスレンズと
して良好な品質のものが得られたことが確認された。
The obtained molded product was a biconcave spherical glass lens, and no fusion or the like was observed between the lens and the mold surface.
It was confirmed that a concave spherical surface shape corresponding to the convex spherical surface shape of the lower mold (25, 26) was transferred to obtain high surface accuracy, and a glass lens of good quality was obtained.

【0054】比較例2 実施例2と同様にして得られた円板状成形用素材(直
径:20mm、厚さ:3mm)の上下面に、フッ化マグ
ネシウム薄膜(厚さ:50Å)を実施例2と同様にして
RFマグネトロンスパッタリング法により形成し、外周
部に非成膜部分(幅:0.3mm)を有する成形用素材
を得た。
Comparative Example 2 A magnesium fluoride thin film (thickness: 50Å) was formed on the upper and lower surfaces of a disk-shaped forming material (diameter: 20 mm, thickness: 3 mm) obtained in the same manner as in Example 2. It was formed by the RF magnetron sputtering method in the same manner as in 2, and a molding material having a non-film-forming portion (width: 0.3 mm) on the outer peripheral portion was obtained.

【0055】次に、該成形用素材の非成膜部分を除去せ
ず、該成形用素材をそのまま被成形物として使用し、実
施例2と同様にして、図6に示す加圧成形装置により加
圧成形を行ったところ、ガラスがむきだしになっている
外周部非成膜部分と型表面との間でリング状に融着が発
生し、良好な品質のガラスレンズを得ることはできなか
った。
Next, the non-film-forming portion of the molding material was not removed, and the molding material was used as it was as a molding target, in the same manner as in Example 2 by the pressure molding device shown in FIG. When pressure molding was performed, ring-shaped fusion occurred between the peripheral non-film-forming portion where the glass was exposed and the mold surface, and a glass lens of good quality could not be obtained. .

【0056】実施例2および比較例2を実施例1および
比較例1と比較すると、非成膜部分を除去することによ
り得られる融着等を防止する効果は、ガラスレンズ成形
用素材および薄膜材料が変わっても発揮されることがわ
かった。
Comparing Example 2 and Comparative Example 2 with Example 1 and Comparative Example 1, the effect of preventing fusion and the like obtained by removing the non-film-forming portion is that the material for molding glass lenses and the thin film material are It turns out that it will be exhibited even if the value changes.

【0057】[0057]

【発明の効果】本発明によると、加圧成形時においてガ
ラスレンズ成形用素材と型表面との融着等を防止するこ
とができ、良好な品質のガラスレンズを得ることができ
る。また、該成形用素材は非成膜部分を有していても該
部分の除去工程さえ経れば問題ないため、成膜時に特別
の保持具を使用したり、余分な工程をかける必要がな
く、型材料についても一般に使用されている材料から適
宜選択することができることから、本発明は経済的にも
優れている。
According to the present invention, it is possible to prevent fusion of the glass lens molding material and the mold surface during pressure molding, and it is possible to obtain a glass lens of good quality. Further, even if the molding material has a non-film-forming portion, there is no problem as long as the removal step of the portion is passed, so there is no need to use a special holder during film formation or to add an extra step. Since the mold material can be appropriately selected from commonly used materials, the present invention is economically excellent.

【図面の簡単な説明】[Brief description of drawings]

【図1】 (a)はガラスレンズ成形用素材表面におい
て薄膜が形成されていない外周部分(非成膜部分とい
う。)を除去した本発明によるガラスレンズ成形用素材
の概略模式図であり、(b)は非成膜部分を有する従来
のガラスレンズ成形用素材の概略模式図である。
FIG. 1A is a schematic diagram of a glass lens molding material according to the present invention, in which an outer peripheral portion (referred to as a non-film-forming portion) where a thin film is not formed on the surface of the glass lens molding material is removed. b) is a schematic diagram of a conventional glass lens molding material having a non-film-forming portion.

【図2】 非成膜部分を除去するのに適した円筒研削盤
を示す概略構成図である。
FIG. 2 is a schematic configuration diagram showing a cylindrical grinder suitable for removing a non-film-forming portion.

【図3】 実施例1および比較例1で使用した成膜装置
を示す概略構成図である。
FIG. 3 is a schematic configuration diagram showing a film forming apparatus used in Example 1 and Comparative Example 1.

【図4】 実施例2および比較例2で使用した成膜装置
を示す概略構成図である。
4 is a schematic configuration diagram showing a film forming apparatus used in Example 2 and Comparative Example 2. FIG.

【図5】 実施例1および比較例1で使用した加圧成形
装置を示す概略構成図である。
5 is a schematic configuration diagram showing a pressure molding device used in Example 1 and Comparative Example 1. FIG.

【図6】 実施例2および比較例2で使用した加圧成形
装置を示す概略構成図である。
6 is a schematic configuration diagram showing a pressure molding device used in Example 2 and Comparative Example 2. FIG.

【符号の説明】[Explanation of symbols]

1:ガラスレンズ成形用素材 2:薄膜 3:非成膜部分を除去したガラスレンズ成形用素材 4:非成膜部分 5:非成膜部分を有するガラスレンズ成形用素材 6:ダイヤモンド砥石 7:押さえ治具 8:保持具 9:真空室 10:薄膜材料 11:電子ビーム蒸発源 12:ターゲット 13:ガス導入バルブ 14:高周波電源 15、25:上型 16、26:下型 17、27:押し棒 18:透明石英管 19:加熱用光源 20、30:熱電対 21、22、31、32:保持型 28:セラミック管 29:誘導加熱源 1: Glass lens molding material 2: Thin film 3: Glass lens molding material from which non-film-forming portion is removed 4: Non-film forming portion 5: Glass lens molding material having non-film forming portion 6: Diamond grindstone 7: Pressing Jig 8: Holder 9: Vacuum chamber 10: Thin film material 11: Electron beam evaporation source 12: Target 13: Gas introduction valve 14: High frequency power supply 15, 25: Upper mold 16, 26: Lower mold 17, 27: Push rod 18: Transparent quartz tube 19: Light source for heating 20, 30: Thermocouple 21, 22, 31, 32: Holding type 28: Ceramic tube 29: Induction heating source

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 機能面が成形される面に離型機能を有す
る薄膜を成膜したガラスレンズ成形用素材を、加圧成形
に先立って該薄膜が形成されていない部分を除去した後
で、加圧成形することを特徴とするガラスレンズの製造
方法。
1. A glass lens molding material having a thin film having a releasing function formed on a surface on which a functional surface is molded, after removing a portion where the thin film is not formed prior to pressure molding, A method of manufacturing a glass lens, which comprises performing pressure molding.
JP15456595A 1995-06-21 1995-06-21 Production of glass lens Pending JPH092827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15456595A JPH092827A (en) 1995-06-21 1995-06-21 Production of glass lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15456595A JPH092827A (en) 1995-06-21 1995-06-21 Production of glass lens

Publications (1)

Publication Number Publication Date
JPH092827A true JPH092827A (en) 1997-01-07

Family

ID=15587025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15456595A Pending JPH092827A (en) 1995-06-21 1995-06-21 Production of glass lens

Country Status (1)

Country Link
JP (1) JPH092827A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105874A (en) * 2006-10-24 2008-05-08 Olympus Corp Method of manufacturing optical device and optical device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105874A (en) * 2006-10-24 2008-05-08 Olympus Corp Method of manufacturing optical device and optical device

Similar Documents

Publication Publication Date Title
JP2620875B2 (en) Manufacturing method of glass molded products for precision optics
JPH0461816B2 (en)
JP4739729B2 (en) Method for manufacturing member having antireflection structure
JP3273921B2 (en) Mold for glass optical element, method for manufacturing glass optical element, and method for reproducing mold
JPH092827A (en) Production of glass lens
JP2005213091A (en) Method for manufacturing glass optical element
US5720791A (en) Method of producing an optical lens element
US5762676A (en) Product for molding glass lenses having difficult shapes
JP2616964B2 (en) Glass press mold
JPH08277125A (en) Formation of glass lens
JP3341520B2 (en) Optical lens manufacturing method
JPH10231129A (en) Mold for press molding and glass molded product by the mold
JPH11268920A (en) Forming mold for forming optical element and its production
JP2000219521A (en) Mold for forming glass substrate, its manufacture and production of glass substrate
JP3492005B2 (en) Glass optical element molding method
JP2785888B2 (en) Mold for optical element molding
JP2505897B2 (en) Mold for optical element molding
JP3199825B2 (en) Optical element molding method
JP2612621B2 (en) Mold for optical element molding
JPH01215734A (en) Mold member for forming optical element
JPH08283035A (en) Production of thin film
JP2004210550A (en) Molding mold
JPH05178628A (en) Die for forming optical glass element
JPH11147725A (en) Mold for press forming and glass formed product by the same
JP2006265045A (en) Method for manufacturing die for forming optical element