JPH09281265A - Production of nuclear fuel pellet - Google Patents

Production of nuclear fuel pellet

Info

Publication number
JPH09281265A
JPH09281265A JP8089411A JP8941196A JPH09281265A JP H09281265 A JPH09281265 A JP H09281265A JP 8089411 A JP8089411 A JP 8089411A JP 8941196 A JP8941196 A JP 8941196A JP H09281265 A JPH09281265 A JP H09281265A
Authority
JP
Japan
Prior art keywords
oxide
nuclear fuel
powder
producing
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8089411A
Other languages
Japanese (ja)
Inventor
Mutsumi Hirai
睦 平井
Masaru Ito
勝 伊藤
Koichi Matsumoto
浩一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8089411A priority Critical patent/JPH09281265A/en
Publication of JPH09281265A publication Critical patent/JPH09281265A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently producing a nuclear fuel pellet having appropriate pore diameter and prosity without using a foreign matter other than the nuclear fuel constituting elements and the oxides obtained by high-temp. treatment. SOLUTION: The UO3 powder obtained by heating ammonium diuranate(ADU) powder to about 450 deg.C and having a low density of 8.25g/cm<3> is added by <=20wt.% to the UO2 powder obtained by a conventional method, further adding a lubricant, as required, mixing 1 the powders and then compacting 2 the mixture. The obtained compact is then degreased 3, if necessary, heated at 1500-1800 deg.C in a hydrogen atmosphere and sintered 4 to produce the pellet.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、核燃料ペレットの
製造方法に係わり、特にウラン(U)の酸化物およびプ
ルトニウム(Ρu)の酸化物のうちの少なくとも一つを
含む酸化物燃料ペレットの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing nuclear fuel pellets, and more particularly to a method for producing oxide fuel pellets containing at least one of uranium (U) oxide and plutonium (Ρu) oxide. Regarding

【0002】[0002]

【従来の技術】軽水炉あるいは高速増殖炉等に装荷され
る核燃料ペレットは、核燃料物質の酸化物粉末を圧縮成
型した後、高温度に加熱し焼結することにより得られ
る。
2. Description of the Related Art Nuclear fuel pellets loaded in a light water reactor or a fast breeder reactor are obtained by compression-molding an oxide powder of a nuclear fuel material, followed by heating to a high temperature and sintering.

【0003】こうして得られる焼結体の特性は、原料粉
末の特性に強く影響されることが知られており、特に焼
結体の密度は原料粉末の活性度に強く影響され、高くな
り過ぎることがある。一般に、燃焼に伴って核燃料ペレ
ットの密度は低下し、体積が増加するため、ペレットと
被覆管との相互作用が強くなり、燃料破損を引き起こす
おそれがある。ここで、ペレット内に適度に気孔が存在
すると、被覆管から力が加わってもペレットを構成する
原子が気孔部分に移動するため、クリープ速度が高く、
応力が速やかに緩和される。そして、この応力緩和によ
り、ペレットと被覆管との相互作用が軽減されると考え
られる。
It is known that the characteristics of the sintered body thus obtained are strongly influenced by the characteristics of the raw material powder, and in particular, the density of the sintered body is strongly influenced by the activity of the raw material powder and becomes too high. There is. Generally, the density of nuclear fuel pellets decreases and the volume thereof increases with combustion, so that the interaction between the pellets and the cladding tube becomes strong, which may cause fuel damage. Here, if the pores appropriately exist in the pellets, the atoms constituting the pellets move to the pores even if a force is applied from the cladding tube, so that the creep rate is high,
The stress is quickly relieved. It is considered that this stress relaxation reduces the interaction between the pellet and the cladding.

【0004】焼結ペレットの密度を所定の値にするため
の方法として、焼結温度や焼結時間を制御する方法が考
えられるが、この方法では、直径 2μm 以下の微小気孔
や開気孔が増加して好ましくない。すなわち、直径 2μ
m 以下の微小気泡は、燃料ペレットの燃焼時に核分裂片
によるマトリックスへの再溶解、析出を繰り返しなが
ら、結晶粒界へと移動して消滅し、それにより焼き締ま
りが生じると考えられる。その結果、燃料ペレットと被
覆管との間隙が広くなり熱の伝導が悪くなるため、燃焼
温度が上昇し、揮発性核分裂生成物の放出率増加、燃料
棒内圧上昇など、燃焼挙動に悪影響を及ぼすことが予想
される。また、開気孔は、燃料燃焼中に発生する核分裂
生成物の放出経路となるため、核分裂生成物の放出率が
大きくなり、ひいては燃料棒内圧上昇を引き起こすおそ
れがある。
As a method for controlling the density of the sintered pellet to a predetermined value, a method of controlling the sintering temperature and the sintering time can be considered. In this method, fine pores and open pores with a diameter of 2 μm or less are increased. Is not preferable. That is, diameter 2μ
It is considered that the micro bubbles of m or less move to the grain boundaries and disappear while repeating re-dissolution into the matrix by the fission fragments and precipitation during combustion of the fuel pellets, which causes compaction. As a result, the gap between the fuel pellets and the cladding tube becomes wider and the heat conduction becomes worse, so the combustion temperature rises, the emission rate of volatile fission products increases, and the internal pressure of the fuel rod rises. It is expected that. Further, since the open pores serve as a release path for the fission products generated during the combustion of fuel, the release rate of the fission products increases, which may eventually cause an increase in the fuel rod internal pressure.

【0005】そこで、燃料ペレット内に適度な大きさの
閉気孔を適度な量だけ発生させ、ペレットの密度を調整
することが試みられている。すなわち、二酸化ウラン
(UO2 )等の粉末に、低温で揮発するような有機物や
八酸化三ウラン(U3 8 )を添加する方法が、従来か
ら実施されている。
Therefore, it has been attempted to adjust the density of the pellet by forming an appropriate amount of closed pores in the fuel pellet. That is, the powder such as uranium dioxide (UO 2), a method of adding an organic material and triuranium uranium (U 3 O 8), as volatilize at low temperature have been carried out conventionally.

【0006】[0006]

【発明が解決しようとする課題】しかし、有機物を用い
る方法では、揮発した物質が焼結炉の排気口に付着し
て、流路を閉塞することが考えられ、さらに強還元雰囲
気での焼結において、炭素がペレット中に残留するおそ
れがあった。
However, in the method using an organic substance, it is considered that the volatilized substance adheres to the exhaust port of the sintering furnace to block the flow path, and further sintering in a strong reducing atmosphere is considered. In, there was a possibility that carbon might remain in the pellet.

【0007】また、特開平3-9296号公報に記載されたU
3 8 を添加する方法では、U3 8 を得るために、U
2 の粉末を 450℃から 700℃の温度で加熱して酸化す
ることになっているが、実際には 700℃以上の高温で処
理する必要があった。さらに、U3 8 を得る別の方法
として、三酸化ウラン(UO3 )の粉末を還元する方法
があるが、この方法でも高温(約 700℃の温度)での処
理を必要としていた。そして、これらの方法で得られた
3 8 を添加して焼結体の密度を調整する方法は、効
率的な方法とはいえなかった。
Further, U described in Japanese Patent Laid-Open No. 3-9296
In the method of adding 3 O 8, in order to obtain a U 3 O 8, U
The O 2 powder is supposed to be heated and oxidized at a temperature of 450 ° C. to 700 ° C., but in reality, it was necessary to treat it at a high temperature of 700 ° C. or higher. Further, as another method of obtaining U 3 O 8 , there is a method of reducing uranium trioxide (UO 3 ) powder, but this method also requires treatment at a high temperature (a temperature of about 700 ° C.). Then, a method of adjusting the density of the obtained by adding U 3 O 8 sintered body by these methods, not be said to be efficient manner.

【0008】すなわち、通常ウランの原料粉末の調製方
法としては、硝酸で溶解したウランイオンをアンモニア
溶液で沈殿させて得られた重ウラン酸アンモニウム(A
DU)粉末を、高温でばい焼・還元してUO2 粉末とす
る方法や、硝酸ウラニルを直接脱硝する方法等が広く用
いられており、前記したU3 8 を添加する方法では、
ADUを高温でばい焼・還元するなどの方法で得られた
UO2 粉末に、UO2粉末等をさらに高温で処理して得
られたU3 8 粉末を添加することになるため、製造効
率が低かった。
That is, as a method for preparing a raw material powder of normal uranium, ammonium diuranate (A) obtained by precipitating uranium ions dissolved in nitric acid with an ammonia solution is used.
DU) powder is roasted / reduced at a high temperature to obtain UO 2 powder, and direct denitration of uranyl nitrate is widely used. In the method of adding U 3 O 8 mentioned above,
Since the U 3 O 8 powder obtained by further treating the UO 2 powder at a higher temperature is added to the UO 2 powder obtained by a method such as roasting and reducing ADU at a high temperature, the production efficiency is improved. Was low.

【0009】本発明は、これらの問題に解決するために
なされたもので、核燃料の構成元素以外で構成される異
物や高温での処理を必要とする酸化物を使用せず、適度
な気孔径と気孔率を有する核燃料ペレットを効率的に製
造する方法を提供することを目的とする。
The present invention has been made in order to solve these problems, and does not use a foreign substance composed of elements other than the constituent elements of the nuclear fuel or an oxide which needs to be treated at a high temperature, and has an appropriate pore diameter. And a method for efficiently producing a nuclear fuel pellet having a porosity.

【0010】[0010]

【課題を解決するための手段】本発明の核燃料ペレット
の製造方法は、ウラン(U)の酸化物およびプルトニウ
ム(Ρu)の酸化物のうちの少なくとも一つを含む核燃
料ペレットの製造方法において、二酸化ウラン(U
2 )または二酸化プルトニウム(ΡuO2 )の形態を
経過することなく 600℃以下の低温で得られ、かつ前記
UO2 またはΡuO2 に比べて低密度の高次酸化物を含
む酸化物粉末を圧縮成型し、1500〜1800℃の温度で焼結
することを特徴とする。
A method for producing a nuclear fuel pellet according to the present invention comprises a method for producing a nuclear fuel pellet containing at least one of an oxide of uranium (U) and an oxide of plutonium (Ρu). Uranium (U
O 2 ) or plutonium dioxide (ΡuO 2 ) without passing through the form and compressed at a low temperature of 600 ° C. or less, and oxide powder containing higher-order oxide having a lower density than UO 2 or ΡuO 2 is compressed. It is characterized by being molded and sintered at a temperature of 1500-1800 ° C.

【0011】本発明において、UO2 やΡuO2 等の酸
化物粉末に混合される低密度の高次酸化物(以下、低密
度酸化物と示す。)としては、以下に示す方法で製造さ
れるβ−、γ−あるいはδ−などの三酸化ウラン(UO
3 )が使用される。すなわち、ADU粉末を約 450℃の
低温でゆるやかに加熱すると、密度が8.25g/cm3 のβ−
UO3 が得られ、また硝酸ウラニルを約 200℃で加熱し
て均一化した後、約 500℃に加熱すると、密度が8.01g/
cm3 のγ−UO3 が得られる。これらのUO3を使用す
ることができる。
In the present invention, a low-density high-order oxide (hereinafter referred to as a low-density oxide) mixed with an oxide powder such as UO 2 or ΡuO 2 is produced by the following method. β-, γ-, δ-, etc. uranium trioxide (UO
3 ) is used. That is, when ADU powder was gently heated at a low temperature of about 450 ° C., β-density of 8.25 g / cm 3
UO 3 was obtained, and uranyl nitrate was heated at about 200 ° C to homogenize it, and then heated to about 500 ° C to obtain a density of 8.01 g /
cm 3 of γ-UO 3 is obtained. These UO 3 can be used.

【0012】本発明の製造方法において、圧縮成型体中
に含まれる前記した低密度酸化物は、焼結中の還元過程
で、より高密度のUO2 (密度 10.96g/cm3 )やPuO
2 (密度 11.45g/cm3 )および両者の混合酸化物に変化
することにより、成型体内の大部分を占めるUO2 やP
uO2 および両者の混合酸化物に比べて大きく収縮し、
このような収縮率の相違により、低密度酸化物が存在し
ていた部分に、比較的大きな気孔が作られる。そして、
酸化物全体に対する低密度酸化物の含有割合を調整する
ことにより、焼結ペレット中の気孔率を調整することが
できる。また、低密度酸化物の凝集粒子径(二次粒子
径)を調整することにより、気孔径を制御することが可
能となる。
In the production method of the present invention, the above-mentioned low-density oxide contained in the compression-molded body has a higher density of UO 2 (density 10.96 g / cm 3 ) or PuO during the reduction process during sintering.
2 (density 11.45 g / cm 3 ) and UO 2 and P occupying most of the molded body by changing to mixed oxide of both
Compared to uO 2 and mixed oxides of both, it shrinks greatly,
Due to the difference in shrinkage ratio, relatively large pores are formed in the portion where the low density oxide was present. And
The porosity in the sintered pellet can be adjusted by adjusting the content ratio of the low-density oxide with respect to the entire oxide. Further, the pore size can be controlled by adjusting the aggregate particle size (secondary particle size) of the low-density oxide.

【0013】本発明において、酸化物全体に対する低密
度酸化物の含有割合は、20重量%を越えると焼結ペレッ
ト中の気孔率が高くなりすぎて好ましくないので、20重
量%以下とすることが望ましい。また、二次粒子径が20
μm 以上の低密度酸化物粉末を用いることが望ましい。
20μm 未満の二次粒子径を有する低密度酸化物粉末を用
いた場合には、発生する気孔の直径が小さくなりすぎて
好ましくない。
In the present invention, the content ratio of the low-density oxide to the whole oxide is more than 20% by weight, which is not preferable because the porosity in the sintered pellet becomes too high. desirable. The secondary particle size is 20
It is desirable to use low-density oxide powder with a size of μm or more.
When a low-density oxide powder having a secondary particle size of less than 20 μm is used, the diameter of the generated pores becomes too small, which is not preferable.

【0014】また本発明において、粉末間の焼結が開始
される前(焼結初期)の過程での還元が不十分である
と、粉末間が結合した後の焼結中に収縮が不均一に生
じ、焼結ペレットに割れが発生することが考えられる。
そこで、 400〜 500℃以下の温度領域において、成型体
が十分に還元されるように、雰囲気ガスの組成や流量を
調整することが望ましい。また、加熱焼結温度は、1500
〜1800℃とすることが望ましい。すなわち、焼結を十分
に進めるための温度は、酸化物原料粉末の種類に依存す
るが、カチオンの拡散速度から考えて1500℃以上の温度
が必要であり、また1800℃以下の温度で十分に焼結が可
能である。
Further, in the present invention, if the reduction in the process before the start of sintering between the powders (the initial stage of sintering) is insufficient, the shrinkage is uneven during the sintering after the bonding between the powders. It is conceivable that cracks occur in the sintered pellets.
Therefore, it is desirable to adjust the composition and flow rate of the atmospheric gas so that the molded body is sufficiently reduced in the temperature range of 400 to 500 ° C. or less. The heating and sintering temperature is 1500.
It is desirable to set the temperature to ~ 1800 ° C. That is, the temperature for sufficiently promoting the sintering depends on the type of the oxide raw material powder, but a temperature of 1500 ° C. or higher is necessary considering the diffusion rate of cations, and a temperature of 1800 ° C. or lower is sufficient. Sintering is possible.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施例を図面に基
づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0016】図1は、本発明に係わる核燃料ペレットの
製造方法の一実施例を説明するための工程図である。
FIG. 1 is a process chart for explaining an embodiment of a method for producing nuclear fuel pellets according to the present invention.

【0017】この実施例においては、低密度酸化物とし
てβ−UO3 (密度8.25g/cm3 )を選定し、このβ−U
3 粉末を、図1に示すように、ADU粉末を約 450℃
の温度に加熱することにより得た。次いで、混合工程1
で、常法により得られたUO2 粉末に、前記方法で得ら
れたβ−UO3 粉末を、所定量( 0重量%、10重量%お
よび20重量%)添加して混合し、さらに必要に応じてポ
リビニルアルコールやパラフィンのような潤滑剤を添加
して混合した後、圧縮成型工程2で圧縮成型を行ない、
理論密度に対して約49%(相対密度約49%TD)の成型
体をそれぞれ得た。次に、これらの成型体を、脱脂工程
3で脱脂した後(潤滑剤添加時のみ)、焼結工程4で水
素雰囲気中で約1730℃の温度で 3時間加熱して焼結した
ところ、割れ、欠け等のない健全な焼結体が得られた。
得られた焼結体の気孔率を図2に、また開気孔率を図3
にそれぞれ示す。また、焼結体の結晶粒径を、図4に示
す。 これらの図から、低密度酸化物であるβ−UO3
粉末の添加割合の増加とともに、焼結体の気孔率は増加
するが、開気孔率はいずれも 0.2体積%以下であり、気
孔のほとんど(全気孔の約99%)が閉気孔であることが
わかった。また、直径が20μm を越える大きな気孔が多
数観察された。さらに、焼結体の結晶粒径は、β−UO
3 を10重量%の割合で添加したとき、最大となった。
In this example, β-UO 3 (density 8.25 g / cm 3 ) was selected as the low-density oxide, and this β-U was selected.
As shown in Fig. 1, O 3 powder and ADU powder were heated to about 450 ° C.
Obtained by heating to the temperature of. Then, mixing step 1
Then, a predetermined amount (0 wt%, 10 wt% and 20 wt%) of the β-UO 3 powder obtained by the above-mentioned method was added to the UO 2 powder obtained by the usual method and mixed, and further if necessary. If necessary, a lubricant such as polyvinyl alcohol or paraffin is added and mixed, and then compression molding is performed in the compression molding step 2.
Molded bodies each having a theoretical density of about 49% (relative density of about 49% TD) were obtained. Next, these molded bodies were degreased in degreasing step 3 (only when lubricant was added) and then sintered in a hydrogen atmosphere in a sintering step 4 at a temperature of about 1730 ° C. for 3 hours to sinter. A healthy sintered body having no cracks was obtained.
The porosity of the obtained sintered body is shown in FIG. 2, and the open porosity is shown in FIG.
Are shown respectively. The crystal grain size of the sintered body is shown in FIG. From these figures, the low-density oxide β-UO 3
The porosity of the sintered body increases with the increase of the powder addition rate, but the open porosity is 0.2 vol% or less, and most of the porosity (about 99% of the total porosity) is closed porosity. all right. In addition, many large pores with diameters exceeding 20 μm were observed. Furthermore, the crystal grain size of the sintered body is β-UO.
When 3 was added at a ratio of 10% by weight, it became the maximum.

【0018】次に、本発明の別の実施例について説明す
る。
Next, another embodiment of the present invention will be described.

【0019】この実施例では、図5に示すように、AD
U粉末をばい焼・還元してUO2 粉末を調製する工程
(ばい焼・還元工程)5で、温度分布を設け、一部を約
450℃の低温に保持することにより、UO2 中にUO3
を混入させた。次いで、こうして得られたUO2 −UO
3 混合粉末を、粉砕混合工程6で粉砕して混合し、さら
に必要に応じて潤滑剤を添加して混合した後、前記実施
例と同様に圧縮成型工程2、脱脂工程3(潤滑剤を添加
したとき)を順に経て、焼結工程4で水素雰囲気中で約
1730℃の温度で 3時間加熱して焼結したところ、割れ、
欠け等のない健全な焼結体が得られた。また、得られた
焼結体の気孔率および開気孔率をそれぞれ調べたとこ
ろ、適度な気孔率( 3〜 8体積%)を有しており、かつ
気孔のほとんどが閉気孔であった。
In this embodiment, as shown in FIG.
In the step (roasting / reduction step) 5 of preparing UO 2 powder by roasting / reducing U powder, a temperature distribution is provided, and a part of the temperature is reduced.
By maintaining a low temperature of 450 ° C., UO 3 in UO 2
Mixed in. Then, the UO 2 -UO thus obtained
The 3 mixed powders are crushed and mixed in the crushing and mixing step 6, and further, if necessary, a lubricant is added and mixed, and thereafter, the compression molding step 2 and the degreasing step 3 (adding a lubricant is carried out in the same manner as in the above-mentioned embodiment. In the hydrogen atmosphere in sintering step 4.
When heated at a temperature of 1730 ° C for 3 hours and sintered, cracks,
A healthy sintered body without chipping was obtained. Further, when the porosity and open porosity of the obtained sintered body were examined, respectively, the porosity was moderate (3 to 8% by volume), and most of the porosities were closed.

【0020】なお、以上の実施例においては、水素雰囲
気中で加熱焼結を行なったが、酸素ポテンシャルで-200
kJ/mol程度までの弱酸化雰囲気中で焼結した後、還元す
ることも可能である。さらに、実施例では、低密度酸化
物として、密度が8.25g/cm3のβ−UO3 を使用した
が、低密度酸化物としてはこれに限定されず、例えば硝
酸ウラニルを約 200℃で加熱して均一化した後、約 500
℃に加熱して得られるγ−UO3 (密度8.01g/cm3 )、
あるいはδ−UO3 やε−UO3 等を用いても良い。
In the above examples, the heat sintering was carried out in a hydrogen atmosphere, but the oxygen potential was -200.
It is also possible to reduce after sintering in a weakly oxidizing atmosphere up to about kJ / mol. Furthermore, in the embodiment, as the low density oxide, but density using beta-UO 3 of 8.25 g / cm 3, as a low density oxide is not limited to this, for example, heating the uranyl nitrate at about 200 ° C. And homogenize, then about 500
Γ-UO 3 (density 8.01 g / cm 3 ) obtained by heating to ℃,
Alternatively, δ-UO 3 or ε-UO 3 may be used.

【0021】[0021]

【発明の効果】本発明によれば、核燃料の構成元素以外
で構成される異物や、高温処理により得られる酸化物を
使用することなく、適度な気孔率と気孔径を持つ核燃料
ペレットを効率的に得ることができる。
EFFECTS OF THE INVENTION According to the present invention, a nuclear fuel pellet having a proper porosity and pore diameter can be efficiently prepared without using a foreign substance composed of elements other than the constituent elements of the nuclear fuel or an oxide obtained by high temperature treatment. Can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる核燃料ペレットの製造方法の一
実施例を説明するための工程図。
FIG. 1 is a process drawing for explaining an embodiment of a method for producing nuclear fuel pellets according to the present invention.

【図2】実施例により製造された核燃料ペレットの気孔
率を示すグラフ図。
FIG. 2 is a graph showing the porosity of nuclear fuel pellets manufactured according to an example.

【図3】実施例により製造された核燃料ペレットの開気
孔率を示すグラフ図。
FIG. 3 is a graph showing the open porosity of nuclear fuel pellets manufactured according to the examples.

【図4】実施例により製造された核燃料ペレットの結晶
粒径を示すグラフ図。
FIG. 4 is a graph showing the crystal grain size of the nuclear fuel pellets manufactured according to the example.

【図5】本発明の別の実施例を説明するための工程図。FIG. 5 is a process drawing for explaining another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1………混合工程 2………圧縮成型工程 3………脱脂工程 4………焼結工程 5………ばい焼・還元工程 6………粉砕混合工程 1 ………… Mixing process 2 ………… Compression molding process 3 ………… Degreasing process 4 ………… Sintering process 5 ………… Roasting / reduction process 6 ………… Grinding and mixing process

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ウラン(U)の酸化物およびプルトニウ
ム(Ρu)の酸化物のうちの少なくとも一つを含む核燃
料ペレットの製造方法において、 二酸化ウラン(UO2 )または二酸化プルトニウム(Ρ
uO2 )の形態を経過することなく 600℃以下の低温で
得られ、かつ前記UO2 またはΡuO2 に比べて低密度
の高次酸化物を含む酸化物粉末を圧縮成型し、1500〜18
00℃の温度で焼結することを特徴とする核燃料ペレット
の製造方法。
1. A method for producing a nuclear fuel pellet containing at least one of an oxide of uranium (U) and an oxide of plutonium (Ρu), comprising: uranium dioxide (UO 2 ) or plutonium dioxide (Ρ).
uO 2 ), which is obtained at a low temperature of 600 ° C. or lower without passing through the morphology of uO 2 ) and is compression-molded with an oxide powder containing a higher-order oxide having a lower density than that of UO 2 or ΡuO 2.
A method for producing a nuclear fuel pellet, which comprises sintering at a temperature of 00 ° C.
【請求項2】 前記低密度の高次酸化物として、三酸化
ウラン(UO3 )を用いることを特徴とする請求項1記
載の核燃料ペレットの製造方法。
2. The method for producing a nuclear fuel pellet according to claim 1, wherein uranium trioxide (UO 3 ) is used as the low-density high-order oxide.
【請求項3】 前記低密度の高次酸化物の含有割合が、
酸化物全体の20重量%以下であることを特徴とする請求
項1または2記載の核燃料ペレットの製造方法。
3. The content ratio of the low-density high-order oxide is
The method for producing nuclear fuel pellets according to claim 1 or 2, wherein the content of the oxide is 20% by weight or less based on the whole oxide.
【請求項4】 生成物の一部がUO3 となるように温度
分布を設けてばい焼・還元を行なった後、得られた酸化
物粉末を粉砕混合し、次いで圧縮成型して焼結すること
を特徴とする請求項1乃至3のいずれか1項記載の核燃
料ペレットの製造方法。
4. The product is roasted and reduced by providing a temperature distribution so that a part of the product becomes UO 3, and then the obtained oxide powder is pulverized and mixed, and then compression molded and sintered. The method for producing a nuclear fuel pellet according to any one of claims 1 to 3, characterized in that.
【請求項5】 前記低密度の高次酸化物を含む酸化物粉
末の焼結工程において、前記粉末間の焼結が開始される
前に該粉末の還元が終了するように、雰囲気ガスの組成
および流量を調整することを特徴とする請求項1乃至4
のいずれか1項記載の核燃料ペレットの製造方法。
5. The composition of the atmosphere gas so that the reduction of the powder is completed before the sintering between the powders is started in the step of sintering the oxide powder containing the low-density high-order oxide. And adjusting the flow rate.
A method for producing a nuclear fuel pellet according to any one of 1.
JP8089411A 1996-04-11 1996-04-11 Production of nuclear fuel pellet Withdrawn JPH09281265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8089411A JPH09281265A (en) 1996-04-11 1996-04-11 Production of nuclear fuel pellet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8089411A JPH09281265A (en) 1996-04-11 1996-04-11 Production of nuclear fuel pellet

Publications (1)

Publication Number Publication Date
JPH09281265A true JPH09281265A (en) 1997-10-31

Family

ID=13969912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8089411A Withdrawn JPH09281265A (en) 1996-04-11 1996-04-11 Production of nuclear fuel pellet

Country Status (1)

Country Link
JP (1) JPH09281265A (en)

Similar Documents

Publication Publication Date Title
JP3106113B2 (en) Recycling method for pellet scrap of oxide nuclear fuel
RU2352004C2 (en) METHOD OF OBTAINING OF NUCLEAR FUEL TABLETS ON BASIS OF IMMIXED OXIDE (U, Pu)O2 OR (U, Th)O2
US5978431A (en) Nuclear fuel pellets
US9653188B2 (en) Fabrication method of burnable absorber nuclear fuel pellets and burnable absorber nuclear fuel pellets fabricated by the same
JP4099529B2 (en) Nuclear fuel pellet and manufacturing method thereof
JPH0954187A (en) Producing method for nuclear fuel pellet using uranium oxide particle as raw material
US3342562A (en) High density urania fuel elements
JPH09281265A (en) Production of nuclear fuel pellet
JP2588947B2 (en) Manufacturing method of oxide nuclear fuel sintered body
JPH11287883A (en) Nuclear fuel pellet, its production method, its fuel element and fuel assembly
US4885147A (en) Process for preparing a large-grained UO2 fuel
KR100969644B1 (en) A fabrication method of nuclear fuel pellet by using high burnup spent nuclear fuel
JP3071671B2 (en) Method of controlling grain size of UO2 sintered pellet
US3254030A (en) Plutonium enriched uranium fuel for nuclear reactors
JP2981580B2 (en) Manufacturing method of nuclear fuel assembly
JPH0731266B2 (en) Manufacturing method of nuclear fuel sintered body
RU2750780C1 (en) Method for uranium-gadolinium nuclear fuel producing
JPH0761820A (en) Production of nuclear fuel pellet
JP2701043B2 (en) Method for producing oxide nuclear fuel body having double microstructure
KR100424331B1 (en) Property control technique of the mixed oxide fuel pellet by the addition method of M3O8 scrap powder and the sintering process
JPH03170898A (en) Preparation of nuclear fuel ceramic
KR100266480B1 (en) Uranium dioxide pellet manufacturing method
US3657137A (en) Nuclear fuel comprising uranium dioxide in a porous ceramic oxide matrix
JPH0755975A (en) Producing nuclear fuel pellet
JP2620234B2 (en) Method for producing nuclear fuel pellets

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030701