JP2981580B2 - Manufacturing method of nuclear fuel assembly - Google Patents
Manufacturing method of nuclear fuel assemblyInfo
- Publication number
- JP2981580B2 JP2981580B2 JP3214315A JP21431591A JP2981580B2 JP 2981580 B2 JP2981580 B2 JP 2981580B2 JP 3214315 A JP3214315 A JP 3214315A JP 21431591 A JP21431591 A JP 21431591A JP 2981580 B2 JP2981580 B2 JP 2981580B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- nuclear fuel
- mixed
- oxide
- mixing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、可燃性毒物としてガド
リニウム(Gd) を含む酸化物系核燃料体(核燃料ペレッ
ト)の製造方法に係り、詳しくは、燃焼特性に影響を与
える遊離UO2 や遊離ガドリニア(Gd2 O3 )の非常
に少ない均一な固溶体からなる酸化物系核燃料体の製造
方法に関するものである。BACKGROUND OF THE INVENTION This invention relates to a method of manufacturing a gadolinium oxide nuclear fuel assembly comprising (Gd) (nuclear fuel pellets) as burnable poison, details, and free UO 2 affect the combustion characteristics free The present invention relates to a method for producing an oxide-based nuclear fuel body made of a uniform solid solution having extremely little gadolinia (Gd 2 O 3 ).
【0002】[0002]
【従来の技術】プラントを初めて運転する場合には、炉
心に装荷する燃料はすべて新燃料を用いるが、その場合
には2 3 5 Uが全く燃焼していないため炉心の過剰反応
度が大きく、制御棒だけでは抑制できないので、あらか
じめ特別に吸収体を用意しておくことになっている。そ
れには、ホウ素入りステンレス鋼製の板を集合体間に運
転初期の間だけ配置しておくか、あるいはガドリニア
(Gd2 O3 )を二酸化ウランに混入した核燃料体燃料
棒を、集合体一体につき4〜5本組み込むことが行われ
ている。ガドリニウムは、中性子の吸収断面積が非常に
大きいので燃焼が進むにつれて2 3 5 Uより早く減少す
るため、ある程度燃料が進んだ段階ではガドリニウムの
効果は無くなり、燃焼度に対して悪影響を与えることが
なく好都合である。The when first operated BACKGROUND ART plant, fuel loaded in the core, all using the new fuel, but a large excess reactivity of the core for 2 3 5 U is not at all the combustion in the case, Since the control rods cannot be used alone, special absorbers must be prepared in advance. To do so, a plate made of stainless steel containing boron is placed between the assemblies only during the initial operation, or a nuclear fuel rod in which gadolinia (Gd 2 O 3 ) is mixed with uranium dioxide is attached to each assembly. Four to five wires are being assembled. Gadolinium order to reduce faster than 2 3 5 U as the absorption cross section of neutron proceeds combustion so large, no effect of gadolinium in an advanced stage to some extent fuel, can adversely affect against burnup It is convenient.
【0003】ところで、ガドリニウムを含む酸化物系核
燃料体を製造する方法としては、通常、UO2 を主成分
とする酸化物粉末に、約2〜6%のGd2 O3 粉末を混
合して成形・焼結を行うか、あるいはGd2 O3 を含有
した硝酸ウラニルなどの溶液を焙焼・還元するなどの方
法により混合粉末を得る共沈法により、溶液より直接混
合粉末を得、この粉末を成形・焼結する方法がある。As a method of producing an oxide nuclear fuel body containing gadolinium, usually, about 2 to 6% of a Gd 2 O 3 powder is mixed with an oxide powder containing UO 2 as a main component and molded. A mixed powder is obtained directly from the solution by sintering or by coprecipitation to obtain a mixed powder by a method such as roasting or reducing a solution of uranyl nitrate containing Gd 2 O 3 , etc. There is a method of molding and sintering.
【0004】[0004]
【発明が解決しようとする課題】後者によると、Gd2
O3 が非常に均一に分散した原料粉末が得られるため、
成形・焼結された核燃料体は均一な固溶体となる。しか
し、その反面、この方法ではGd2 O3 含有量の調整、
変更が難しく、製品のコストアップにつながるという欠
点がある。According to the latter, Gd 2
Because a raw material powder in which O 3 is very uniformly dispersed is obtained,
The shaped and sintered nuclear fuel body becomes a uniform solid solution. However, on the other hand, this method adjusts the Gd 2 O 3 content,
There is a drawback that it is difficult to change and leads to an increase in product cost.
【0005】また、これに対し、前者では所定量の粉末
同士を混合するだけでGd2 O3 含有量を調整できるた
め、工業的規模の生産に適した方法といえる。しかし、
この方法では、ボールミル等の混合効果の高い方法で長
時間混合を行わなければ、遊離UO2 および遊離Gd2
O3 のほとんどない均一な固溶体を得ることは困難であ
る。On the other hand, in the former method, the Gd 2 O 3 content can be adjusted only by mixing a predetermined amount of powders with each other, so that it can be said that this method is suitable for production on an industrial scale. But,
In this method, free UO 2 and free Gd 2 are used unless mixing is performed for a long time by a method having a high mixing effect such as a ball mill.
It is difficult to obtain a uniform solid solution with almost no O 3 .
【0006】本発明は叙上の如き実状に対処し、特に粉
末混合において新規な方法を見出すことにより、不充分
な混合条件下であっても、遊離UO2 や遊離Gd2 O3
の非常に少ない均一な固溶体からなる核燃料体を得るこ
とを目的とするものである。[0006] The present invention addresses the above circumstances, and in particular finds a novel method in powder mixing, which allows free UO 2 and free Gd 2 O 3 to be obtained even under poor mixing conditions.
It is an object of the present invention to obtain a nuclear fuel body composed of a uniform solid solution having a very low density.
【0007】[0007]
【課題を解決するための手段】即ち、上記目的を達成す
る本発明核燃料体の製造方法の特徴は、二酸化ウランを
主成分とし、ガドリニウムを所要量含む酸化物系核燃料
体を製造するに際し、上記二酸化ウランを主成分とする
酸化物をその粒子径が60μm以下の粉末として用い、
該酸化物粉末にガドリニア粉末を混合し、のち該混合粉
末を成形し焼結することにある。That is, the feature of the method for producing a nuclear fuel body of the present invention that achieves the above object is that, when producing an oxide-based nuclear fuel body containing uranium dioxide as a main component and containing a required amount of gadolinium, Using an oxide mainly composed of uranium dioxide as a powder having a particle size of 60 μm or less,
The object is to mix gadolinia powder with the oxide powder, and then form and sinter the mixed powder.
【0008】[0008]
【作用】しかして、上記本発明製造方法によれば、二酸
化ウラン酸化物粉末の粒子径を60μm以下に規制した
ことにより、ガドリニア粉末を簡単な混合によって上記
酸化物粉末に均等に混入させることが可能となり、この
ようにして得られた混合粉末を用いて成形・焼結された
核燃料体は、遊離UO2 、遊離Gd2 O3 の非常に少な
い均一な固溶体となる。According to the production method of the present invention, since the particle size of the uranium dioxide oxide powder is regulated to 60 μm or less, gadolinia powder can be evenly mixed into the oxide powder by simple mixing. It becomes possible, and the nuclear fuel body molded and sintered using the mixed powder obtained as described above becomes a uniform solid solution with very little free UO 2 and free Gd 2 O 3 .
【0009】[0009]
【実施例】以下、更に本発明の詳細と共に、その具体的
な実施例を説明する。先ず、本発明は、原料粉末である
UO2 を主成分とする酸化物粉末の凝集粒子の径を規制
するところに特徴がある。つまり、Gd2 O3を添加す
る前の酸化物粉末の径を、メッシュ(篩)等により60
μm以下にし、その後に必要に応じてこの粉末の一部と
Gd2 O3 粉末とをマスターブレンドしておく。EXAMPLES Specific examples of the present invention will be described below together with details of the present invention. First, the present invention is characterized in that the diameter of agglomerated particles of an oxide powder containing UO 2 as a main component as a main component is regulated. That is, the diameter of the oxide powder before adding Gd 2 O 3 is adjusted to 60 by a mesh (sieve) or the like.
μm or less, and then, if necessary, a part of this powder and a Gd 2 O 3 powder are master-blended.
【0010】次に、所定Gd2 O3 含有量となるよう
に、このマスターブレンドされた粉末、あるいはGd2
O3 粉末単独を、上記60μm以下に径のそろった酸化
物粉末に混合するのである。この際、ボールミルなどの
混合効果の高い装置を使用する必要はなく、メッシュ,
Vブレンダー等による混合で充分である。Next, the master-blended powder or the Gd 2 O 3 is mixed so as to have a predetermined Gd 2 O 3 content.
The O 3 powder alone is mixed with the oxide powder having a diameter of not more than 60 μm. In this case, it is not necessary to use a device having a high mixing effect such as a ball mill, and a mesh,
Mixing with a V blender or the like is sufficient.
【0011】このようして得られた混合粉末を用いて成
形・焼結された核燃料体は、非常に均一な固溶体とな
る。なお、母材と添加材とを混合する場合には、良好な
混合を行うために、先に母材の一部に添加材を混ぜ、次
にこの混合物を残りの母材に混ぜることが多いが、上記
したマスターブレンドとは、この母材の一部と添加材の
混合のことをいう。また、Vブレンダーとは、V形容器
を主体とする混合装置であり、ボールミル程の高混合は
行えないが、簡便に混合を行える。The nuclear fuel body molded and sintered using the mixed powder thus obtained becomes a very uniform solid solution. In addition, when mixing a base material and an additive, in order to perform good mixing, it is often the case that the additive is first mixed with a part of the base material, and then this mixture is mixed with the remaining base material. However, the above-mentioned master blend refers to a mixture of a part of the base material and the additive. A V-blender is a mixing device mainly composed of a V-shaped container, and cannot perform high mixing like a ball mill, but can easily perform mixing.
【0012】次に、本発明の製造方法により、6wt%の
Gd2 O3 添加濃度のUO2 核燃料体を製造する一例を
以下に示す。UO2 粉末をメッシュにより60μm以下
の粒子とし、この粉末と粒子径2μmのGd2 O3 粉末
をUO2 粉末とGd2 O3 粉末の重量比が5:2となる
ようにマスターブレンドを行った。この際、混合は目の
荒いメッシュ(目の開き約850μm)を5回通しただ
けである。Next, an example of producing a UO 2 nuclear fuel body having a Gd 2 O 3 addition concentration of 6 wt% by the production method of the present invention will be described below. The UO 2 powder was reduced to particles of 60 μm or less by a mesh, and this powder and a Gd 2 O 3 powder having a particle diameter of 2 μm were master-blended so that the weight ratio of the UO 2 powder to the Gd 2 O 3 powder was 5: 2. . At this time, mixing was performed only by passing through a coarse mesh (opening of about 850 μm) five times.
【0013】次に、このマスターブレンドされた粉末
と、メッシュにより60μm径以下とされた別のUO2
粉末とを重量比で21:79としてマスターブレンドの
ときと同様の混合法により混合し、プレス成形による乾
式造粒の後、プレス成形を行ない、焼結した。焼結温度
は1750℃、焼結時間は4時間、焼結雰囲気は水蒸気
を添加した水素,窒素の混合ガスである。以上の製造フ
ローチャートを図1に示す。Next, this master-blended powder is mixed with another UO 2 having a diameter of 60 μm or less by a mesh.
The powder was mixed at a weight ratio of 21:79 by the same mixing method as in the master blend, and after dry granulation by press molding, press molding was performed and sintering was performed. The sintering temperature is 1750 ° C., the sintering time is 4 hours, and the sintering atmosphere is a mixed gas of hydrogen and nitrogen to which steam has been added. The above manufacturing flowchart is shown in FIG.
【0014】このようにして得られた核燃料体の組織観
察を行なった結果、メッシュ混合しか行なっていないに
もかかわらず、非常に均一な固溶体となっていることが
わかった。比較のために、粒子径を(1)規制なし、
(2)100μm以下、(3)75μm以下、(4)6
0μm以下に規制したUO2 粉末を使用して上記方法に
て核燃料体を製造したところ、(1),(2),(3)
の場合にそれぞれ最大180μm,30μm,10μm
の遊離UO2 が認められ、(4)の60μm以下で均一
な固溶体となった。Observation of the structure of the nuclear fuel assembly obtained as described above revealed that a very uniform solid solution was obtained even though only mesh mixing was performed. For comparison, the particle size was (1) unregulated,
(2) 100 μm or less, (3) 75 μm or less, (4) 6
Nuclear fuel bodies were manufactured by the above method using UO 2 powder restricted to 0 μm or less, and (1), (2), (3)
180μm, 30μm, 10μm respectively in case of
Free UO 2 of observed became homogeneous solid solution with the following 60μm in (4).
【0015】なお、図2(a)に、本発明方法により製
造された核燃料体の断面組織観察例を、図2(b)にU
O2 粉末粒子径を規制しない従来の方法により製造され
た核燃料体の断面組織観察例を夫々示す。FIG. 2A shows an example of a cross-sectional structure observation of a nuclear fuel body manufactured by the method of the present invention, and FIG.
Each of the cross-sectional structure observation examples of a nuclear fuel body manufactured by a conventional method that does not regulate the O 2 powder particle diameter is shown.
【0016】図2(b)にあらわれるように、粒子径を
規制しなかった場合は遊離UO2 (濃く写っている塊状
のもの)が認められ、その長径は最大180μmに達し
ているが、本発明製法に係る図2(a)では、そのよう
な遊離物は認められない。なお、図2(a)に濃く写る
小径のものは遊離物ではなく気泡(ポア)である。As shown in FIG. 2 (b), when the particle size was not regulated, free UO 2 (a densely formed lump) was recognized, and the major axis reached a maximum of 180 μm. In FIG. 2 (a) according to the invention manufacturing method, no such free matter is recognized. It should be noted that those having a small diameter which appear dark in FIG. 2 (a) are not free matter but bubbles (pores).
【0017】以上のように、本発明方法によれば、UO
2 粉末の粒子径を60μm以下に規制したことにより、
均一な固溶体からなる核燃料体組織が得られた。また、
上記実施例ではマスターブレンドを行なう方式を示した
が、60μm以下のUO2 にGd2 O3 を直接混合して
も充分固溶した組織を得ることが可能である。なお、本
発明によれば、現在の実用Gd2 O3 添加濃度である約
2〜6%のみならず、10数%の添加濃度でも均一組織
が得られるので今後の高濃度Gd2 O3 添加燃料にも有
用である。As described above, according to the method of the present invention, UO
2 By regulating the particle size of the powder to 60 μm or less,
A nuclear fuel body structure consisting of a uniform solid solution was obtained. Also,
In the above-described embodiment, a method of performing master blending has been described. However, even if Gd 2 O 3 is directly mixed with UO 2 having a size of 60 μm or less, a structure in which a solid solution is obtained can be obtained. Note that according to the present invention, not only about 2-6%, which is the current practical Gd 2 O 3 addition concentration, for higher concentrations Gd 2 O 3 added since uniform structure is obtained in addition a concentration of 10 number% It is also useful for fuel.
【0018】[0018]
【発明の効果】以上説明したように、本発明の核燃料体
の製造方法は、二酸化ウランを主成分とし、ガドリニウ
ムを所要量含む酸化物系核燃料体を製造するに際し、上
記二酸化ウランを主成分とする酸化物をその粒子径が6
0μm以下の粉末として用い、該酸化物粉末にガドリニ
ア粉末を混合し、のち該混合粉末を成形し焼結するもの
であり、二酸化ウラン酸化物粉末の粒子径を60μm以
下に規制したことにより、ボールミルのような強混合を
長時間行なうことなく、簡単な混合にてガドリニア粉末
を上記酸化物粉末に均等に混入せしめ、共沈法を用いて
製造した核燃料体と同等の、遊離UO2 ・遊離Gd2 O
3の非常に少ない均一固溶体を得ることができるとの顕
著な効果を奏するものである。As described above, the method for producing a nuclear fuel body according to the present invention provides a method for producing an oxide nuclear fuel body containing uranium dioxide as a main component and a required amount of gadolinium. Oxide having a particle size of 6
0 gm or less, gadolinia powder is mixed with the oxide powder, and then the mixed powder is molded and sintered. By regulating the particle diameter of the uranium dioxide oxide powder to 60 m or less, a ball mill is used. Gadolinia powder is evenly mixed with the above oxide powder by simple mixing without strong mixing as described above, and free UO 2 · free Gd equivalent to a nuclear fuel body manufactured using a coprecipitation method. 2 O
3 has a remarkable effect that a very small uniform solid solution can be obtained.
【図1】本発明の製造方法の一例を示すフローチャート
である。FIG. 1 is a flowchart illustrating an example of a manufacturing method according to the present invention.
【図2】(a)本発明の製造方法によって製造された核
燃料体の金属組織を示す100 倍の顕微鏡写真である。 (b)従来の製造方法によって製造された核燃料体の金
属組織を示す100 倍の顕微鏡写真である。FIG. 2 (a) is a photomicrograph (× 100) showing a metal structure of a nuclear fuel body manufactured by the manufacturing method of the present invention. (B) A photomicrograph of 100 times showing the metal structure of a nuclear fuel assembly manufactured by a conventional manufacturing method.
Claims (1)
ムを所要量含む酸化物系核燃料体を製造するに際し、上
記二酸化ウランを主成分とする酸化物をその粒子径が6
0μm以下の粉末として用い、該酸化物粉末にガドリニ
ア粉末を混合し、のち該混合粉末を成形し焼結すること
を特徴とする核燃料体の製造方法。When producing an oxide-based nuclear fuel body containing uranium dioxide as a main component and a required amount of gadolinium, the oxide containing uranium dioxide as a main component has a particle diameter of 6%.
A method for producing a nuclear fuel body, characterized in that gadolinia powder is mixed with the oxide powder, and then the mixed powder is molded and sintered.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3214315A JP2981580B2 (en) | 1991-07-30 | 1991-07-30 | Manufacturing method of nuclear fuel assembly |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3214315A JP2981580B2 (en) | 1991-07-30 | 1991-07-30 | Manufacturing method of nuclear fuel assembly |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0534480A JPH0534480A (en) | 1993-02-09 |
JP2981580B2 true JP2981580B2 (en) | 1999-11-22 |
Family
ID=16653720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3214315A Expired - Lifetime JP2981580B2 (en) | 1991-07-30 | 1991-07-30 | Manufacturing method of nuclear fuel assembly |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2981580B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100364016C (en) * | 2004-12-02 | 2008-01-23 | 中国核动力研究设计院 | (U,Gd)O2Mixing process for preparing burnable poison core block |
KR100793282B1 (en) * | 2006-12-28 | 2008-01-10 | 한국원자력연구원 | A dry preparation method of solid solution fuel powder with highly-concentrated burnable poison |
JP6699882B2 (en) * | 2015-11-18 | 2020-05-27 | 株式会社東芝 | Nuclear fuel compact, method of manufacturing nuclear fuel compact, and nuclear fuel rod |
-
1991
- 1991-07-30 JP JP3214315A patent/JP2981580B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0534480A (en) | 1993-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3504058A (en) | Process for manufacturing sintered pellets of nuclear fuel | |
US3361857A (en) | Method of preparing a fuel element of fissionable oxide and burnable poison | |
US20020149125A1 (en) | Method of producing a nuclear fuel sintered body | |
US4247495A (en) | Method of producing PuO2 /UO2 /-nuclear fuels | |
US4231976A (en) | Process for the production of ceramic plutonium-uranium nuclear fuel in the form of sintered pellets | |
US5978431A (en) | Nuclear fuel pellets | |
US9653188B2 (en) | Fabrication method of burnable absorber nuclear fuel pellets and burnable absorber nuclear fuel pellets fabricated by the same | |
US3375306A (en) | Method of producing dense,sintered bodies of uo2 or uo2-puo2 mixtures | |
JP2981580B2 (en) | Manufacturing method of nuclear fuel assembly | |
JPS5895617A (en) | Method of increasing grain size of uranium oxide | |
JPS60188881A (en) | Manufacture of oxide nuclear fuel sintered body | |
US5762838A (en) | Method of producing nuclear fuel pellet | |
JP3919929B2 (en) | NUCLEAR PELLET, ITS MANUFACTURING METHOD, FUEL ELEMENT AND FUEL ASSEMBLY | |
US4749529A (en) | Method of manufacturing sintered nuclear fuel bodies | |
JP5153981B2 (en) | Manufacturing method of MOX type nuclear fuel pellets | |
US3761546A (en) | Method of making uranium dioxide bodies | |
US3755513A (en) | Production of porous uo2 containing ceramic oxide fuel | |
US2952535A (en) | Sintering metal oxides | |
JP2790548B2 (en) | Manufacturing method of nuclear fuel sintered body | |
US3213161A (en) | Process for forming a uranium mononitride-uranium dioxide nuclear fuel | |
US3102850A (en) | Method of preparing a ceramic fuel element | |
JP3051388B1 (en) | Manufacturing method of nuclear fuel sintered body | |
JPH0545484A (en) | Uranium dioxide powder for atomic fuel and manufacture thereof | |
RU2382424C2 (en) | Method of preparing uranium-erbium ceramic nuclear fuel | |
US3764551A (en) | Method of manufacture of sintered hypostoichiometric oxides |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990727 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080924 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110924 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term |