JPH09280503A - Control for steam pressure in boiler steam supply system - Google Patents

Control for steam pressure in boiler steam supply system

Info

Publication number
JPH09280503A
JPH09280503A JP9251396A JP9251396A JPH09280503A JP H09280503 A JPH09280503 A JP H09280503A JP 9251396 A JP9251396 A JP 9251396A JP 9251396 A JP9251396 A JP 9251396A JP H09280503 A JPH09280503 A JP H09280503A
Authority
JP
Japan
Prior art keywords
boiler
steam pressure
steam
fuel
predicted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9251396A
Other languages
Japanese (ja)
Inventor
Toru Nakamura
徹 中村
Takahiro Mita
宇洋 三田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9251396A priority Critical patent/JPH09280503A/en
Publication of JPH09280503A publication Critical patent/JPH09280503A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make a plant cost optimum and minimize an operating cost by deciding the load ratio of respective boilers every period so that a predictable mixed steam pressure approaches a set value, controlling the quantity of generation of steam of the respective boilers to optimum values, and most suitably controlling the consumption of respective fuel so as to minimize a fuel cost. SOLUTION: A first optimum calculating part 3 calculates the steam pressure of respective boilers so that a future output value predicted based on an evaluation function 1 showing an operation exponent such as a cost function and a restricted condition 1 such as the upper and lower limits of boiler steam pressure comes near to a set value relative to predicted future mixed steam pressure. Then, the steam pressure of the respective boilers is set by an output part 4. Further, a second optimum calculating part 7 calculates the consumption respective fuel so that future boiler steam pressure predicted based on an evaluation function 2 showing an operating exponent such as a cost function and a restricted condition such as the upper and lower limits of the flow rate of fuel comes nearest to a set value relative to predicted future boiler steam pressure. Then, the consumption of respective fuel is determined by an output part 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、複数の燃料で複数
のボイラを加熱するプロセスにおける混合蒸気を蒸気負
荷に供給するボイラ蒸気供給系の蒸気圧力制御方法に関
する。
TECHNICAL FIELD The present invention relates to a steam pressure control method for a boiler steam supply system for supplying mixed steam to a steam load in a process of heating a plurality of boilers with a plurality of fuels.

【0002】[0002]

【従来の技術】例えば、蒸気タービン発電プラントにお
いて、発電機を駆動する蒸気タービンに蒸気を供給する
ボイラ蒸気供給系としては、図5に示すように複数のボ
イラB1,B2,B3のそれぞれを複数の燃料A,B,
Cで加熱し、各ボイラB1,B2,B3から発生する蒸
気を混合し、この混合蒸気を蒸気タービンに供給するよ
うにしたものがある。
2. Description of the Related Art For example, in a steam turbine power plant, as a boiler steam supply system for supplying steam to a steam turbine for driving a generator, a plurality of boilers B1, B2, B3 are provided as shown in FIG. Fuel A, B,
There is one in which the steam is heated at C, the steam generated from each of the boilers B1, B2, B3 is mixed, and the mixed steam is supplied to a steam turbine.

【0003】従来、このようなボイラ蒸気供給系のボイ
ラ蒸気圧力を制御するには、オペレータにより各ボイラ
B1,B2,B3の蒸気圧力を経験によって設定し、そ
の設定値に基いて各ボイラB1,B2,B3の蒸気圧力
を適宜調節することにより混合蒸気圧力を制御してい
る。
Conventionally, in order to control the boiler steam pressure of such a boiler steam supply system, the operator sets the steam pressure of each boiler B1, B2, B3 empirically, and based on the set value, each boiler B1, The mixed vapor pressure is controlled by appropriately adjusting the vapor pressures of B2 and B3.

【0004】また、他のボイラ蒸気圧力の制御方法とし
ては、各ボイラの効率等を考慮して自動で負荷配分を決
定し、この負荷配分に応じて各ボイラB1,B2,B3
の蒸気圧力を適宜調節することにより混合蒸気圧力を制
御している。
As another boiler steam pressure control method, load distribution is automatically determined in consideration of the efficiency of each boiler, and each boiler B1, B2, B3 is determined according to this load distribution.
The mixed vapor pressure is controlled by appropriately adjusting the vapor pressure of.

【0005】この場合、上記何ずれのボイラ蒸気圧力の
制御も、混合圧力の変化に対しては、図6に示すように
ある長い時間間隔(数分〜数時間間隔)で各ボイラB
1,B2,B3の設定値を変更している。一方、各ボイ
ラB1,B2,B3における燃料配分についても同様で
あり、必ずしも燃料コストが最小となるような制御が行
われていないのが現状である。
In this case, even if the steam pressure of any of the above-mentioned boilers is controlled, each boiler B is controlled at a long time interval (several minutes to several hours) as shown in FIG.
The set values of 1, B2 and B3 are changed. On the other hand, the same applies to the fuel distribution in each of the boilers B1, B2, B3, and the present situation is that the control that minimizes the fuel cost is not necessarily performed.

【0006】[0006]

【発明が解決しようとする課題】このように従来のボイ
ラ蒸気圧力制御系の制御方法では、各ボイラの負荷配分
とそれぞれのボイラにおける燃料配分において、きめ細
かな制御が行われていないため、しばしば最適運転点か
ら外れることがあった。
As described above, in the conventional boiler steam pressure control system control method, fine control is not performed in the load distribution of each boiler and the fuel distribution in each boiler, so that it is often optimum. Sometimes I got out of the driving point.

【0007】本発明は上記のような事情に鑑みてなされ
たもので、各ボイラを常に最適な比率で出力制御でき、
さらに各ボイラの燃料を最適な比率で消費することによ
ってプラント効率の最適化、あるいはプラント運転コス
トの最小化を実現できるボイラ蒸気供給系の蒸気圧力制
御方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is possible to control the output of each boiler at an optimum ratio at all times.
Another object of the present invention is to provide a steam pressure control method for a boiler steam supply system, which can realize optimization of plant efficiency or minimization of plant operation cost by consuming the fuel of each boiler at an optimum ratio.

【0008】[0008]

【課題を解決するための手段】本発明は上記の目的を達
成するため、複数のボイラのそれぞれを複数の燃料で加
熱し、各ボイラから発生する蒸気を混合し、この混合蒸
気を蒸気負荷に供給するボイラ蒸気供給系において、ま
ず前記各ボイラの蒸気発生量を決定する際に、前記混合
蒸気の圧力と各ボイラ負荷の関係を表したプロセスの数
学モデルを用いて混合蒸気圧力の将来の動きをモデル予
測制御により予測し、この予測された混合蒸気圧力が設
定値に近付くように各ボイラの負荷比率を制御周期毎に
決定する第1最適計算部により各ボイラの蒸気発生量を
常に最適に制御し、次いで各ボイラの複数の燃料の消費
量を決定する際に、過去の各燃料の消費量とボイラ蒸気
圧力との関係を表したプロセスの数学モデルを用いてボ
イラ蒸気圧力の将来の動きをモデル予測制御により予測
し、この予測されたボイラ蒸気圧力が前記第1最適計算
部で決定された各ボイラの負荷比率の設定値に近付くよ
うに各燃料の消費比率を制御周期毎に決定する第2最適
計算部により燃料のコストが最小となるように各燃料の
消費量を最適に制御することを特徴とするものである。
In order to achieve the above object, the present invention heats each of a plurality of boilers with a plurality of fuels, mixes steam generated from each boiler, and uses this mixed steam as a steam load. In the boiler steam supply system to be supplied, first, when determining the steam generation amount of each boiler, the future movement of the mixed steam pressure is calculated using a mathematical model of the process showing the relationship between the pressure of the mixed steam and each boiler load. Is predicted by the model predictive control, and the first optimum calculation unit that determines the load ratio of each boiler for each control cycle so that the predicted mixed steam pressure approaches the set value always optimizes the steam generation amount of each boiler. In controlling and then determining multiple fuel consumption for each boiler, the boiler steam pressure generalization is calculated using a mathematical model of the process that describes the relationship between each fuel consumption in the past and boiler steam pressure. Is predicted by model predictive control, and the fuel consumption ratio is controlled for each control cycle so that the predicted boiler steam pressure approaches the set value of the load ratio of each boiler determined by the first optimum calculation unit. It is characterized in that the second optimum calculation unit to be determined optimally controls the consumption of each fuel so that the fuel cost is minimized.

【0009】従って、このようなボイラ蒸気供給系の蒸
気圧力制御方法にあっては、複数のボイラの蒸気発生量
を決定する際に、モデル予測制御の第1最適計算部の各
ボイラの負荷比率を決定する機能により各ボイラの蒸気
発生量を常に最適に制御し、次にモデル予測制御の第2
最適計算部の各燃料の消費比率を決定する機能により各
燃料の消費量を最適に制御することによって、常に最適
な比率で各ボイラより蒸気圧力を発生させ、さらに各ボ
イラの燃料を最適な比率で消費することによりプラント
効率の最適化、或いはプラントの運転コストの最小化の
実現が可能となる。
Therefore, in such a steam pressure control method for the boiler steam supply system, when determining the steam generation amounts of the plurality of boilers, the load ratio of each boiler of the first optimum calculation section of the model predictive control is determined. By the function to determine the, the steam generation amount of each boiler is always optimally controlled.
By optimally controlling the consumption of each fuel by the function that determines the consumption ratio of each fuel of the optimum calculation unit, the steam pressure is always generated from each boiler at the optimum ratio, and the fuel of each boiler is optimized to the optimum ratio. It is possible to optimize the plant efficiency or minimize the operating cost of the plant by consuming.

【0010】[0010]

【発明の実施の形態】以下本発明の実施の形態を図面を
参照して説明する。図1は本発明によるボイラ蒸気圧力
制御系の制御方法を説明するための機能ブロック図を示
すものである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a functional block diagram for explaining a control method of a boiler steam pressure control system according to the present invention.

【0011】図1において、1は図5に示すタービン蒸
気供給系でそれぞれ検出される混合蒸気圧力、各ボイラ
の蒸気圧力をオンラインでリアルタイムに取入れるプラ
ントデータ取入部、2はこのプラントデータ取入部1に
取入れられた各ボイラの蒸気圧力変化と混合蒸気圧力変
化に対し、過去の各ボイラの蒸気圧力変化と混合蒸気圧
力変化との関係を表すプロセスモデルを用いて各ボイラ
の蒸気圧力を予測する第1モデル予測部である。
In FIG. 1, reference numeral 1 is a plant data intake section for taking in mixed steam pressures respectively detected in the turbine steam supply system shown in FIG. 5 and steam pressure of each boiler in real time on-line, and 2 is this plant data intake section. For the steam pressure change and mixed steam pressure change of each boiler taken in No. 1, predict the steam pressure of each boiler using a process model that represents the relationship between past steam pressure change and mixed steam pressure change of each boiler It is a first model predicting unit.

【0012】また、3はこの第1モデル予測部2で予測
された各ボイラの蒸気圧力に対して評価関数1により各
ボイラの負荷配分率を決定する指標と各ボイラの特性か
ら決まる蒸気圧力の上下限値や圧力変化率の制限値等の
制約条件をもとに要求される混合蒸気圧力を満たすため
の各ボイラの最適な蒸気圧力を決定する第1最適計算
部、4はこの第1最適計算部3で決定された蒸気圧力を
もとに各ボイラの蒸気圧力を設定する出力部である。
Further, 3 is an index for determining the load distribution ratio of each boiler by the evaluation function 1 with respect to the steam pressure of each boiler predicted by the first model predicting unit 2 and the steam pressure determined from the characteristics of each boiler. The first optimum calculation unit 4 which determines the optimum steam pressure of each boiler to satisfy the required mixed steam pressure based on the constraint conditions such as the upper and lower limit values and the limit value of the pressure change rate is the first optimum calculation unit. This is an output unit that sets the steam pressure of each boiler based on the steam pressure determined by the calculation unit 3.

【0013】これら第1モデル予測部2及び第1最適計
算部4は、第1段階最適化部を構成する。一方、5は図
5に示すタービン蒸気供給系でそれぞれ検出される各ボ
イラの蒸気圧力及び各燃料の消費量(燃料流量)をオン
ラインでリアルタイムに取込むプラントデータ取入部、
6はこのプラントデータ取入部5より取込まれた各ボイ
ラの蒸気圧力及び各燃料の消費量に対し、各ボイラにお
ける各燃料消費量変化と各ボイラの蒸気圧力変化との関
係を表すプロセスモデルを用いて各ボイラにおける各燃
料の消費量を予測する第2モデル予測部である。
The first model predicting section 2 and the first optimum calculating section 4 constitute a first stage optimizing section. On the other hand, 5 is a plant data importing unit that captures the steam pressure of each boiler and the consumption of each fuel (fuel flow rate) detected in the turbine steam supply system shown in FIG.
6 is a process model showing the relationship between the change in fuel consumption in each boiler and the change in steam pressure in each boiler with respect to the steam pressure and each fuel consumption of each boiler taken in from the plant data import unit 5. It is a 2nd model prediction part which predicts the consumption of each fuel in each boiler using it.

【0014】また、7はこの第2モデル予測部6で予測
された各ボイラの燃料消費量に対して評価関数2により
各燃料の消費配分率を決定する指標と燃料流量上下限等
の制約条件をもとに要求される各ボイラの蒸気圧力(第
1段最適化部で求められた設定値)を満たすための各燃
料の消費量を決定する第2最適計算部、8はこの第2最
適化計算部7で決定された各燃料の消費量をもとに各燃
料の流量を設定する出力部である。
Numeral 7 is an index for determining the consumption distribution ratio of each fuel by the evaluation function 2 with respect to the fuel consumption of each boiler predicted by the second model predicting unit 6 and constraint conditions such as fuel flow rate upper and lower limits. A second optimal calculation unit for determining the consumption amount of each fuel to satisfy the steam pressure of each boiler (set value obtained by the first stage optimization unit) based on This is an output unit that sets the flow rate of each fuel based on the consumption amount of each fuel determined by the chemical calculation unit 7.

【0015】これら第2モデル予測部6及び第2最適計
算部7は、第2段階最適化部を構成する。次に上記のよ
うに構成されたボイラ蒸気供給系の制御機能の作用を述
べる。
The second model predicting section 6 and the second optimum calculating section 7 constitute a second stage optimizing section. Next, the operation of the control function of the boiler steam supply system configured as described above will be described.

【0016】まず、第1段階最適化部の作用について図
2により説明する。いま、プラントデータ取入部1に図
5に示すボイラB1の蒸気圧力、ボイラB2の蒸気圧力
及びボイラB3の蒸気圧力と混合蒸気圧力が取入れられ
ると、第1モデル予測部2ではプロセスに対する過去の
各ボイラの蒸気圧力(入力値)から、プロセスの未来の
混合蒸気圧力(出力値)をプロセスモデルを用いたモデ
ル予測制御により予測する。
First, the operation of the first stage optimization section will be described with reference to FIG. Now, when the steam pressure of the boiler B1, the steam pressure of the boiler B2, the steam pressure of the boiler B3, and the mixed steam pressure shown in FIG. From the steam pressure (input value) of the boiler, the future mixed steam pressure (output value) of the process is predicted by model predictive control using a process model.

【0017】この第1モデル予測部2により予測された
未来の混合蒸気圧力に対し、第1最適計算部3ではコス
ト関数などの運転指標を示す評価関数2とボイラ蒸気圧
力の上下限などの制約条件2をもとに予測した未来の出
力値が設定値に最も近付くような各ボイラの蒸気圧力を
計算する。そして、出力部4により各ボイラの蒸気圧力
を設定する。
With respect to the future mixed steam pressure predicted by the first model predicting unit 2, the first optimum calculating unit 3 evaluates the operating function such as a cost function 2 and constraints such as upper and lower limits of boiler steam pressure. The steam pressure of each boiler is calculated so that the future output value predicted based on the condition 2 comes closest to the set value. Then, the steam pressure of each boiler is set by the output unit 4.

【0018】次に第2段階最適化部の作用について図3
により説明する。上記第1段階最適化部で各ボイラの蒸
気圧力が設定された後、プラントデータ取入部5に各ボ
イラの蒸気圧力及び各燃料の消費量が取入れられると、
第2モデル予測部6ではプロセスに対する過去の各燃料
の消費量(入力値)から、プロセスの未来のボイラ蒸気
圧力(出力値)をプロセスモデルを用いたモデル予測制
御により予測する。
Next, the operation of the second stage optimizing unit will be described with reference to FIG.
This will be described below. After the steam pressure of each boiler is set in the first stage optimization unit, when the steam pressure of each boiler and the consumption amount of each fuel are taken into the plant data import unit 5,
The second model predicting unit 6 predicts the boiler steam pressure (output value) in the future of the process by model predictive control using the process model from the past fuel consumption amounts (input values) for the process.

【0019】この第2モデル予測部6により予測された
未来のボイラ蒸気圧力に対し、第2最適計算部7ではコ
スト関数などの運転指標を示す評価関数2と燃料流量の
上下限などの制約条件2をもとに予測した未来のボイラ
蒸気圧力が設定値(第1段階最適化部の解)に最も近付
くような各燃料の消費量を計算する。そして、出力部4
により各燃料の消費量を設定する。
With respect to the future boiler steam pressure predicted by the second model predicting unit 6, the second optimum calculating unit 7 evaluates the operating function such as the cost function 2 and the constraint conditions such as the upper and lower limits of the fuel flow rate. Based on 2, the consumption amount of each fuel is calculated so that the predicted boiler steam pressure in the future comes closest to the set value (solution of the first stage optimization unit). And the output unit 4
Set the consumption of each fuel by.

【0020】このように第1段階最適化部によって各ボ
イラへの蒸気圧力配分を最適化し、さらに第2段階最適
化部によって求められた各ボイラの蒸気圧力設定値に追
従するように燃料配分を最適に制御することで、プラン
ト効率の最適化、プラント運転コストの最小化を実現す
ることができる。
In this way, the steam pressure distribution to each boiler is optimized by the first stage optimization unit, and the fuel distribution is made so as to follow the steam pressure set value of each boiler obtained by the second stage optimization unit. Optimal control can realize optimization of plant efficiency and minimization of plant operating cost.

【0021】ここで、上記実施の形態で述べたボイラ蒸
気供給系の制御機能の具体例を図4により説明する。図
4に示すボイラ蒸気供給系の制御機能は、混合蒸気圧力
Pをオンラインに取入れ、各蒸気量P1,P2,P3の
変化と、混合蒸気圧力Pの関係を表すプロセスモデル
[G1 G2 G3]を用いるモデル予測制御機能11
と、各燃料消費量FA,FB,FCの変化と各ボイラの
蒸気圧力変化P1,P2,P3との関係を表すプロセス
モデルを用いるモデル予測制御機能12とから構成され
る。
A specific example of the control function of the boiler steam supply system described in the above embodiment will be described with reference to FIG. The control function of the boiler steam supply system shown in FIG. 4 takes in the mixed steam pressure P on-line and displays a process model [G1 G2 G3] that represents the relationship between the change in each steam amount P1, P2, P3 and the mixed steam pressure P. Model predictive control function used 11
And a model predictive control function 12 using a process model showing the relationship between the changes in the fuel consumption amounts FA, FB, FC and the steam pressure changes P1, P2, P3 of the boilers.

【0022】上記モデル予測制御機能11は、各ボイラ
の出力効率、能力などを考慮して蒸気圧力を最適配分
(K1,K2,K3)する最適計算部1を備えている。
また、モデル予測制御機能12は、モデル予測制御機能
11で最適配分される蒸気圧力から必要燃料カロリー変
換した値をもとに、各燃料のコスト、燃焼カロリーなど
を考慮して消費燃料を最適配分する最適計算部2と、そ
の最適計算結果(燃料A流量FA、燃料B流量FB、燃
料C流量FC)を出力する機能とを備えている。
The model predictive control function 11 includes an optimum calculation section 1 for optimum distribution (K1, K2, K3) of steam pressure in consideration of output efficiency and capacity of each boiler.
Further, the model predictive control function 12 optimally allocates the consumed fuel in consideration of the cost of each fuel, the calorie burned, etc. based on the value obtained by converting the required fuel calorie from the steam pressure optimally distributed by the model predictive control function 11. And an optimum calculation unit 2 for outputting the optimum calculation result (fuel A flow rate FA, fuel B flow rate FB, fuel C flow rate FC).

【0023】このようなボイラ蒸気供給系の制御機能に
おいて、図5に示すボイラ蒸気供給系の混合蒸気圧力P
を制御する際、各ボイラB1,B2,B3の蒸気圧力P
1,P2,P3を制御する。この場合、モデル予測制御
機能11では各蒸気圧力の変化と混合蒸気圧力の変化を
表すプロセスモデル[G1 G2 G3]を用いるモデ
ル制御により、各ボイラの蒸気圧力P1,P2,P3を
下記(1)式により決定する。
In such a control function of the boiler steam supply system, the mixed steam pressure P of the boiler steam supply system shown in FIG.
Control the steam pressure P of each boiler B1, B2, B3
1, P2, P3 are controlled. In this case, the model predictive control function 11 controls the steam pressures P1, P2, P3 of each boiler by the model control using the process model [G1 G2 G3] representing the change of each steam pressure and the change of the mixed steam pressure (1) below. Determined by the formula.

【0024】[0024]

【数1】 [Equation 1]

【0025】そして、モデル予測制御機能11の最適計
算部1においては、各ボイラの効率を考慮して最適な出
力配分[P1,P2,P3]を決定する。次に上記の最
適化によって求められた蒸気圧力を実現するようにモデ
ル予測制御機能11において、各ボイラの燃料配分を決
定する。
Then, the optimum calculation section 1 of the model predictive control function 11 determines the optimum output distribution [P1, P2, P3] in consideration of the efficiency of each boiler. Next, the model predictive control function 11 determines the fuel distribution of each boiler so as to realize the steam pressure obtained by the above optimization.

【0026】例としてボイラB1について考えると、蒸
気圧力P1を制御する際に、各燃料の消費量FA,F
B,FCを制御する。この場合、モデル予測制御機能1
2では各蒸気圧力の変化と混合蒸気圧力の変化を表すプ
ロセスモデル[G1 G2 G3]を用いるモデル制御
により、各燃料A,B,Cの消費量FA,FB,FCを
下記(2)式により決定する。
Considering the boiler B1 as an example, when controlling the steam pressure P1, the fuel consumption FA, F of each fuel is controlled.
Control B and FC. In this case, the model predictive control function 1
In 2, the consumption of each fuel A, B, C FA, FB, FC is calculated by the following equation (2) by the model control using the process model [G1 G2 G3] showing the change of each steam pressure and the change of the mixed steam pressure. decide.

【0027】[0027]

【数2】 [Equation 2]

【0028】そして、モデル予測制御機能12の最適計
算部2においては、各燃料のコスト、燃焼カロリーなど
を考慮して最適な燃料消費配分[FA FB FC]を
決定する。
Then, the optimum calculation unit 2 of the model predictive control function 12 determines the optimum fuel consumption distribution [FA FB FC] in consideration of the cost of each fuel, the calories burned and the like.

【0029】このように各ボイラの出力配分及びそれぞ
れのボイラを加熱する各燃料の消費配分を常に最適に制
御することによって、混合蒸気圧力の安定制御及び運転
コスト(燃料コスト)を最小化することができる。
In this way, stable control of the mixed vapor pressure and operation cost (fuel cost) are minimized by always controlling the output distribution of each boiler and the consumption distribution of each fuel for heating each boiler optimally. You can

【0030】なお、上記実施の形態では、蒸気タービン
発電プラントの発電機を駆動する蒸気タービンを蒸気負
荷する場合のボイラ蒸気供給系の蒸気圧力制御について
述べたが、他のプラントの蒸気負荷にボイラ蒸気を供給
するボイラ蒸気供給系に対しても前述同様に適用するこ
とができるものである。
In the above embodiment, the steam pressure control of the boiler steam supply system in the case where the steam turbine driving the generator of the steam turbine power plant is subjected to the steam load has been described. The same can be applied to the boiler steam supply system that supplies steam as described above.

【0031】[0031]

【発明の効果】以上述べように本発明によれば、各ボイ
ラを常に最適な比率で出力制御でき、さらに各ボイラの
燃料を最適な比率で消費することによってプラント効率
の最適化、あるいはプラント運転コストの最小化を実現
できるボイラ蒸気供給系の蒸気圧力制御方法を提供する
ことができる。
As described above, according to the present invention, the output of each boiler can be controlled at an optimum ratio at all times, and the fuel efficiency of each boiler can be optimized by consuming the fuel of each boiler at an optimum ratio. A steam pressure control method for a boiler steam supply system that can realize cost minimization can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるボイラ蒸気供給系の蒸気圧力制御
方法の実施の形態を説明するための機能ブロック図。
FIG. 1 is a functional block diagram for explaining an embodiment of a steam pressure control method for a boiler steam supply system according to the present invention.

【図2】同実施の形態において、第1段階最適化部の作
用説明図。
FIG. 2 is an operation explanatory diagram of a first stage optimizing unit in the embodiment.

【図3】同実施の形態において、第2段階最適化部の作
用説明図。
FIG. 3 is an operation explanatory view of a second stage optimization unit in the embodiment.

【図4】同実施の形態のボイラ蒸気供給系の制御機能の
具体例を示す構成図。
FIG. 4 is a configuration diagram showing a specific example of a control function of a boiler steam supply system of the same embodiment.

【図5】ボイラ蒸気供給系の構成例を示す図。FIG. 5 is a diagram showing a configuration example of a boiler steam supply system.

【図6】従来のボイラ蒸気供給系の蒸気圧力制御方法に
よるボイラ出力と時間との関係を示す運転曲線図。
FIG. 6 is an operation curve diagram showing the relationship between boiler output and time according to a conventional steam pressure control method for a boiler steam supply system.

【符号の説明】[Explanation of symbols]

1,5……プラントデータ取入部 2……第1モデル予測部 3……第1最適計算部 4,8……出力部 6……第2モデル予測部 7……第2最適計算部 1, 5 ...... Plant data importing unit 2 ...... First model predicting unit 3 ...... First optimum calculating unit 4,8 ...... Output unit 6 ...... Second model predicting unit 7 ...... Second optimum calculating unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数のボイラのそれぞれを複数の燃料で
加熱し、各ボイラから発生する蒸気を混合し、この混合
蒸気を蒸気負荷に供給するボイラ蒸気供給系において、 まず前記各ボイラの蒸気発生量を決定する際に、前記混
合蒸気の圧力と各ボイラ負荷の関係を表したプロセスの
数学モデルを用いて混合蒸気圧力の将来の動きをモデル
予測制御により予測し、この予測された混合蒸気圧力が
設定値に近付くように各ボイラの負荷比率を制御周期毎
に決定する第1最適計算部により各ボイラの蒸気発生量
を常に最適に制御し、 次いで各ボイラの複数の燃料の消費量を決定する際に、
過去の各燃料の消費量とボイラ蒸気圧力との関係を表し
たプロセスの数学モデルを用いてボイラ蒸気圧力の将来
の動きをモデル予測制御により予測し、この予測された
ボイラ蒸気圧力が前記第1の最適計算部で決定された各
ボイラの負荷比率の設定値に近付くように各燃料の消費
比率を制御周期毎に決定する第2最適計算部により燃料
のコストが最小となるように各燃料の消費量を最適に制
御することを特徴とするボイラ蒸気供給系の蒸気圧力制
御方法。
1. A boiler steam supply system for heating each of a plurality of boilers with a plurality of fuels, mixing steams generated from the respective boilers, and supplying the mixed steam to a steam load. When determining the amount, the future behavior of the mixed steam pressure is predicted by the model predictive control using the mathematical model of the process showing the relationship between the pressure of the mixed steam and each boiler load, and the predicted mixed steam pressure is predicted. , The load ratio of each boiler is determined for each control cycle so that it approaches the set value, the steam generation amount of each boiler is always optimally controlled by the first optimal calculation unit, and then the consumption amount of multiple fuels of each boiler is determined. When doing
The future behavior of the boiler steam pressure is predicted by model predictive control using a mathematical model of the process that represents the relationship between the past fuel consumption and the boiler steam pressure, and the predicted boiler steam pressure is the first The second optimum calculation unit, which determines the fuel consumption ratio for each control cycle so as to approach the load ratio setting value of each boiler determined by the optimum calculation unit, reduces the fuel cost to the minimum. A steam pressure control method for a boiler steam supply system, characterized by optimally controlling consumption.
JP9251396A 1996-04-15 1996-04-15 Control for steam pressure in boiler steam supply system Pending JPH09280503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9251396A JPH09280503A (en) 1996-04-15 1996-04-15 Control for steam pressure in boiler steam supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9251396A JPH09280503A (en) 1996-04-15 1996-04-15 Control for steam pressure in boiler steam supply system

Publications (1)

Publication Number Publication Date
JPH09280503A true JPH09280503A (en) 1997-10-31

Family

ID=14056408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9251396A Pending JPH09280503A (en) 1996-04-15 1996-04-15 Control for steam pressure in boiler steam supply system

Country Status (1)

Country Link
JP (1) JPH09280503A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147266A (en) * 2005-10-27 2007-06-14 Fisher Rosemount Syst Inc System and method to control multiple-fuel steam production system
JP2013527372A (en) * 2010-05-07 2013-06-27 オーカン エナジー ゲーエムベーハー Control of thermal cycle process
CN109084291A (en) * 2018-08-21 2018-12-25 北京富士特锅炉有限公司 Tubular steam boiler is applied to beer production anticipation feedback group control system
JP2019015442A (en) * 2017-07-06 2019-01-31 三浦工業株式会社 Boiler system
CN111998332A (en) * 2020-09-03 2020-11-27 西安热工研究院有限公司 Steam drum pressure prediction system and method based on full-dimensional state observer
CN112212358A (en) * 2020-09-03 2021-01-12 海南热带海洋学院 Thermal power generating unit coordination control system and coordination control method thereof
CN113325713A (en) * 2021-06-07 2021-08-31 西安热工研究院有限公司 Method for determining optimal operation mode of heat supply unit by adopting matched extraction steam external supply technology

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147266A (en) * 2005-10-27 2007-06-14 Fisher Rosemount Syst Inc System and method to control multiple-fuel steam production system
JP2013527372A (en) * 2010-05-07 2013-06-27 オーカン エナジー ゲーエムベーハー Control of thermal cycle process
US10519814B2 (en) 2010-05-07 2019-12-31 Orcan Energy Ag Control of a thermal cyclic process
JP2019015442A (en) * 2017-07-06 2019-01-31 三浦工業株式会社 Boiler system
CN109084291A (en) * 2018-08-21 2018-12-25 北京富士特锅炉有限公司 Tubular steam boiler is applied to beer production anticipation feedback group control system
CN109084291B (en) * 2018-08-21 2023-11-03 北京富士特锅炉有限公司 Pre-judging feedback group control system for through-flow steam boiler in beer production process
CN111998332A (en) * 2020-09-03 2020-11-27 西安热工研究院有限公司 Steam drum pressure prediction system and method based on full-dimensional state observer
CN112212358A (en) * 2020-09-03 2021-01-12 海南热带海洋学院 Thermal power generating unit coordination control system and coordination control method thereof
CN112212358B (en) * 2020-09-03 2023-01-20 海南热带海洋学院 Thermal power generating unit coordination control system and coordination control method thereof
CN113325713A (en) * 2021-06-07 2021-08-31 西安热工研究院有限公司 Method for determining optimal operation mode of heat supply unit by adopting matched extraction steam external supply technology
CN113325713B (en) * 2021-06-07 2023-01-24 西安热工研究院有限公司 Method for determining optimal operation mode of heat supply unit by adopting matched extraction steam external supply technology

Similar Documents

Publication Publication Date Title
EP1563347B1 (en) Coordination in multilayer process control and optimization schemes
US7206644B2 (en) Method and system for optimizing operation schedule of plant
US4607325A (en) Discontinuous optimization procedure modelling the run-idle status of plural process components
US8185216B2 (en) Plant controlling device and method, thermal power plant, and its control method
US20090138211A1 (en) Method and Apparatus for Determination of the Life Consumption of Individual Components in a Fossil Fuelled Power Generating Installation, in Particular in a Gas and Steam Turbine Installation
CN100495791C (en) Control device of fuel cell power generation system and control method
Varbanov et al. Top-level analysis of site utility systems
Chang et al. A multiobjective programming approach to waste minimization in the utility systems of chemical processes
KR20050021868A (en) Fuel cell generation system and control method thereof
JPH09280503A (en) Control for steam pressure in boiler steam supply system
JP3299531B2 (en) Power plant
JP4496587B2 (en) Cogeneration plant operation method and apparatus
US20040103068A1 (en) Process for optimally operating an energy producing unit and an energy producing unit
JP3763767B2 (en) Operation planning system for energy supply equipment
EP0077685A2 (en) Industrial process control system
JP3969141B2 (en) Generator start / stop plan preparation device and method
KR102231347B1 (en) Apparatus and method for controlling power generation output based on prediction of supply of by-product gas
US5388033A (en) Real time load allocation with additional constraints
JP2016126453A (en) Device and method for making optimum energy system operation plan, program, and recording medium
JPH10254503A (en) Command value determining device
JP2005163704A (en) Cogeneration control system, cogeneration control method, and cogeneration control program
CN110673519B (en) Method and device for controlling smooth switching of operation modes of comprehensive energy system
JP2012155427A (en) Optimal operation system of utility facility
JP4734769B2 (en) Cogeneration plant operation method and apparatus
JP4381628B2 (en) Concentration control device and concentration control method for concentration equipment