JPH09280118A - Egr device for diesel engine - Google Patents

Egr device for diesel engine

Info

Publication number
JPH09280118A
JPH09280118A JP8094079A JP9407996A JPH09280118A JP H09280118 A JPH09280118 A JP H09280118A JP 8094079 A JP8094079 A JP 8094079A JP 9407996 A JP9407996 A JP 9407996A JP H09280118 A JPH09280118 A JP H09280118A
Authority
JP
Japan
Prior art keywords
intake air
intake
egr
cooling device
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8094079A
Other languages
Japanese (ja)
Inventor
Koji Natsume
浩司 夏目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP8094079A priority Critical patent/JPH09280118A/en
Publication of JPH09280118A publication Critical patent/JPH09280118A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0412Multiple heat exchangers arranged in parallel or in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/27Layout, e.g. schematics with air-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/30Connections of coolers to other devices, e.g. to valves, heaters, compressors or filters; Coolers characterised by their location on the engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To increase the heat radiating effect of an intake air cooling device so as to improve the efficiency of cooling mixed gas between EGR gas and intake air by disposing the intake air cooling device in an intake air pipe line in the downstream side of a supercharger and serially disposing a heat exchanger in the upstream side of this intake air cooling device. SOLUTION: An intake air cooling device 10 is disposed in an intake air pipe line 5 stretching from the follower side compressor 4b of a supercharger 4 provided in an engine 1 to a intake manifold 3, a heat exchanger 9 is serially disposed in its upstream side and intake air is supplied to the intake manifold 3. For performing EGR, an EGR pipe 7 having an EGR valve 6 stretching from the exhaust manifold 2 of the engine 1 to an intake pipe line 5 in the downstream side of the intake air cooling device 10 is connected to the high- temperature fluid passage 9a of the heat exchanger 9. Thus, in the heat exchanger 9, heat exchanging is performed between intake air (a) passing through a low-temperature fluid passage 9b and EGR gas (g) passing through the high-temperature fluid passage 9a, the intake air (a) is heated and the EGR gas (g) is cooled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は過給機付ディーゼル
エンジンの吸気空気の温度を下げて空気の吸入効率を向
上させて、エンジンの燃焼を良好に保つと共に、燃焼温
度を下げてNOxの排出量を低減するためのインターク
ーラ付ディーゼルエンジン用EGR装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention lowers the temperature of intake air of a diesel engine with a supercharger to improve the intake efficiency of the air to maintain good engine combustion and lowers the combustion temperature to discharge NOx. The present invention relates to an EGR device for a diesel engine with an intercooler for reducing the amount.

【0002】[0002]

【従来の技術】ディーゼルエンジンの排ガス対策におい
て、排気ガス中のNOx の排出量を低減するために、不
活性ガスである排気ガスの一部を吸気に還流すること
で、燃焼温度を低く抑えてNOx の生成を抑制させるE
GR(排気再循環)が有効であることが知られ、広く実
用化されている。
2. Description of the Related Art As a measure for exhaust gas of a diesel engine, in order to reduce the amount of NOx in the exhaust gas, a part of the exhaust gas which is an inert gas is returned to the intake air to keep the combustion temperature low. E that suppresses the generation of NOx
GR (exhaust gas recirculation) is known to be effective and has been widely put to practical use.

【0003】このEGRにおいては、排気ガスの再循環
量の割合を増加してEGR率を高める程、NOx の排出
量を低減できるが、その一方で、シリンダー内に入る吸
気ガス量内の空気量がEGRガスの分だけ減少するた
め、吸気ガス中の空気量が減って燃焼が悪くなるため、
スモークの増加を招く。このスモークの増加を防ぎなが
ら、EGRガス量を増加するために、EGRガスを冷却
して体積を減少させて、吸気時のシリンダー内のEGR
ガスの占める割り合いを少なくして、シリンダー内に入
る空気量を十分に確保する方法が採用されている。
In this EGR, the NOx emission amount can be reduced as the EGR rate is increased by increasing the ratio of the exhaust gas recirculation amount, while the air amount in the intake gas amount entering the cylinder is reduced. Is reduced by the amount of EGR gas, the amount of air in the intake gas is reduced, and combustion deteriorates.
It causes an increase in smoke. In order to increase the amount of EGR gas while preventing this increase in smoke, the EGR gas is cooled to reduce its volume, and the EGR in the cylinder during intake is reduced.
A method is adopted in which the proportion of gas is reduced to ensure a sufficient amount of air entering the cylinder.

【0004】そして、このEGRガスの冷却には、図3
に示すように、排気マニホールド2と吸気管路5を結ぶ
EGR管路7に水冷式のEGRクーラ12を設置して、冷
却水Wを用いてEGRガスgを冷却する方法や、図4に
示すように、過給機4のコンプレッサ4bと吸気マニホ
ールド3を結ぶ吸気管路5に吸気空気aの冷却用のイン
タークーラ(吸気冷却装置)10を備えているエンジン1
の場合において、EGRガスgをインタークーラ10上流
の吸気管路5に戻して、吸気空気aとともにインターク
ーラ10で冷却空気Aを用いて冷却する方法がある。
Then, in order to cool the EGR gas, as shown in FIG.
As shown in FIG. 4, a water-cooled EGR cooler 12 is installed in the EGR pipe line 7 that connects the exhaust manifold 2 and the intake pipe line 5, and the cooling water W is used to cool the EGR gas g. Thus, the engine 1 having the intercooler (intake cooling device) 10 for cooling the intake air a in the intake pipe line 5 connecting the compressor 4b of the supercharger 4 and the intake manifold 3
In this case, there is a method in which the EGR gas g is returned to the intake pipe line 5 upstream of the intercooler 10 and the cooling air A is used in the intercooler 10 together with the intake air a.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、水冷式
のEGRクーラを用いる場合には、冬季やエンジンスタ
ート直後のように冷却水の温度が低い時に、EGRガス
が露点以下まで冷却されて、EGRガス中の水蒸気が結
露し、この結露中にEGRガス中の硫黄酸化物が溶けて
硫酸を生じて、EGRクーラ、配管及びエンジン内部が
腐食される。そして、この硫酸腐食によってEGRクー
ラの熱交換用パイプに孔が開くと、吸気配管内に冷却水
が漏出して、シリンダ内に入り込み、重大な破損を引き
起こすという問題がある。
However, when a water-cooled EGR cooler is used, the EGR gas is cooled to a temperature below the dew point when the temperature of the cooling water is low, such as in winter or immediately after the engine starts. The water vapor therein condenses, and the sulfur oxides in the EGR gas melt during the condensation to generate sulfuric acid, which corrodes the EGR cooler, the pipes, and the inside of the engine. When a hole is opened in the heat exchange pipe of the EGR cooler due to this sulfuric acid corrosion, cooling water leaks into the intake pipe and enters the cylinder, causing serious damage.

【0006】また、EGRガスから放熱された熱量をラ
ジエータを通る冷却水へ逃がすために、結果的にラジエ
ータの放熱における負担が大きくなるという問題と、水
冷方式のため装置が複雑化し、また重くなるという問題
がある。一方、インタークーラ内でEGRガスと吸気空
気の混合気を冷却する場合においても、EGRガスに
は、水蒸気や硫黄酸化物が含まれているため、過冷却に
よって生じる結露に起因する硫酸腐食の問題があり、ま
た、高温のEGRガスが吸気空気に加わり、インターク
ーラに入る混合気は温度が上昇して体積が増加するの
で、インタークーラにおける混合気の通過抵抗が増加す
るという問題もある。
Further, since the amount of heat radiated from the EGR gas is released to the cooling water passing through the radiator, the problem that the radiator radiates heat becomes large, and the water cooling system complicates the device and makes it heavy. There is a problem. On the other hand, even when the mixture of EGR gas and intake air is cooled in the intercooler, since the EGR gas contains water vapor and sulfur oxides, there is a problem of sulfuric acid corrosion caused by dew condensation caused by supercooling. In addition, since the high temperature EGR gas is added to the intake air and the temperature of the air-fuel mixture entering the intercooler rises and the volume increases, there is also a problem that the passage resistance of the air-fuel mixture in the intercooler increases.

【0007】本発明は、上述の問題を解決するためにな
されたもので、その目的とするところは、吸気冷却装置
に入る前に、EGRガスと吸気空気とで熱交換し、吸気
冷却装置の放熱効果を大きくして、吸気冷却装置下流で
合流するEGRガスと吸気空気との混合気の温度低下量
を大きくすることができるので、NOx を低減するため
にEGR率を高くしても、空気量を確保してスモークを
少なくでき、更に、ラジエターでの放熱量の増加と結露
による硫酸腐食とを防止できる軽量のディーゼルエンジ
ン用EGR装置を提供することである。
The present invention has been made in order to solve the above-mentioned problems, and the purpose of the present invention is to exchange heat between EGR gas and intake air before entering the intake cooling device so that the intake cooling device Since it is possible to increase the heat dissipation effect and increase the amount of temperature decrease of the mixture of EGR gas and intake air that merges downstream of the intake air cooling device, even if the EGR rate is increased to reduce NOx, the air It is an object of the present invention to provide a lightweight EGR device for a diesel engine that can secure a sufficient amount to reduce smoke, and further, can prevent an increase in heat radiation in a radiator and sulfuric acid corrosion due to dew condensation.

【0008】[0008]

【課題を解決するための手段】以上のような目的を達成
するために、過給機付ディーゼルエンジンの該過給機の
コンプレッサから吸気マニホールドに至る吸気管路に吸
気冷却装置を配設し、更に前記吸気冷却装置の上流側に
熱交換器を直列的に配置し、排気マニホールドから前記
吸気冷却装置の下流側の吸気管路に至るEGR弁を有す
るEGR管を該熱交換器の高温流体通路に接続し、前記
吸気冷却装置の上流側において吸気空気とEGRガスと
で熱交換するように構成したディーゼルエンジン用EG
R装置を提供する。
In order to achieve the above object, an intake air cooling device is provided in an intake pipe line of a diesel engine with a supercharger from a compressor of the supercharger to an intake manifold, Further, a heat exchanger is arranged in series on the upstream side of the intake air cooling device, and an EGR pipe having an EGR valve extending from an exhaust manifold to an intake pipe line on the downstream side of the intake air cooling device is connected to a high temperature fluid passage of the heat exchanger. And an EG for a diesel engine configured to exchange heat between intake air and EGR gas on the upstream side of the intake cooling device.
An R device is provided.

【0009】[0009]

【発明の実施の形態】以下、図面を用いて、本発明の実
施形態を説明する。図1は、本発明の第1の実施の形態
に係わるEGR装置の構成を示し、エンジン1に過給機
(ターボチャージャ)4が設けられ、従動側のコンプレ
ッサ4bから該エンジン1の吸気マニホールド3に至る
吸気管路5に、吸気冷却装置(インタークーラ)10を配
設してある。そして、更に、この吸気冷却装置10の上流
側に熱交換器(EGRクーラ)9を直列的に配置し、吸
気空気aは、この熱交換機の低温流体通路9bと吸気冷
却装置10を順に経由して該エンジン1の吸気マニホール
ド3に供給される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a configuration of an EGR device according to a first embodiment of the present invention, in which an engine 1 is provided with a supercharger (turbocharger) 4 and a driven side compressor 4b to an intake manifold 3 of the engine 1. An intake air cooling device (intercooler) 10 is arranged in the intake pipe line 5 leading to. Further, a heat exchanger (EGR cooler) 9 is arranged in series on the upstream side of the intake air cooling device 10, and the intake air a passes through the low temperature fluid passage 9b of the heat exchanger and the intake air cooling device 10 in order. Is supplied to the intake manifold 3 of the engine 1.

【0010】また、EGRを行うために、エンジン1の
排気マニホールド2から、吸気冷却装置10の下流側の吸
気管路5に至るEGR弁6を有するEGR管7を設けて
あり、このEGR管7を熱交換器9の高温流体通路9a
に接続し、EGRガスgは、図示されていないコントロ
ーラによる制御を受けて弁の開閉度を調整するEGR弁
6によって、ガス流量を調整され、熱交換器9の高温流
体通路9aを経由して、該エンジン1の吸気マニホール
ド3に供給される。
Further, in order to perform EGR, an EGR pipe 7 having an EGR valve 6 extending from the exhaust manifold 2 of the engine 1 to the intake pipe line 5 on the downstream side of the intake cooling device 10 is provided, and the EGR pipe 7 is provided. The high temperature fluid passage 9a of the heat exchanger 9
The EGR gas g is controlled by a controller (not shown) to adjust the opening / closing degree of the valve so that the EGR gas g has its gas flow rate adjusted and passes through the high temperature fluid passage 9a of the heat exchanger 9. , To the intake manifold 3 of the engine 1.

【0011】そして、吸気冷却装置10の上流側の熱交換
器9において、低温流体通路9bを通過する吸気空気a
と高温流体通路9aを通過するEGRガスgとの間で熱
交換を行い、吸気空気aを加熱し、EGRガスgを冷却
する。以上のような構成により、エンジン1の排気出口
管路14から排出される排気ガスGが過給機4のタ─ビン
4aを駆動し、従動側のコンプレサー4bにより、吸気
空気aが吸気入口管路13から吸引されて加圧される。
In the heat exchanger 9 on the upstream side of the intake air cooling device 10, the intake air a passing through the low temperature fluid passage 9b.
And the EGR gas g passing through the high temperature fluid passage 9a are exchanged with each other to heat the intake air a and cool the EGR gas g. With the above-described configuration, the exhaust gas G discharged from the exhaust outlet pipe line 14 of the engine 1 drives the turbine 4a of the supercharger 4, and the driven side compressor 4b changes the intake air a into the intake inlet pipe. It is sucked from the passage 13 and pressurized.

【0012】この保有熱量Qaの吸気空気aは、吸気管
路5に設けられた熱交換器9の低温流体側の通路を通っ
て、EGRガスgと熱量Qbを熱交換し温度上昇して熱
保有量が(Qa+Qb)になった後、吸気冷却装置10に
入って、冷却空気Aによって冷却されて、熱保有量が
(Qa+Qb−Qc)になって、吸気マニホールド3に
供給される。
The intake air a having the stored heat quantity Qa passes through the passage on the low temperature fluid side of the heat exchanger 9 provided in the intake pipe line 5, exchanges heat between the EGR gas g and the heat quantity Qb to increase the temperature and heat. After the holding amount becomes (Qa + Qb), it enters the intake air cooling device 10 and is cooled by the cooling air A, and the heat holding amount becomes (Qa + Qb−Qc) and is supplied to the intake manifold 3.

【0013】なお、ここに記載の熱量の変化に関して
は、説明を簡便にするために、各配管や熱交換器やイン
タークーラなどに於ける熱損失を無視している。一方、
EGR弁6でガス量を調整された熱保有量QgのEGR
ガスgは、排気マニホールド2から、EGR管路7の途
中に設けられた熱交換器9の高温流体側の通路を通っ
て、吸気空気aと熱交換して温度低下して熱保有量が
(Qg−Qb)になった後、インタークーラ10の下流の
吸気配管5に供給され、吸気空気aと混合されて吸気マ
ニホールド3に入る。
Regarding the change in the amount of heat described here, the heat loss in each pipe, the heat exchanger, the intercooler, etc. is neglected in order to simplify the explanation. on the other hand,
EGR of heat holding amount Qg whose gas amount is adjusted by the EGR valve 6
The gas g passes through the passage on the high temperature fluid side of the heat exchanger 9 provided in the middle of the EGR pipe 7 from the exhaust manifold 2, exchanges heat with the intake air a to lower the temperature, and the heat retention amount becomes ( After becoming Qg-Qb), it is supplied to the intake pipe 5 downstream of the intercooler 10, mixed with intake air a, and enters the intake manifold 3.

【0014】このように、吸気冷却装置10に入る吸気空
気aの温度を上昇させて、吸気空気aと冷却空気Aとの
温度差を大きくできるので、この温度差に略比例する熱
交換量(放熱量)Qcも大きくできて、吸気空気aに対
する冷却効果を向上できる。次に、吸気空気aとEGR
ガスgとの混合気に対する冷却効果を明確にするため
に、吸気マニホールド3に入る混合気の熱量について、
配管や熱交換器などの熱損失を無視して単純化して表現
すると、吸気マニホールド3に入る吸気空気aの保有熱
量は(Qa+Qb−Qc)で、EGRガスgの保有熱量
は(Qg−Qb)であるので、吸気マニホールド3に入
る混合気の熱量は(Qg+Qa−Qc)となる。
As described above, the temperature difference between the intake air a and the cooling air A can be increased by raising the temperature of the intake air a entering the intake air cooling device 10. Therefore, the amount of heat exchange ( The heat radiation amount) Qc can also be increased, and the cooling effect on the intake air a can be improved. Next, intake air a and EGR
In order to clarify the cooling effect on the air-fuel mixture with the gas g, regarding the heat quantity of the air-fuel mixture entering the intake manifold 3,
If it is simplified and expressed by ignoring the heat loss of the pipes and the heat exchanger, the retained heat amount of the intake air a entering the intake manifold 3 is (Qa + Qb−Qc), and the retained heat amount of the EGR gas g is (Qg−Qb). Therefore, the heat quantity of the air-fuel mixture entering the intake manifold 3 is (Qg + Qa−Qc).

【0015】つまり、吸気冷却装置10の放熱量Qcを大
きくするほど、吸気マニホールド3に入る混合気の熱量
は小さくなり、混合気の温度も低くなることがわかる。
以上のように、本実施の形態により、過給機付ディーゼ
ルエンジンの吸気冷却装置10の上流において、吸気空気
aとEGRガスgとの間で熱交換して吸気空気aの温度
を上昇させて、吸気冷却装置10の放熱効率を大きくでき
る。従って、吸気マニホールド3に入るEGRガスgと
吸気空気aとの混合気の温度を低下させることができ、
EGR率を高めてNOx を低減しながら、空気量を確保
してスモークを少なくできる。
That is, it can be seen that as the heat radiation amount Qc of the intake air cooling device 10 is increased, the heat amount of the air-fuel mixture entering the intake manifold 3 becomes smaller and the temperature of the air-fuel mixture becomes lower.
As described above, according to the present embodiment, heat is exchanged between the intake air a and the EGR gas g to raise the temperature of the intake air a upstream of the intake air cooling device 10 of the diesel engine with a supercharger. The heat radiation efficiency of the intake air cooling device 10 can be increased. Therefore, the temperature of the mixture of EGR gas g and intake air a entering the intake manifold 3 can be lowered,
The amount of air can be secured and smoke can be reduced while increasing the EGR rate and reducing NOx.

【0016】そして、従来技術の水冷式EGRクーラに
比べると次の効果が得られる。熱交換器9の冷却側の吸
気空気aの温度は、冷却水Wの温度に比べて高いので、
EGRガスgが露点以下まで冷却されることを無くすこ
とができて、EGRガスg中の水蒸気が結露することを
防止でき、硫酸腐食を避けることができる。また、冷却
水Wに放熱しないのでラジエターの負担を軽減でき、そ
の上、稼働時の装置重量も水冷式に比較して軽くでき
る。
The following effects can be obtained as compared with the conventional water-cooled EGR cooler. Since the temperature of the intake air a on the cooling side of the heat exchanger 9 is higher than the temperature of the cooling water W,
It is possible to prevent the EGR gas g from being cooled to a temperature below the dew point, prevent condensation of water vapor in the EGR gas g, and avoid sulfuric acid corrosion. Further, since the heat is not radiated to the cooling water W, the load on the radiator can be reduced, and the weight of the device during operation can be reduced as compared with the water cooling type.

【0017】次に、EGRガスを、吸気空気aと共にイ
ンタークーラ(吸気冷却装置)10内で冷却する方式に比
べると次の効果が得られる。本実施の形態の吸気冷却装
置9においては、燃焼によって生じた水蒸気分と硫黄酸
化物を含むEGRガスgが、吸気冷却装置10内に入らな
いので、吸気空気aが過度に冷却されても結露の発生は
少なく、また、例え結露しても硫黄酸化物が含まれない
ので硫酸腐食は発生しない。
Next, the following effects are obtained as compared with the system in which the EGR gas is cooled in the intercooler (intake air cooling device) 10 together with the intake air a. In the intake air cooling device 9 of the present embodiment, the EGR gas g containing water vapor and sulfur oxides generated by combustion does not enter the intake air cooling device 10, so that even if the intake air a is excessively cooled, dew condensation occurs. Sulfuric acid corrosion does not occur because even if dew condensation occurs, sulfur oxides are not included.

【0018】また、熱交換器9においても、EGRガス
gは、吸気加圧されて温度が上昇した吸気空気aとの熱
交換することになるので、冷却水Wで冷却された場合と
異なり、露点以下まで冷却されることはなく硫酸腐食の
問題も生じない。次に、第2の実施の形態を図2に示
す。この実施の形態では、吸気冷却装置10の入口側ヘッ
ダー11内に熱交換用の高温流体通路9aを設け、この高
温流体通路9aにEGRガス管路7を接続し、吸気空気
aとEGRガスgとの熱交換をこの入口側ヘッダー11内
で行う。
Also in the heat exchanger 9, since the EGR gas g exchanges heat with the intake air a whose intake pressure is increased and its temperature has risen, unlike the case where the EGR gas g is cooled by the cooling water W, It is not cooled below the dew point, and there is no problem of sulfuric acid corrosion. Next, a second embodiment is shown in FIG. In this embodiment, a high temperature fluid passage 9a for heat exchange is provided in the inlet side header 11 of the intake air cooling device 10, the EGR gas pipe 7 is connected to the high temperature fluid passage 9a, and the intake air a and the EGR gas g are connected. Heat is exchanged with the inside of the header 11 on the inlet side.

【0019】このように構成することで、第1の実施の
形態の効果に加えて、装置全体をコンパクトかつ軽量化
できるので、狭いエンジンスペースでも容易に設置でき
るという効果を奏することができる。
With such a configuration, in addition to the effects of the first embodiment, the entire apparatus can be made compact and lightweight, so that it can be easily installed even in a narrow engine space.

【0020】[0020]

【発明の効果】請求項1の本発明により、吸気冷却装置
に入る前に、EGRガスと吸気空気とで熱交換し、吸気
冷却装置の放熱効果を大きくして、吸気冷却装置下流で
合流するEGRガスと吸気空気との混合気の温度低下量
を大きくすることができるので、NOx を低減するため
にEGR率を高くしても、空気量を確保してスモークを
少なくできる。そして、EGRガスの冷却に吸気空気を
用い、また、吸気冷却装置では、EGRガスとの熱交換
により温度上昇した吸気空気のみを冷却するので、ラジ
エターでの放熱量の増加と結露による硫酸腐食とを防止
できる軽量のディーゼルエンジン用EGR装置を得るこ
とができる。
According to the first aspect of the present invention, the heat is exchanged between the EGR gas and the intake air before entering the intake air cooling device, the heat radiation effect of the intake air cooling device is increased, and the heat is merged in the downstream side of the intake air cooling device. Since the temperature decrease amount of the mixture of EGR gas and intake air can be increased, even if the EGR rate is increased to reduce NOx, the air amount can be secured and smoke can be reduced. The intake air is used to cool the EGR gas, and the intake air cooling device cools only the intake air whose temperature has risen due to heat exchange with the EGR gas. Therefore, the amount of heat released by the radiator increases and sulfuric acid corrosion due to dew condensation occurs. It is possible to obtain a lightweight EGR device for a diesel engine that can prevent the above.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態を示すEGR装置の
構成図である。
FIG. 1 is a configuration diagram of an EGR device showing a first embodiment of the present invention.

【図2】本発明の第2の実施の形態を示すEGR装置の
構成図である。
FIG. 2 is a configuration diagram of an EGR device showing a second embodiment of the present invention.

【図3】従来における水冷式EGRクーラを使用してい
るEGR装置の構成図である。
FIG. 3 is a configuration diagram of an EGR device using a conventional water-cooled EGR cooler.

【図4】従来におけるインタークーラを使用しているE
GR装置の構成図である。
FIG. 4 E using a conventional intercooler
It is a block diagram of a GR apparatus.

【符号の説明】[Explanation of symbols]

1 エンジン 2 排気マニホールド 3 吸気マニホールド 4 過給機(ターボチャ
ージャ) 4a タービン 4b コンプレッサ 5 吸気管路 6 EGR弁 7 EGR管路 9 熱交換器 9a 高温流体通路 9b 低温流体通路 10 吸気冷却手段 11 入口側ヘッダー 12 EGRクーラ 13 吸気入口管路 14 排気出口管路
1 Engine 2 Exhaust Manifold 3 Intake Manifold 4 Supercharger (Turbocharger) 4a Turbine 4b Compressor 5 Intake Pipeline 6 EGR Valve 7 EGR Pipeline 9 Heat Exchanger 9a High Temperature Fluid Passage 9b Low Temperature Fluid Passage 10 Inlet Cooling Unit 11 Inlet Side Header 12 EGR cooler 13 Intake inlet line 14 Exhaust outlet line

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 過給機(4)付ディーゼルエンジン
(1)の該過給機(4)のコンプレッサ(4b)から吸
気マニホールド(3)に至る吸気管路(5)に吸気冷却
装置(10)を配設し、更に前記吸気冷却装置(10)の上
流側に熱交換器(9)を直列的に配置し、排気マニホー
ルド(2)から前記吸気冷却装置(10)の下流側の吸気
管路(5)に至るEGR弁(6)を有するEGR管
(7)を該熱交換器(9)の高温流体通路(9a)に接
続し、前記吸気冷却装置(10)の上流側において吸気空
気(a)とEGRガス(g)とで熱交換するように構成
したディーゼルエンジン用EGR装置。
1. An intake air cooling device (10) in an intake pipe (5) extending from a compressor (4b) of the supercharger (4) of a diesel engine (1) with a supercharger (4) to an intake manifold (3). ) Is arranged, and further, a heat exchanger (9) is arranged in series on the upstream side of the intake cooling device (10), and an intake pipe from the exhaust manifold (2) to the downstream side of the intake cooling device (10). An EGR pipe (7) having an EGR valve (6) leading to a passage (5) is connected to a high temperature fluid passage (9a) of the heat exchanger (9), and intake air is provided upstream of the intake cooling device (10). An EGR device for a diesel engine configured to perform heat exchange between (a) and EGR gas (g).
JP8094079A 1996-04-16 1996-04-16 Egr device for diesel engine Pending JPH09280118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8094079A JPH09280118A (en) 1996-04-16 1996-04-16 Egr device for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8094079A JPH09280118A (en) 1996-04-16 1996-04-16 Egr device for diesel engine

Publications (1)

Publication Number Publication Date
JPH09280118A true JPH09280118A (en) 1997-10-28

Family

ID=14100488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8094079A Pending JPH09280118A (en) 1996-04-16 1996-04-16 Egr device for diesel engine

Country Status (1)

Country Link
JP (1) JPH09280118A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2847004A1 (en) * 2002-11-12 2004-05-14 Peugeot Citroen Automobiles Sa Temperature regulation for engine intake air and recirculated exhaust gas, uses single unit housing two heat exchangers to exchange heat between exhaust gas, fluid and intake air, with control of fluid flow
EP1586845A1 (en) * 2004-04-15 2005-10-19 Modine Manufacturing Company Exhaust gas heat exchanger
JP2008540929A (en) * 2005-05-18 2008-11-20 スカニア シーブイ アクチボラグ(パブル) Exhaust gas recirculation device for a supercharged internal combustion engine
WO2010126402A1 (en) 2009-04-28 2010-11-04 Volvo Lastvagnar Ab Cooler arrangement, a cooler and vehicle comprising the cooler arrangement
US7921648B2 (en) * 2005-02-21 2011-04-12 Behr Gmbh & Co. Kg Exhaust gas turbocharger internal combustion engine
KR101490963B1 (en) * 2013-12-11 2015-02-06 현대자동차 주식회사 Engine system having turbo charger
KR101534725B1 (en) * 2013-12-06 2015-07-07 현대자동차 주식회사 Engine system having turbo charger
CN109695494A (en) * 2017-10-24 2019-04-30 翰昂汽车零部件有限公司 Gas recovery system
KR102139573B1 (en) * 2019-02-21 2020-07-30 동명대학교산학협력단 Condensate water discharge device of low pressure EGR system
CN114810330A (en) * 2021-06-01 2022-07-29 长城汽车股份有限公司 Intercooling control method and device for diesel vehicle and vehicle
CN114901932A (en) * 2020-01-23 2022-08-12 日产自动车株式会社 Cooling device for vehicle

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2847004A1 (en) * 2002-11-12 2004-05-14 Peugeot Citroen Automobiles Sa Temperature regulation for engine intake air and recirculated exhaust gas, uses single unit housing two heat exchangers to exchange heat between exhaust gas, fluid and intake air, with control of fluid flow
WO2004044402A1 (en) * 2002-11-12 2004-05-27 Peugeot Citroen Automobiles S.A. Device for the thermal regulation of the intake air for an engine and the recirculated exhaust gas emitted by said engine.
EP1586845A1 (en) * 2004-04-15 2005-10-19 Modine Manufacturing Company Exhaust gas heat exchanger
US7703506B2 (en) 2004-04-15 2010-04-27 Modine Manufacturing Company Exhaust heat exchanger
US7921648B2 (en) * 2005-02-21 2011-04-12 Behr Gmbh & Co. Kg Exhaust gas turbocharger internal combustion engine
JP2008540929A (en) * 2005-05-18 2008-11-20 スカニア シーブイ アクチボラグ(パブル) Exhaust gas recirculation device for a supercharged internal combustion engine
WO2010126402A1 (en) 2009-04-28 2010-11-04 Volvo Lastvagnar Ab Cooler arrangement, a cooler and vehicle comprising the cooler arrangement
EP2425112A4 (en) * 2009-04-28 2015-12-16 Volvo Lastvagnar Ab Cooler arrangement, a cooler and vehicle comprising the cooler arrangement
KR101534725B1 (en) * 2013-12-06 2015-07-07 현대자동차 주식회사 Engine system having turbo charger
US9435296B2 (en) 2013-12-06 2016-09-06 Hyundai Motor Company Engine system having turbocharger
KR101490963B1 (en) * 2013-12-11 2015-02-06 현대자동차 주식회사 Engine system having turbo charger
CN109695494A (en) * 2017-10-24 2019-04-30 翰昂汽车零部件有限公司 Gas recovery system
KR20190045853A (en) * 2017-10-24 2019-05-03 한온시스템 주식회사 Exhaust gas recirculation system
US11060488B2 (en) 2017-10-24 2021-07-13 Hanon Systems Exhaust gas recirculation system
CN109695494B (en) * 2017-10-24 2022-09-20 翰昂汽车零部件有限公司 Waste gas recovery system
KR102139573B1 (en) * 2019-02-21 2020-07-30 동명대학교산학협력단 Condensate water discharge device of low pressure EGR system
CN114901932A (en) * 2020-01-23 2022-08-12 日产自动车株式会社 Cooling device for vehicle
CN114901932B (en) * 2020-01-23 2023-07-28 日产自动车株式会社 Cooling device for vehicle
CN114810330A (en) * 2021-06-01 2022-07-29 长城汽车股份有限公司 Intercooling control method and device for diesel vehicle and vehicle

Similar Documents

Publication Publication Date Title
RU2569410C2 (en) Engine intake manifold forced aspiration
KR101531360B1 (en) Arrangement at a supercharged internal combustion engine
US20090260605A1 (en) Staged arrangement of egr coolers to optimize performance
JP2007040136A (en) Exhaust gas recirculation system of internal combustion engine with supercharger
ATE483906T1 (en) COMBUSTION ENGINE COMPRISING AN EXHAUST GAS RECIRCULATION SYSTEM
JPH11200955A (en) Exhaust gas reflux device
JP2013036452A (en) Internal combustion engine
JP2002188526A (en) Egr device
JPH09280118A (en) Egr device for diesel engine
US20070227141A1 (en) Multi-stage jacket water aftercooler system
CN105736125A (en) Air inlet temperature control system and control method of engine
JP4445676B2 (en) Diesel engine with turbocharger
JPH1193781A (en) Egr device with egr cooler
JP5898174B2 (en) Cooling device for engine exhaust gas recirculation circuit
JP5321419B2 (en) EGR gas cooling device
JPH09256915A (en) Egr device for diesel engine with intercooler
JP2002310007A (en) Egr gas cooling structure
JPH10169514A (en) Egr device with egr cooler
JP2003278608A (en) Egr device
JP3491437B2 (en) Intercooler for turbocharged diesel engine
JPH08291773A (en) Exhaust gas recirculation device for engine
KR20120067020A (en) Vehicle engine cooling system
JP2002147291A (en) Exhaust gas recirculation device with cooler
JP3788153B2 (en) Liquefied gas engine
JP5360980B2 (en) Internal combustion engine warm-up promoting device