JP3491437B2 - Intercooler for turbocharged diesel engine - Google Patents

Intercooler for turbocharged diesel engine

Info

Publication number
JP3491437B2
JP3491437B2 JP07731796A JP7731796A JP3491437B2 JP 3491437 B2 JP3491437 B2 JP 3491437B2 JP 07731796 A JP07731796 A JP 07731796A JP 7731796 A JP7731796 A JP 7731796A JP 3491437 B2 JP3491437 B2 JP 3491437B2
Authority
JP
Japan
Prior art keywords
intercooler
intake
tube
engine
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07731796A
Other languages
Japanese (ja)
Other versions
JPH09264145A (en
Inventor
英樹 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP07731796A priority Critical patent/JP3491437B2/en
Publication of JPH09264145A publication Critical patent/JPH09264145A/en
Application granted granted Critical
Publication of JP3491437B2 publication Critical patent/JP3491437B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0425Air cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0082Charged air coolers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は過給機付ディーゼル
エンジンの吸気の温度を下げて、空気の吸入効率を向上
させて、エンジンの燃焼を良好に保つと共に、燃焼温度
を下げて、NOxの発生を抑制して、排ガスの改善やエ
ンジンの燃費や耐久性の向上を図る過給機付ディーゼル
エンジン用インタークーラに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention lowers the temperature of intake air of a diesel engine with a supercharger to improve the intake efficiency of air to maintain good engine combustion and lower the combustion temperature to reduce NOx emission. The present invention relates to an intercooler for a diesel engine with a supercharger that suppresses the generation of exhaust gas and improves the fuel efficiency and durability of the engine.

【0002】[0002]

【従来の技術】近年、過給機付ディーゼルエンジンを搭
載してエンジンのパワーを増大した車両が使用されてお
り、さらに、エンジンの出力を向上させるために、過給
機によって加圧され昇温した吸気の温度を冷却するイン
タークーラを備えることも行われている。
2. Description of the Related Art In recent years, a vehicle equipped with a diesel engine with a supercharger to increase the power of the engine has been used. Furthermore, in order to improve the output of the engine, the supercharger pressurizes and raises the temperature. An intercooler that cools the temperature of the intake air is also provided.

【0003】このインタークーラには水冷式と空冷式と
があり、図4に示すようにいずれも過給機と吸気マニホ
ールドとを結ぶ吸気経路に設けられ、温度の上昇した吸
気を冷却し、燃焼室内に入る吸気の温度を下げて、空気
の充填効率を向上させることにより、空気量が増加し燃
料効率が高まるので、燃焼を改善でき、燃費の向上を実
現できるとともに、最高温度および最高圧力を減少でき
るので、エンジンの熱負荷および機械負荷を軽減でき、
エンジンの耐久性を向上できる。
This intercooler is classified into a water-cooled type and an air-cooled type, and as shown in FIG. 4, both are provided in an intake path connecting a supercharger and an intake manifold, and cool the intake air whose temperature has risen and burn it. By lowering the temperature of the intake air entering the room and improving the air filling efficiency, the amount of air increases and the fuel efficiency increases, so combustion can be improved, fuel efficiency can be improved, and maximum temperature and pressure can be increased. Since it can be reduced, the heat load and mechanical load of the engine can be reduced,
The durability of the engine can be improved.

【0004】一方、エンジンの排ガス中のNOx の排出
量を低減するために、不活性ガスである排気の一部を吸
気に還流することで、燃焼温度を低く抑えてNOx の生
成を抑制させるEGR(排気再循環)が有効であり、広
く実用化されている。このEGRにおいて、図5に示す
ようにEGRガスをインタークーラの上流に入れて、吸
気とともに冷却することにより、同一ガス体積でより多
量のEGRガスを再循環して、EGR率を高めることが
できるので、排ガス中のNOx を低減する効果を増大で
きる。
On the other hand, in order to reduce the emission amount of NOx in the exhaust gas of the engine, a part of the exhaust gas which is an inert gas is recirculated to the intake air to suppress the combustion temperature and suppress the production of NOx. (Exhaust gas recirculation) is effective and widely used. In this EGR, as shown in FIG. 5, by putting the EGR gas upstream of the intercooler and cooling it together with the intake air, a larger amount of the EGR gas can be recirculated with the same gas volume, and the EGR rate can be increased. Therefore, the effect of reducing NOx in the exhaust gas can be increased.

【0005】上述のインタークーラの構造は、実開昭6
0−24815号公報に開示されているようにコアを形
成するチューブの長さを等しくした略四辺形の本体に形
成され、そのの対角位置に吸気流入口と吸気吐出口とを
形成する図3に示すように構成されるのが、各チューブ
内の流れを考えた場合に好ましく、一般的である。しか
し、インタークーラの吸気出入口が車体のフレームやエ
ンジンフードと近接しているために、図3のような構造
のインタークーラでは配置できない場合が生じる。この
ような場合には、インタークーラの為に、車両やフード
を再設計することはコストの増加を招くので難しく、通
常は、エンジンルームのレイアウトに合わせて、図2に
示すように吸気流入口と吸気吐出口とをコアの一側に対
向して設けた構造とする。
The structure of the above-mentioned intercooler is as follows:
As disclosed in JP-A-0-24815, a diagram in which a tube forming a core is formed in a substantially quadrilateral main body having equal lengths, and an intake inlet and an intake outlet are formed at diagonal positions thereof. The configuration shown in FIG. 3 is preferable and general when considering the flow in each tube. However, since the intake / exhaust ports of the intercooler are close to the frame of the vehicle body and the engine hood, there may be a case where the intercooler having the structure as shown in FIG. 3 cannot be arranged. In such a case, it is difficult to redesign the vehicle and the hood due to the intercooler, because it causes an increase in cost. Usually, the intake air inlet is adjusted according to the layout of the engine room as shown in FIG. The intake and discharge ports are provided to face one side of the core.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、図2に
示すような等しい長さのチューブを用いた略四辺形のコ
ア形状を有するインタークーラの構造では、出入口側A
から出入口より遠い反対側Bへ向かうに従って、吸気の
通過距離が漸増し、流通抵抗もそれに対応して漸増して
流れ難くなっていくので、その分、チューブ内の流速は
漸減してくる。
However, in the structure of the intercooler having a substantially quadrangular core shape using tubes of equal length as shown in FIG. 2, the inlet / outlet side A
As the distance from the inlet to the other side B farther from the inlet increases, the passage distance of the intake air gradually increases, and the flow resistance gradually increases correspondingly, making it difficult to flow. Therefore, the flow velocity in the tube gradually decreases accordingly.

【0007】この管内流速が低い部分では、吸気中のほ
こりなどの沈着によってチューブ内の汚損が進み、管摩
擦抵抗が増加して、更に、管内流速及び流量が低下する
という悪循環が生じる。また、それに伴って、出入口側
Aの近傍のチューブの流量と管内流速が増加するので、
この部分も管摩擦抵抗が増加し、インタークーラ全体の
通過抵抗が増加して、吸気時のポンピングロスの増加を
招き、燃費を悪化させるという問題がある。
In the portion where the flow velocity in the pipe is low, the inside of the pipe is contaminated due to the deposition of dust or the like during intake air, the pipe frictional resistance increases, and further the flow velocity and flow amount in the pipe decrease, causing a vicious cycle. In addition, since the flow rate and the flow velocity in the tube near the inlet / outlet side A increase accordingly,
Also in this portion, there is a problem that the pipe friction resistance increases, the passage resistance of the entire intercooler increases, which causes an increase in pumping loss at the time of intake and deteriorates fuel efficiency.

【0008】特に、EGRガスの冷却を行う場合には、
管内流速の遅いチューブ内に、EGRガス中のススが堆
積されて、低流速の部分(澱み部)が発生し易い。この
低流速の部分では、冬季やエンジンスタート直後のよう
にクーラの冷却水温度や気温の低い時に、水蒸気分の多
いEGRガスと空気の混合気が露点以下にまで冷却され
て結露し、EGRガス中の硫黄酸化物と反応して硫酸を
発生し、インタークーラの壁面に腐食孔を生じるので、
吸気漏れによるエンジンの過給圧の低下が生じて、燃費
の悪化を招くという問題がある。
In particular, when cooling the EGR gas,
Soot in the EGR gas is accumulated in the tube having a low flow velocity in the pipe, and a low flow velocity portion (stagnation portion) is likely to occur. In this low flow velocity area, when the cooling water temperature of the cooler or the temperature is low, such as in the winter or immediately after the start of the engine, the mixture of EGR gas and air with a large amount of water vapor is cooled to below the dew point, and dew condensation occurs. It reacts with the sulfur oxides in it to generate sulfuric acid, which creates corrosion holes on the wall of the intercooler.
There is a problem in that the supercharging pressure of the engine is reduced due to intake air leakage, resulting in deterioration of fuel efficiency.

【0009】本発明は、上述の問題を解決するためにな
されたもので、その目的は、インタークーラのチューブ
内の吸気の流速を略均一化して、吸気のインタークーラ
全体の通過抵抗を減少して、吸気時のポンピングロスを
少なくして燃費を改善ができる過給機付ディーゼルエン
ジン用インタークーラを提供することである。また、E
GRガスをインタークーラで冷却する場合において、イ
ンタークーラのチューブ内の吸気の流速を略均一化し
て、過冷却による結露の発生を抑えて、インタークーラ
の硫酸腐食を防止でき、吸気漏れを原因とするエンジン
の過給圧の低下による燃費の悪化を防ぐことができる過
給機付ディーゼルエンジン用インタークーラを提供する
ことである。
The present invention has been made to solve the above-mentioned problems, and an object thereof is to make the flow velocity of the intake air in the tube of the intercooler substantially uniform to reduce the passage resistance of the intake air through the intercooler as a whole. In addition, it is to provide an intercooler for a diesel engine with a supercharger that can reduce fuel consumption by reducing pumping loss during intake. Also, E
When GR gas is cooled by the intercooler, the flow velocity of the intake air in the tube of the intercooler is made substantially uniform, the occurrence of dew condensation due to supercooling is suppressed, the sulfuric acid corrosion of the intercooler can be prevented, and the intake leak is caused. It is an object of the present invention to provide an intercooler for a diesel engine with a supercharger, which can prevent deterioration of fuel efficiency due to a decrease in supercharging pressure of the engine.

【0010】[0010]

【課題を解決するための手段】以上のような目的を達成
するために、ディーゼルエンジンの過給機に接続された
吸気管路に設けられたインタークーラにおいて、前記イ
ンタークーラが、流入側ヘッダと、吐出側ヘッダと、前
記両ヘッダ間に設けられた熱交換用のコアとから形成さ
れ、前記ヘッダに設けた吸気流入口と吸気吐出口が前記
コアの一側に対向して配置され、更に、前記コアを形成
するチューブの長さが前記一側より他側に向うに従って
漸減するように構成する。
In order to achieve the above object, in an intercooler provided in an intake pipe line connected to a supercharger of a diesel engine, the intercooler includes an inflow header and an inflow header. A discharge side header and a heat exchange core provided between the headers, and an intake inlet and an intake outlet provided in the header are arranged to face one side of the core, and The length of the tube forming the core gradually decreases from the one side toward the other side.

【0011】また、EGRガスをインタークーラで冷却
する場合において、エンジンの排気の一部を吸気に還流
するEGR管を該エンジンの排気マニホールドと前記イ
ンタークーラの上流の吸気管路の間に接続して構成す
る。
When the EGR gas is cooled by an intercooler, an EGR pipe that recirculates a part of engine exhaust gas to intake air is connected between the exhaust manifold of the engine and the intake pipe line upstream of the intercooler. Configure.

【0012】[0012]

【発明の実施の形態】以下、図面を用いて、本発明の実
施の形態を説明する。図4は、インタークーラを使用し
た過給機付ディーゼルエンジンの排気及び吸気の系統を
示しているが、エンジン1に過給機(ターボチャージ
ャ)4を設け、排気マニホールド2の出口に排気で駆動
されるタービン4aが設けられ、従動側のコンプレッサ
4bが吸気管路5に接続され、吸気入口管路13から吸引
されて加圧された吸気を、インタークーラ10を設けた吸
気管路5を通じて、吸気マニホールド3に供給し、この
インタークーラ10で、吸気を冷却することにより、燃焼
を改善している。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 4 shows an exhaust system and an intake system of a diesel engine with a supercharger using an intercooler. The engine 1 is provided with a supercharger (turbocharger) 4, and the outlet of the exhaust manifold 2 is driven by exhaust. The turbine 4a is provided, the compressor 4b on the driven side is connected to the intake pipe line 5, and the intake air sucked and pressurized from the intake inlet pipe line 13 is passed through the intake pipe line 5 provided with the intercooler 10. Combustion is improved by supplying it to the intake manifold 3 and cooling the intake air with this intercooler 10.

【0013】このインタークーラ10は、図1に示すよう
に、吸気流入口20を備えた流入側ヘッダ21と、吸気吐出
口24を備えた吐出側ヘッダ23と、両ヘッダ21、23間に設
けられた熱交換用のコア22とから形成され、更に、吸気
流入口20と吸気吐出口24はコア22の一側Aに対向して配
置され、互いに略同一の直線上に位置している。このコ
ア22は、図6に示すように両端のヘッダ部分でエンドプ
レート27にロウ付けされたチューブ25と、両エンドプレ
ート27間に冷却効率を高めるために設けられたフィン26
とで形成されており、吸気はチューブ25の内部を通過
し、冷却水や外気などの冷媒はフィン26の間を通過す
る。
As shown in FIG. 1, the intercooler 10 is provided with an inlet side header 21 having an intake inlet port 20, a discharge side header 23 having an intake outlet port 24, and both headers 21, 23. The intake air inlet 20 and the intake air outlet 24 are arranged so as to face one side A of the core 22, and are located on substantially the same straight line. As shown in FIG. 6, the core 22 includes a tube 25 brazed to the end plates 27 at the header portions at both ends, and fins 26 provided between the end plates 27 to enhance cooling efficiency.
The intake air passes through the inside of the tube 25, and the coolant such as cooling water and the outside air passes between the fins 26.

【0014】これらのチューブ25の長さは、出入口側
(一側)Aから出入口側より遠い反対側(他側)Bに向
かうに従って漸減させてあり、各チューブ25内の流速が
チューブ内の汚損の進展を押さえられる所定の流速以上
になるまで短くする。この場合に、トラブルの発生しや
すい吸気の条件で、各チューブ25内の流速がほぼ均一に
なるように各チューブ毎に決めるのが好ましいが、出入
口側A近傍のチューブ25内の流速と、出入口側の反対側
B近傍のチューブ25内の流速が略同じになるように、両
端のチューブ25の長さを決め、その間のチューブ25の長
さはコア22が略台形状になるように内挿して決めてもよ
い。
The lengths of the tubes 25 are gradually reduced from the inlet / outlet side (one side) A to the opposite side (other side) B farther from the inlet / outlet side, and the flow velocity in each tube 25 causes contamination of the tubes. It is shortened until the flow velocity exceeds a predetermined value that can suppress the progress of. In this case, it is preferable to determine for each tube so that the flow rate in each tube 25 is substantially uniform under the intake condition where troubles are likely to occur, but the flow rate in the tube 25 near the inlet / outlet side A and the inlet / outlet The lengths of the tubes 25 at both ends are determined so that the flow velocities in the tubes 25 near the opposite side B are substantially the same, and the lengths of the tubes 25 in between are inserted so that the core 22 has a substantially trapezoidal shape. You may decide.

【0015】また、図3のような従来の略四辺形のコア
22において、低流速部分(澱み部分)が生じているチュ
ーブ25の近傍のチューブ25だけを所定の流速以上または
出入口側A近傍のチューブ25内の流速とほぼ同じになる
ように短くしてもよい。なお、これらのチューブ25内の
流速とチューブ25の長さとの関係は、計測や計算を基に
容易に求めることができる。
Further, a conventional substantially quadrilateral core as shown in FIG.
In 22, only the tube 25 near the tube 25 in which the low flow rate portion (stagnation portion) is generated may be shortened so as to be equal to or higher than a predetermined flow rate or approximately the same as the flow rate in the tube 25 near the inlet / outlet side A. . The relationship between the flow velocity inside the tube 25 and the length of the tube 25 can be easily obtained based on measurement and calculation.

【0016】そして、上述のように構成したインターク
ーラ10では、出入口側Aより反対側Bに向かって漸減し
ているチューブ25の長さに従って、チューブ25の管内摩
擦抵抗も漸減している。また、チューブ25の長さの漸減
に伴い、両ヘッダ21、23の通路断面積が出入口側Aより
反対側Bに向かって漸増するので、ヘッダ21、23内にお
ける出入口側Aと反対側Bとの間の吸気の流れを円滑に
できる。
In the intercooler 10 constructed as described above, the in-pipe frictional resistance of the tube 25 gradually decreases as the length of the tube 25 gradually decreases from the inlet / outlet side A toward the opposite side B. Further, as the length of the tube 25 gradually decreases, the passage cross-sectional areas of both headers 21 and 23 gradually increase from the inlet / outlet side A toward the opposite side B. The flow of intake air between can be smoothed.

【0017】従って、出入口の反対側Bに近いチューブ
25ほど、管摩擦抵抗を漸減しているので、ヘッダ部分の
流通抵抗を含めたインタークーラ内での流通抵抗を、各
チューブ25を通る吸気に対して概略同じにでき、管内流
速を略均一化できるので、低流速の澱み部分を無くすこ
とができ、吸気のインタークーラ全体の通過抵抗を減少
して、吸気時のポンピングロスを少なくして燃費を改善
ができる。
Therefore, the tube near the side B opposite the doorway
Since the pipe frictional resistance is gradually reduced by about 25, the flow resistance in the intercooler including the flow resistance in the header part can be made approximately the same for the intake air passing through each tube 25, and the flow velocity in the pipe is made substantially uniform. As a result, it is possible to eliminate the low-velocity stagnation portion, reduce the passage resistance of the entire intake intercooler, reduce pumping loss during intake, and improve fuel efficiency.

【0018】次に、EGRガスを冷却する場合の実施の
形態を図5を用いて説明する。EGRを行う場合には、
EGR管路7を設け、その一端を排気マニホールド2に
接続し、他端をインタークーラ10の上流側の吸気管路5
に接続する。このEGR管には、EGR弁6が設けら
れ、図示していないコントローラによる制御を受けてE
GRガス量の調整を行う。
Next, an embodiment for cooling the EGR gas will be described with reference to FIG. When performing EGR,
An EGR pipe line 7 is provided, one end of which is connected to the exhaust manifold 2, and the other end is the intake pipe line 5 on the upstream side of the intercooler 10.
Connect to. This EGR pipe is provided with an EGR valve 6 and is controlled by a controller (not shown).
Adjust the GR gas amount.

【0019】以上のような構成により、EGR弁6でガ
ス量を調整されたEGRガスは、排気マニホールド2か
らEGR管路7を通じて吸気配管5に供給され、吸気入
口管路13からの吸気と合流して、インタークーラ10で冷
却され、EGRの効果を上げている。そして、上述の構
成のインタークーラ10を採用することにより、各チュー
ブ25内ともに、混合気の流れを略均一化して、低流速の
澱み部分を無くしているので、排ガスは露点以下に過冷
却されて結露することがなく、また、結露が発生して
も、水分が速やかにシリンダ内に吸引されるので、硫酸
の発生を抑制でき、インタークーラ10の壁面腐食の発生
とそれによる吸気漏れを無くせるので、エンジンの過給
圧の低下による燃費の悪化を防ぐことができる。
With the above-described structure, the EGR gas whose gas amount has been adjusted by the EGR valve 6 is supplied from the exhaust manifold 2 to the intake pipe 5 through the EGR pipe 7, and joins the intake air from the intake inlet pipe 13. Then, it is cooled by the intercooler 10 to enhance the EGR effect. Then, by adopting the intercooler 10 having the above-described configuration, the flow of the air-fuel mixture is made substantially uniform in each tube 25, and the stagnation portion of the low flow velocity is eliminated, so the exhaust gas is supercooled below the dew point. Water will be quickly sucked into the cylinder even if dew condensation occurs, so that the generation of sulfuric acid can be suppressed, and the occurrence of corrosion of the wall surface of the intercooler 10 and leakage of intake air due to it will not occur. Therefore, it is possible to prevent deterioration of fuel efficiency due to a decrease in supercharging pressure of the engine.

【0020】なお、本発明のインタークーラ10の冷却効
果に関しては、チューブ25を短くした分だけ冷却面積が
減少するが、チューブ25内の低流速部の流れが改善さ
れ、流速が増加して熱交換量つまり吸気の放熱量が増加
して、冷却面積の減少分を補うので、殆ど同じ冷却効果
を得られる。また、チューブ25内の長さを漸減する代わ
りに管径を漸増することでも流速に関して同様な効果を
得られるが、冷却効果が異なってくる。
Regarding the cooling effect of the intercooler 10 of the present invention, although the cooling area is reduced by the shortening of the tube 25, the flow in the low flow velocity portion in the tube 25 is improved and the flow velocity is increased to increase the heat. Since the replacement amount, that is, the heat radiation amount of the intake air increases to compensate for the decrease in the cooling area, almost the same cooling effect can be obtained. Further, although the same effect can be obtained with respect to the flow rate by gradually increasing the tube diameter instead of gradually decreasing the length of the tube 25, the cooling effect is different.

【0021】[0021]

【発明の効果】請求項1の本発明により、インタークー
ラのチューブ内の吸気の流速を略均一化して、吸気のイ
ンタークーラ全体の通過抵抗を減少して、吸気時のポン
ピングロスを少なくして燃費を改善ができる。また、E
GRガスをインタークーラで冷却する場合において、イ
ンタークーラのチューブ内の吸気の流速を略均一化し
て、過冷却による結露の発生を抑えて、インタークーラ
の硫酸腐食を防止でき、吸気漏れを原因とするエンジン
の過給圧の低下による燃費の悪化を防ぐことができる。
According to the invention of claim 1, the flow velocity of the intake air in the tube of the intercooler is made substantially uniform, the passage resistance of the intake air through the intercooler is reduced, and the pumping loss at the time of intake is reduced. Fuel efficiency can be improved. Also, E
When GR gas is cooled by the intercooler, the flow velocity of the intake air in the tube of the intercooler is made substantially uniform, the occurrence of dew condensation due to supercooling is suppressed, the sulfuric acid corrosion of the intercooler can be prevented, and the intake leak is caused. It is possible to prevent deterioration of fuel consumption due to a decrease in supercharging pressure of the engine.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態のインタークーラを示す断
面図である。
FIG. 1 is a cross-sectional view showing an intercooler according to an embodiment of the present invention.

【図2】従来技術のインタークーラを示す断面図であ
る。
FIG. 2 is a sectional view showing a conventional intercooler.

【図3】従来技術のインタークーラを示す正面図であ
る。
FIG. 3 is a front view showing a conventional intercooler.

【図4】インタークーラの配置を示すエンジンの系統図
である。
FIG. 4 is a system diagram of an engine showing an arrangement of intercoolers.

【図5】EGR装置およびインタークーラの配置を示す
エンジンの系統図である。
FIG. 5 is a system diagram of an engine showing an arrangement of an EGR device and an intercooler.

【図6】インタークーラの構造を示す図1C部の拡大斜
視図である。
FIG. 6 is an enlarged perspective view of a portion of FIG. 1C showing the structure of the intercooler.

【符号の説明】[Explanation of symbols]

1 エンジン 2 排気マニホールド 3 吸気マニホールド 4 過給機(ターボチャ
ージャ) 5 吸気管路 6 EGR弁 7 EGR管 10 インタークーラ 13 吸気入口管路 14 排気出口管路 20 吸気流入口 21 流入側ヘッダ 22 コア 23 吐出側ヘッダ 24 吸気吐出口 25 チューブ 26 フィン 27 エンドプレート 28 水抜き栓
1 Engine 2 Exhaust Manifold 3 Intake Manifold 4 Supercharger (Turbocharger) 5 Intake Pipe Line 6 EGR Valve 7 EGR Pipe 10 Intercooler 13 Intake Inlet Pipeline 14 Exhaust Outlet Pipeline 20 Inlet Inlet 21 Inlet Header 22 Core 23 Discharge side header 24 Intake discharge port 25 Tube 26 Fin 27 End plate 28 Drain plug

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ディーゼルエンジンの過給機(4)に接続
された吸気管路(5)に設けられたインタークーラ(1
0)において、前記インタークーラ(10)が、流入側ヘ
ッダ(21)と、吐出側ヘッダ(23)と、前記両ヘッダ
(21、23)間に設けられた熱交換用のコア(22)とから
形成され、前記ヘッダ(21、23)に設けた吸気流入口
(20)と吸気吐出口(24)が前記コア(22)の一側
(A)に対向して配置され、更に、前記コア(22)を形
成するチューブ(25)の長さが前記一側(A)より他側
(B)に向うに従って漸減するように構成した過給機付
ディーゼルエンジン用インタークーラ。
1. An intercooler (1) provided in an intake pipe line (5) connected to a supercharger (4) of a diesel engine.
In 0), the intercooler (10) includes an inflow header (21), a discharge header (23), and a heat exchange core (22) provided between the headers (21, 23). And the intake inlet (20) and the intake outlet (24) formed in the header (21, 23) are arranged to face one side (A) of the core (22). An intercooler for a diesel engine with a supercharger, wherein the length of a tube (25) forming (22) is gradually reduced from the one side (A) to the other side (B).
【請求項2】エンジンの排気の一部を吸気に還流するE
GR管(7)を該エンジンの排気マニホールド(2)と
前記インタークーラ(10)の上流の吸気管路(5)の間
に接続した前記請求項1記載の過給機付ディーゼルエン
ジン用インタークーラ。
2. E for recirculating a part of engine exhaust gas to intake air
The intercooler for a diesel engine with a supercharger according to claim 1, wherein a GR pipe (7) is connected between an exhaust manifold (2) of the engine and an intake pipe line (5) upstream of the intercooler (10). .
JP07731796A 1996-03-29 1996-03-29 Intercooler for turbocharged diesel engine Expired - Fee Related JP3491437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07731796A JP3491437B2 (en) 1996-03-29 1996-03-29 Intercooler for turbocharged diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07731796A JP3491437B2 (en) 1996-03-29 1996-03-29 Intercooler for turbocharged diesel engine

Publications (2)

Publication Number Publication Date
JPH09264145A JPH09264145A (en) 1997-10-07
JP3491437B2 true JP3491437B2 (en) 2004-01-26

Family

ID=13630562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07731796A Expired - Fee Related JP3491437B2 (en) 1996-03-29 1996-03-29 Intercooler for turbocharged diesel engine

Country Status (1)

Country Link
JP (1) JP3491437B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4674602B2 (en) * 2007-11-22 2011-04-20 株式会社デンソー Heat exchanger
KR101504291B1 (en) * 2007-11-26 2015-03-23 주식회사 에이티티알앤디 A cooling apparatus
GB2500871B (en) 2012-04-05 2017-03-01 Ford Global Tech Llc An Air to Liquid Heat Exchanger
JP6531357B2 (en) * 2014-07-16 2019-06-19 いすゞ自動車株式会社 Corrugated fin type heat exchanger
JP7075220B2 (en) * 2018-01-19 2022-05-25 株式会社Subaru Exhaust cooler
CN115030808B (en) * 2022-07-11 2023-12-22 北京汽车集团越野车有限公司 Intercooler and vehicle

Also Published As

Publication number Publication date
JPH09264145A (en) 1997-10-07

Similar Documents

Publication Publication Date Title
US7757678B2 (en) Locomotive exhaust gas recirculation cooling
US9488134B2 (en) Engine system having turbo charger
US4702079A (en) Air-cooled type intercooler for a supercharged internal combustion engine
US20090277429A1 (en) System, kit, and method for locomotive exhaust gas recirculation cooling
JP2002188526A (en) Egr device
JP2007224786A (en) Exhaust gas recirculation device
JP5112805B2 (en) EGR device
JP3893895B2 (en) EGR gas cooling structure
JP3491437B2 (en) Intercooler for turbocharged diesel engine
JPH09280118A (en) Egr device for diesel engine
JP3664457B2 (en) EGR gas cooling device
JPH10220305A (en) Egr device with intercooler
JP2012241627A (en) Intercooler
JPS625098A (en) Inner fin of heat exchanger
JP6447105B2 (en) Intake manifold
KR20120067020A (en) Vehicle engine cooling system
JPH08291773A (en) Exhaust gas recirculation device for engine
JP2001221106A (en) Circulated gas cooling system
JP2002147291A (en) Exhaust gas recirculation device with cooler
JP5310437B2 (en) EGR diffusion unit
JP2002285915A (en) Exhaust gas recirculation passage of cylinder head
JP2012225311A (en) Intake device
JP3388157B2 (en) EGR valve cooling structure
JP5477484B2 (en) EGR diffusion unit
JP6459497B2 (en) Engine intake structure

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees