JPH09276891A - Deep tank aeration apparatus and operation method therefor - Google Patents

Deep tank aeration apparatus and operation method therefor

Info

Publication number
JPH09276891A
JPH09276891A JP8091167A JP9116796A JPH09276891A JP H09276891 A JPH09276891 A JP H09276891A JP 8091167 A JP8091167 A JP 8091167A JP 9116796 A JP9116796 A JP 9116796A JP H09276891 A JPH09276891 A JP H09276891A
Authority
JP
Japan
Prior art keywords
air
tank
aeration
deep
air diffuser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8091167A
Other languages
Japanese (ja)
Other versions
JP3171555B2 (en
Inventor
Kiwamu Matsubara
極 松原
Tomoaki Inagaki
智亮 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP09116796A priority Critical patent/JP3171555B2/en
Publication of JPH09276891A publication Critical patent/JPH09276891A/en
Application granted granted Critical
Publication of JP3171555B2 publication Critical patent/JP3171555B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To sufficiently supply air necessary for the removal of BOD, the nitrification of nitrogen and the sedimentation of a carrier or sludge by disposing a first air diffusion device to the middle stage part of one of the cambers of a deep aeration tank having a partition wall formed to the central part thereof and disposing a second air diffusion device to the bottom part of the deep aeration tank. SOLUTION: A first air diffusion device 3a is disposed to the middle stage part of one of the chambers of a revolving flow middle stage aeration type deep aeration tank having a partition wall formed to the central part thereof and performing the removal of BOD in waste water and the nitrification of nitrogen at the same time and a second air diffusion device 5a is attached to the bottom surface of the aeration tank. The air sending amt. of the first air diffusion device 3a is controlled by a first control device 4a and that of the second air diffusion device 5a is controlled by a second control device 6a. By supplying air from these air diffusion devices 3a, 5a, strong revolving streams of flow velocity of 2m/min or more are obtained at the bottom part of the deep aeration tank and, even if a carrier with specific gravity of 1.0-1.1 is used, the sedimentation of the carrier or sludge is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、下水、有機性排水
等の排水中のBODの除去と同時に窒素の硝化をするこ
とが出来る深槽曝気装置とその運転方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deep tank aeration apparatus capable of nitrifying nitrogen at the same time as removing BOD in wastewater such as sewage and organic wastewater, and a method of operating the same.

【0002】[0002]

【従来の技術】従来、たとえば、水深4〜5mの標準曝
気槽を利用して、図10に示すように旋回流式により、
または、図11に示すように全面曝気式により、下水、
有機性排水等の排水中のBODを処理することが行われ
て来た。近年、都市部において下水処理場等の処理場用
地の確保が困難となったことから、BODの除去を目的
として、たとえば、図12に示すような標準曝気槽に比
較して水深を2倍以上深くし、中央部に仕切壁を設けた
水深8〜10mの中段曝気式の深槽曝気槽が設置される
ようになった。
2. Description of the Related Art Conventionally, for example, a standard aeration tank having a water depth of 4 to 5 m is used, and as shown in FIG.
Alternatively, as shown in FIG. 11, sewage,
It has been practiced to treat BOD in wastewater such as organic wastewater. In recent years, because it has become difficult to secure land for treatment plants such as sewage treatment plants in urban areas, for the purpose of removing BOD, for example, the water depth has been doubled or more compared to a standard aeration tank as shown in FIG. Deepening, a middle-stage aeration type deep tank aeration tank with a water depth of 8 to 10 m, which has a partition wall in the center, has come to be installed.

【0003】また、環境保護を図るため、排水を高度処
理すること、たとえば、排水中のBODを除去した後の
排水に対して、排水中の窒素やリンを除去することの必
要性が叫ばれるようになり、さらに曝気することにより
排水中の窒素を硝化し、脱窒することも行われるように
なった。たとえば、下水中のBODを除去する下水処理
における中段曝気式の深槽曝気槽の必要酸素量は、BO
Dの除去のみの場合には、深槽曝気槽1m3 当たり0.3
〜0.5 kgO2 /槽m3 日であるが、BODの除去と同
時に窒素の硝化を行う場合の必要酸素量は、この値の2
〜2.5 倍の0.6 〜1.2 kgO2 /槽m3 日と増加する。
さらに、一般に標準曝気槽内に微生物を担持させるため
の担体を、曝気槽容積の10%程度添加して反応速度の
向上を図ることも行われているが、処理能力が向上する
ため必要酸素量は担体量に応じて増加する。たとえば、
中段曝気式の深槽曝気槽に担体を深槽曝気槽容積の10
%程度添加し、下水中のBODの除去と同時に窒素の硝
化を行う場合の必要酸素量は、BODの除去のみの場合
に比較し、4〜5倍の1.2 〜2.4 kgO2 /槽m3 日と
なる。
Further, in order to protect the environment, it is necessary to highly treat the wastewater, for example, to remove nitrogen and phosphorus in the wastewater after removing the BOD in the wastewater. Then, nitrogen in the wastewater was nitrified and denitrified by further aeration. For example, in the sewage treatment for removing BOD in sewage, the required oxygen amount of the middle stage aeration type deep aeration tank is BO
When only D is removed, 0.3 per 1 m 3 of deep tank aeration tank
~ 0.5 kgO 2 / tank m 3 days, but the required oxygen amount when nitrifying nitrogen at the same time as BOD removal is 2 times this value.
Increase the 2.5 fold 0.6 ~1.2 kgO 2 / tank m 3 days.
Further, generally, a carrier for supporting microorganisms in the standard aeration tank is added to about 10% of the aeration tank volume to improve the reaction rate, but since the treatment capacity is improved, the required oxygen amount is required. Increases with the amount of carrier. For example,
The carrier is added to the deep aeration tank of the middle aeration type with
%, The required oxygen amount when nitrogen is nitrified at the same time as removal of BOD in sewage is 4 to 5 times that of 1.2 to 2.4 kgO 2 / tank m 3 days compared to the case of only removal of BOD. Becomes

【0004】人口増加に伴なう処理水量の増加や、BO
D除去、窒素除去等の処理水質の向上のため、排水を曝
気処理するための必要酸素量を確保することが要求され
るが、下水処理場としては、設備費用や設備償却の面か
ら設備を全て新設することは困難であるので、多くの場
合に既設の中段曝気式の深槽曝気槽を生かして、設備を
どのように改造し、増設すれば曝気処理するための必要
酸素量を確保することが出来るかが検討されている。中
段曝気式の深槽曝気槽においては、散気装置による占有
面積が増加すると、散気装置に旋回流が衝突して正常な
旋回流が形成されなくなる恐れがあるため、深槽曝気槽
の中段部に全ての散気装置を設置することは問題があっ
た。
The increase in the amount of treated water due to the population increase, and the BO
In order to improve the quality of treated water such as D removal and nitrogen removal, it is required to secure the necessary oxygen amount for aeration treatment of wastewater, but as a sewage treatment plant, equipment is required from the aspect of equipment cost and equipment depreciation. Since it is difficult to install all new facilities, in most cases the existing middle-stage aeration type deep tank aeration tank will be used to improve the equipment, and if additional equipment is installed, the necessary oxygen amount for aeration processing will be secured. It is being examined whether it can be done. In the middle aeration type deep aeration tank, if the area occupied by the air diffuser increases, the swirling flow may collide with the air diffuser and a normal swirling flow may not be formed. It was problematic to install all air diffusers in the department.

【0005】水深10mの深槽曝気槽において、水深5
mの中段部に散気板を設けて曝気するときの排水ベ−ス
の酸素移動効率は15%であり、摂氏20度で1気圧下
の空気中の酸素量を0.277 kgO2 /空気m3 とする
と、前記の1.2 〜2.4 kgO2 /槽m3.日の酸素量を0.
277 kgO2 /空気m3 を0.15で割り算すると、29〜
58m3 空気m3 /槽m3 日となり、300×300×
30mmの散気板1枚当たりの送気量を80リットル/
分とすると、散気板枚数は0.25〜0.50枚/槽m3 とな
る。散気板の面積は0.09m2 /枚であるから、散気板設
置面積は0.023 〜0.045 m2 /槽m3 となる。一方、水
深10mの深槽曝気槽の1m3 当たりの水面積は0.1 m
2 /槽m3 であるから、水面積に対する散気板設置面積
の割合は、0.023 〜0.045 m2 ÷0.1 ×100=23〜
45%となり、散気板は仕切壁の一方側(片側)のみに
設置されているので一方側(片側)の水面積に対する散
気板設置面積の割合は、46〜90%となる。一方側の
みに散気板を設けた中段曝気式の深槽曝気槽において
は、散気装置の占める面積が余り多くなると、散気装置
に旋回流が衝突して抵抗が大きくなり、正常な循環が行
われなくなり、担体が深槽曝気槽の底部に沈澱すること
になる。試験結果によれば、正常な旋回流による曝気を
するためには、水面積に対する散気板設置面積の割合は
25%以下(開口面積は75%以上、一方側水面積の5
0%以上)であることが必要であるから、中段曝気式の
深槽曝気槽において供給可能な酸素量は、仕切壁の片側
のみに46%設けた時の供給O2 量である1.2 kgO2
/槽m3.日の酸素量程度が最大である。
In a deep aeration tank with a water depth of 10 m, the water depth is 5
The oxygen transfer efficiency of the drainage base is 15% when the air diffuser is installed in the middle part of the m, and the oxygen amount in the air at 20 degrees Celsius under 1 atmosphere is 0.277 kgO 2 / m 3 of air. If so, the above-mentioned 1.2-2.4 kgO 2 / m 3 of tank m.
Dividing 277 kgO 2 / m 3 of air by 0.15 gives 29 ~
58m 3 air m 3 / tank m 3 days, 300 × 300 ×
80 liters of air per 30 mm diffuser plate
When minute to, diffuser plate number becomes 0.25 to 0.50 sheets / tank m 3. Since the area of the diffuser plate is 0.09 m 2 / sheets, diffuser plates footprint becomes 0.023 ~0.045 m 2 / tank m 3. On the other hand, the water area per 1 m 3 in a deep aeration tank with a water depth of 10 m is 0.1 m.
Since it is 2 / tank m 3 , the ratio of the diffuser plate installation area to the water area is 0.023 to 0.045 m 2 ÷ 0.1 × 100 = 23 to
Since the diffuser plate is installed only on one side (one side) of the partition wall, the ratio of the diffuser plate installation area to the water area on one side (one side) is 46 to 90%. In the middle-stage aeration type deep aeration tank with air diffuser installed on only one side, if the area occupied by the air diffuser becomes too large, the swirling flow collides with the air diffuser and the resistance increases, causing normal circulation. Will not occur and the carrier will settle to the bottom of the deep aeration tank. According to the test results, in order to perform the aeration by the normal swirling flow, the ratio of the diffuser plate installation area to the water area is 25% or less (the opening area is 75% or more, the water area on one side is 5% or less).
0% or more), the amount of oxygen that can be supplied in the middle aeration type deep tank aeration tank is 1.2 kgO 2 which is the amount of O 2 supplied when 46% is provided on only one side of the partition wall.
/ Tank m 3 The maximum oxygen level per day is the maximum.

【0006】以上述べたように、深槽曝気槽の仕切壁の
一方側(片側)の中段部に散気装置を設けた深槽曝気槽
は、散気装置を設置出来る面積が限られているため、中
段部のみでは設置面積が不足し、BODの除去、窒素の
硝化、担体や汚泥の沈澱の防止に必要充分な空気を供給
することが出来ないと言う問題があった。そこで、BO
Dの除去、窒素の硝化に必要な空気を供給すると共に、
担体や汚泥の沈澱の防止に必要な空気を供給するため
に、一方側の中段部に第1の散気装置設けると共に、底
部に第2の散気装置を設けることを検討し、さらに全空
気量に対する第2の散気装置の空気量の比率を、どの程
度にすることが好ましいのかを酸素移動効率、動力効率
等から検討するに到った。
As described above, the deep aeration tank provided with the air diffuser on the middle part of one side (one side) of the partition wall of the deep aeration tank has a limited area where the air diffuser can be installed. Therefore, there is a problem in that the installation area is insufficient only in the middle part, and it is not possible to supply sufficient air necessary for removal of BOD, nitrification of nitrogen, and precipitation of carrier and sludge. So BO
In addition to supplying the air necessary for removing D and nitrifying nitrogen,
In order to supply the air necessary to prevent the sedimentation of the carrier and sludge, it was considered to install a first air diffuser in the middle part of one side and a second air diffuser in the bottom part, and further consider the total air flow. It has been examined from the oxygen transfer efficiency, the power efficiency, etc., how much the ratio of the air amount of the second diffuser to the amount is preferable.

【0007】[0007]

【発明が解決しようとする課題】本発明は、かかる事情
を背景としてなされたものであって、その解決課題とす
るところは、深槽曝気槽の内部に設けた仕切壁の一方側
の中段部に散気装置を設けた中段曝気式の深槽曝気槽に
おいて、排水中のBODの除去と同時に窒素の硝化をす
るのに必要な空気と深槽曝気槽の底部への汚泥や担体の
沈澱の防止に必要な空気を、高い酸素移動効率と動力効
率を維持しつつ、確実に供給することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and the problem to be solved is that the middle step portion on one side of the partition wall provided inside the deep tank aeration tank. In the middle-stage aeration type deep tank aeration tank equipped with the air diffuser, the air required for nitrification of nitrogen at the same time as the removal of BOD in the wastewater and the precipitation of sludge and carrier on the bottom of the deep tank aeration tank It is necessary to reliably supply the air required for prevention while maintaining high oxygen transfer efficiency and power efficiency.

【0008】[0008]

【課題を解決する手段】かかる課題を解決するための本
発明の第1の発明は、「中央部に仕切壁を設けた深槽曝
気槽の一方側の中段部に第1の散気装置を設けると共
に、前記深槽曝気槽の底部に第1の散気装置と独立して
送気量を制御可能な第2の散気装置を設けた深槽曝気装
置。」である。第2の発明は、「中央部に仕切壁を設け
た深槽曝気槽の一方側の中段部に第1の散気装置を設け
ると共に、前記深槽曝気槽の底部に第1の散気装置と独
立して送気量を制御可能な第2の散気装置が設けられて
おり、それらの送気量がそれぞれ独立して制御可能にさ
れている深槽曝気装置。」である。
A first aspect of the present invention for solving the above-mentioned problem is to provide a "first aeration device in a middle part on one side of a deep tank aeration tank having a partition wall in the center thereof". The deep tank aeration apparatus, which is provided with a second air diffuser capable of controlling the air supply amount independently of the first air diffuser at the bottom of the deep tank aeration tank. A second aspect of the invention is to provide a "first air diffuser at the middle part of one side of a deep tank aeration tank having a partition wall in the center, and a first air diffuser at the bottom of the deep tank aeration tank. Is provided with a second air diffuser capable of controlling the amount of air supplied independently of each other, and the amount of supplied air can be controlled independently of each other.

【0009】本発明の第3の発明は、「中央部に仕切壁
を設けた深槽曝気槽の一方側の中段部に設けた第1の散
気装置により曝気すると共に、前記深槽曝気槽の底部に
設けた第2の散気装置により曝気する深槽曝気装置の運
転方法。」である。
A third aspect of the present invention is that "a deep aeration tank provided with a partition wall in the central portion performs aeration by the first aeration device provided in the middle part of one side of the deep aeration tank, and The operation method of the deep tank aeration device which performs aeration with the second air diffuser provided at the bottom of the.

【0010】[0010]

【発明の実施の形態】以下に本発明の実施の形態を、図
面を参照しつつ説明する。 本発明の第1の実施の形態は、図1に示すように、旋
回流式で下水や有機性排水等の排水中のBODの除去と
窒素の硝化とを同時に行う水深8〜10mの中段曝気式
の深槽曝気槽の第1の散気装置の直下の底面のみに、第
2の散気装置を付加したものである。この装置により、
BODの除去と窒素の硝化と深槽曝気槽の底部の汚泥や
担体の沈澱の防止を同時に行うに必要な空気を供給する
ことが出来る。中段曝気式の深槽曝気槽(1)の内部に
設けられた仕切壁(2)の中段部の一方側に設けられた
第1の散気装置(3a)の送気量は、第1の制御装置(4
a)により制御されるが、第1の散気装置(3a)の直下
の底部に設けられた第2の散気装置(5a)の送気量は、
第1の曝気装置(3a)とは別に第2の制御装置(6a)に
より制御される。第1の散気装置(3a)からの送気と、
第2の散気装置(5a)からの送気とにより、排水中のB
ODの除去と窒素の硝化とを同時に行うのに必要な空気
が供給されると、深槽曝気槽の底部の流速が2m/分以
上の強力な旋回流が得られるので、担体の比重が1.0 〜
1.1 の担体を使用する際にも、担体や汚泥の沈澱は無
い。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. The first embodiment of the present invention is, as shown in FIG. 1, a middle-stage aeration with a water depth of 8 to 10 m, which simultaneously removes BOD from wastewater such as sewage and organic wastewater by a swirling flow method and nitrifies nitrogen. The second air diffuser is added only to the bottom surface immediately below the first air diffuser in the deep tank aeration tank of the formula. With this device,
It is possible to supply the air necessary for removing BOD, nitrifying nitrogen, and preventing the precipitation of sludge and carrier at the bottom of the deep tank aeration tank. The first air diffuser (3a) provided on one side of the middle part of the partition wall (2) provided inside the middle aeration type deep tank aeration tank (1) is Controller (4
Controlled by a), the amount of air sent by the second air diffuser (5a) provided at the bottom immediately below the first air diffuser (3a) is
It is controlled by a second control device (6a) separately from the first aeration device (3a). Air supply from the first air diffuser (3a),
Due to the air supply from the second air diffuser (5a), B
When the air required for simultaneous removal of OD and nitrification of nitrogen is supplied, a strong swirling flow with a flow velocity of 2 m / min or more at the bottom of the deep tank aeration tank is obtained, so the specific gravity of the carrier is 1.0 ~
There is no sedimentation of the carrier or sludge when using the carrier of 1.1.

【0011】本発明の第2の実施の形態は図2に示す
ように、中段曝気式の深槽曝気槽(1)の内部に設けら
れ仕切壁(2)の中段部の一方側に設けられた第1の散
気装置(3b)は、第1の制御装置(4b)により制御され
る。深槽曝気槽の底部の隅部に沈澱が生じることのない
ように、第2の散気装置を複数に分割して設けるが、分
割された一方の第2の散気装置(5b)の送気量は第2の
制御装置(6b)により制御され、分割された他方の第2
の散気装置(7b)の送気量は第2の制御装置(8b)によ
り制御されるが、分割された一方の第2の散気装置(5
b)の送気量を多くして、隅部の送気量を多量にするこ
とが好ましく、これにより、汚泥や担体が沈澱するのを
第1の実施形態より完全に防止できる。
The second embodiment of the present invention, as shown in FIG. 2, is provided inside the middle aeration type deep tank aeration tank (1) and is provided on one side of the middle step of the partition wall (2). The first air diffuser (3b) is controlled by the first controller (4b). The second air diffuser is divided into a plurality of units so that precipitation does not occur at the bottom corner of the deep aeration tank. However, one of the divided second air diffusers (5b) is used for feeding. The volume is controlled by the second controller (6b), and the other divided second
The air supply amount of the air diffuser (7b) is controlled by the second controller (8b), but one of the divided second air diffusers (5b
It is preferable to increase the amount of air supplied in b) to increase the amount of air supplied to the corners, which can completely prevent the sludge and the carrier from being precipitated as compared with the first embodiment.

【0012】本発明の第3の実施の形態は図3に示す
ように、中段曝気式の深槽曝気槽(1)の内部に設けら
れた仕切壁(2)の中段部の一方側に設けられた第1の
散気装置(3c)の送気量は、第1の制御装置(4c)によ
り制御されるが、深層曝気槽の底部の全面に設けられた
第2の散気装置(5c)の送気量は、第1の曝気装置(3
c)とは別に第2の制御装置(6c)により制御される。
第2の散気装置(5c)は深槽曝気槽の底部全面を曝気し
ているので、気泡の滞留時間が長くなり、酸素移動効率
を向上させることが出来る。第1の散気装置(3C)から
の送気と、第2の散気装置(5C)からの送気とにより、
排水中のBODの除去と窒素の硝化とを同時に行うのに
必要な空気が供給されると、深槽曝気槽の底部の担体は
全面曝気により流動しているので、担体の比重が1〜1.
1 の担体を使用する際にも、担体や汚泥の沈澱は無い。
The third embodiment of the present invention is, as shown in FIG. 3, provided on one side of the middle stage of the partition wall (2) provided inside the middle stage aeration type deep tank aeration tank (1). The amount of air supplied by the first air diffuser (3c) is controlled by the first controller (4c), but the second air diffuser (5c provided on the entire bottom surface of the deep aeration tank ) Is the first aeration device (3
It is controlled by a second control device (6c) separately from c).
Since the second air diffuser (5c) aerates the entire bottom surface of the deep aeration tank, the residence time of bubbles becomes longer and the oxygen transfer efficiency can be improved. By the air supply from the first air diffuser (3C) and the air supply from the second air diffuser (5C),
When the air required to remove BOD in the wastewater and nitrify nitrogen is supplied at the same time, the carrier at the bottom of the deep aeration tank is flowing due to the entire surface aeration. .
There is no precipitation of carrier or sludge even when using carrier 1).

【0013】本発明の第4の実施の形態は図4に示す
ように、中段曝気式の深槽曝気槽(1)の内部に設けら
れた仕切壁(2)の中段部の一方側に設けられた第1の
散気装置(3d)の送気量は、第1の制御装置(4d)によ
り制御されるが、深層曝気槽の底部の全面に設けられた
第2の散気装置の送気量について言えば、複数に分割さ
れた一方の第2の散気装置(5d)は第2の制御装置(6
d)により制御され、分割された一方の散気装置(5d)
の送気量は制御装置(6d)により制御されるから,分割
された一方の隅部の送気量を多くすることが出来, 汚泥
や担体が沈澱するのを第3の実施形態より完全に防止す
ることが可能となる。また, 第2の散気装置(5d)(7
d)は全面に設けられていりので、第1の曝気装置(3
d)により形成された気泡と第2の散気装置(7d)によ
り形成された気泡とは広範囲に分散し、滞留時間は長い
ので酸素溶解効率が向上する。
The fourth embodiment of the present invention is, as shown in FIG. 4, provided on one side of the middle stage part of the partition wall (2) provided inside the middle stage aeration type deep tank aeration tank (1). The amount of air supplied by the first air diffuser (3d) is controlled by the first controller (4d), but the amount of air sent by the second air diffuser provided on the entire bottom surface of the deep aeration tank is controlled. In terms of air volume, one of the second air diffusers (5d), which is divided into a plurality, is the second controller (6
One diffuser controlled by d) and divided (5d)
Since the amount of air sent to the control unit (6d) is controlled, the amount of air sent to one of the divided corners can be increased, and sludge and carrier can be completely settled as compared with the third embodiment. It becomes possible to prevent it. In addition, the second air diffuser (5d) (7
Since d) is installed on the entire surface, the first aeration device (3
The bubbles formed by d) and the bubbles formed by the second air diffuser (7d) are dispersed in a wide range, and the residence time is long, so that the oxygen dissolution efficiency is improved.

【0014】中段曝気式の深槽曝気槽において、中段の
散気装置の位置、底面の散気装置の位置(直下、全面)
や微生物担体の有無により、必要充分な酸素量や酸素移
動効率は変化するが、排水中のBODの除去と窒素の硝
化とを同時に行うため、従来の中段曝気式の深槽曝気槽
を改造して、その底部に第2の散気装置を設けるケ−ス
がほとんどなので、このケ−スについての試験結果を紹
介する。従来の中段曝気式の深槽曝気槽により、BOD
除去のみを、担体なしで行う場合には、0.3 〜0.5 kg
2 /槽m3 日の酸素を必要とし、酸素移動効率は15
%であるから、必要空気量は7.22〜12空気m3 /槽m3
日となる。
In the middle-stage aeration type deep tank aeration tank, the position of the air diffuser at the middle stage and the position of the air diffuser at the bottom (immediately below, whole surface)
The necessary and sufficient oxygen amount and oxygen transfer efficiency vary depending on the presence or absence of microbial carriers, but in order to remove BOD in wastewater and nitrify nitrogen at the same time, the conventional middle aeration type deep tank aeration tank was modified. In most cases, a second air diffuser is provided at the bottom of the case, so the test results for this case will be introduced. BOD by the conventional middle aeration type deep tank aeration tank
0.3 to 0.5 kg when removing only without carrier
O 2 / tank m 3 days of oxygen required, oxygen transfer efficiency is 15
Because it is%, required amount of air is 7.22 to 12 air m 3 / tank m 3
Day.

【0015】第1の実施の形態の中段曝気式の深槽曝
気槽で、第1の散気装置の直下のみに第2の散気装置を
設けて行う場合について説明する。BOD除去と窒素の
硝化を担体なしで行う場合には、0.6 〜1.2 kgO2
槽m 3 日の酸素の供給を必要とするが、必要酸素量0.6
〜1.2 kgO2 /槽m3 日の内、既設の中段に設けた第
1の散気装置から0.3 〜0.5 kgO2 /槽m3 日の酸素
を供給すると、酸素移動効率は15%であるから、第1
の散気装置の必要空気量は7.22〜12空気m3 /槽m3
となる。酸素の必要量0.6 〜1.2 kgO2 /槽m3 日か
ら、第1の散気装置から供給される0.3 〜0.5 kgO2
/槽m3 日の酸素を差し引いた0.3 〜0.7 kgO2 /槽
3 日の酸素は、第1の散気装置の直下に設けた第2の
散気装置から供給する。底部の散気装置から発生した気
泡は、その滞留時間が長く、中段曝気式より酸素移動効
率は向上する。底部の直下のみに散気装置を設けて曝気
する場合に、予備試験結果から得られた酸素移動効率の
30%を用いると、必要空気量は3.09〜7.22空気m3
槽m3 日となる。第1の散気装置と第2の散気装置の槽
100m3 で1日当たりの空気量の比をとると、722 〜
1200m3 : 361 〜842 空気m3 =1 : 0.30〜1.17とな
る。中段曝気式の深槽曝気槽の第1の散気装置の空気量
と第2の散気装置の空気量とを総合して、深槽曝気槽全
体としての酸素移動効率が決まる。
First embodiment middle stage aeration type deep tank exposure
In the air tank, install the second air diffuser only just below the first air diffuser.
The case of providing and performing will be described. BOD removal and nitrogen
When nitrification is performed without a carrier, 0.6-1.2 kgOTwo/
Tank m ThreeIt requires daily oxygen supply, but the required oxygen amount is 0.6.
~ 1.2 kgOTwo/ Tank mThreeNo. 1 in the middle of the existing day
0.3 to 0.5 kgO from 1 air diffuserTwo/ Tank mThreeOxygen of the day
, The oxygen transfer efficiency is 15%.
The required air volume for the air diffuser is 7.22-12 mThree/ Tank mThreeDay
Becomes Required amount of oxygen 0.6-1.2 kgOTwo/ Tank mThreeDay
From 0.3 to 0.5 kgO supplied from the first diffuserTwo
/ Tank mThree0.3-0.7 kgO minus the daily oxygenTwo/ Tank
m ThreeOxygen for the day is stored in the second oxygen diffuser directly below the first air diffuser.
Supplied from the air diffuser. Air generated from the diffuser at the bottom
Bubbles have a long residence time and the oxygen transfer effect is higher than that of the middle aeration type.
The rate will improve. Aerating only with an air diffuser just below the bottom
The oxygen transfer efficiency obtained from the preliminary test results,
If 30% is used, the required air volume is 3.09 to 7.22 air mThree/
Tank mThreeIt will be the day. First air diffuser and second air diffuser tanks
100mThreeIf you take the ratio of the amount of air per day, 722 ~
1200 mThree : 361 ~ 842 air mThree= 1: 0.30 to 1.17
You. Air volume of the first air diffuser of the middle aeration type deep tank aeration tank
And the amount of air in the second diffuser,
The oxygen transfer efficiency of the body is determined.

【0016】第3の実施の形態の中段曝気式の深槽曝
気槽で、深層曝気槽の底部の全面に第2の散気装置を設
けて行う場合について説明する。、BOD除去と窒素の
硝化を担体なしで行う場合には、0.6 〜1.2 kgO2
槽m3 日の酸素の供給を必要とするが、必要酸素量0.6
〜1.2 kgO2 /槽m3 日の内、既設の中段に設けた第
1の散気装置から0.3 〜0.5 kgO2 /槽m3 日の酸素
を供給すると、酸素移動効率は15%であるから、第1
の散気装置の必要空気量は7.22〜12空気m3 /槽m3
となる。酸素の必要量0.6 〜1.2 kgO2 /槽m3 日か
ら上記を差し引いた0.3 〜0.7 kgO2 /槽m3 日の酸
素は、底部の全面に設けらた第2の散気装置から供給さ
れる。そこから発生した気泡は、広範囲に分散し、旋回
流により上昇が遅くされて滞留時間が長いので、中段曝
気式より酸素移動効率は向上する。底部の全面に散気装
置を設けて曝気する場合に、予備試験結果から得られた
酸素移動効率の35%を用いると、必要空気量は3.09〜
7.22空気m3 /槽m3 日となる。第1の散気装置と第2
の散気装置との空気量の槽100m3 で1日当たりの比
をとると、722 〜1200空気m3 : 309〜722 空気m3
1 : 0.26〜1.00となる。中段曝気式の深槽曝気槽の第1
の散気装置の空気量と第2の散気装置の空気量とを総合
して、深槽曝気槽全体としての酸素移動効率が決まる。
A third embodiment of the middle-stage aeration type deep tank aeration tank will be described in which a second air diffuser is provided on the entire bottom surface of the deep layer aeration tank. , BOD removal and nitrogen nitrification without a carrier, 0.6-1.2 kgO 2 /
Oxygen needs to be supplied for 3 days, but the required oxygen amount is 0.6.
To 1.2 KGO Of 2 / tank m 3 days, the supply of oxygen of 0.3 to 0.5 KGO 2 / tank m 3 days from the first air diffuser provided in the middle of an existing, since the oxygen transfer efficiency is 15% , First
Required amount of air in the air diffuser becomes 7.22 to 12 air m 3 / tank m 3 days. Required amount of oxygen 0.6-1.2 kgO 2 / tank m 3 days minus the above 0.3-0.7 kgO 2 / tanm m 3 days of oxygen is supplied from the second diffuser installed on the entire bottom surface. . The bubbles generated from there are dispersed over a wide range, the rise is delayed by the swirling flow, and the residence time is long, so the oxygen transfer efficiency is improved compared to the middle-stage aeration type. When using an air diffuser on the entire bottom surface for aeration, using 35% of the oxygen transfer efficiency obtained from the preliminary test results, the required air volume is 3.09 ~
7.22 Air m 3 / tank m 3 days. First air diffuser and second
When the ratio of the amount of air with the air diffuser of 100 m 3 per day is taken, 722 to 1200 air m 3 : 309 to 722 air m 3 =
1: 0.26 to 1.00. First middle-stage aeration type deep aeration tank
The oxygen transfer efficiency of the deep tank aeration tank as a whole is determined by combining the air amount of the air diffuser and the air amount of the second air diffuser.

【0017】第1の実施の形態のこれを中段曝気式の
深槽曝気槽で第1の散気装置の直下のみに第2の散気装
置を設けて担体10%を添加して行う場合について説明
する。、BOD除去と窒素の硝化を担体10%を添加し
て行う場合には、1.2 〜2.4 kgO2 /槽m3 日の酸素
の供給を必要とするが、必要酸素量1.2 〜2.4 kgO2
/槽m3 日の内、既設の中段に設けた第1の散気装置か
ら0.3 〜0.5 kgO2 /槽m3 日の酸素を供給すると、
酸素移動効率は15%であるから、第1の散気装置の必
要空気量は7.22〜12空気m3 /槽m3 日となる。酸素の
必要量1.2 〜2.4 kgO2 /槽m3 日から上記を差し引
いた0.9 〜1.9 kgO2 /槽m3 日の酸素は第1の散気
装置の直下の第2の散気装置から供給される。第2の散
気装置から発生した気泡は、その滞留時間が長いので、
底部の直下のみに散気装置を設けて曝気する場合に、予
備試験結果から得られた酸素移動効率の30%を用いる
と、必要空気量は11〜23空気m3 /槽m3 日となる。第
1の散気装置と第2の散気装置との槽100m3 で1日
当たり空気量の比をとると、722 〜1200空気m3 :1100
〜2300空気m3 =1 :0.92〜3.19となる。
In the case of performing this in the first embodiment in a deep aeration tank of the middle stage aeration type, in which the second air diffuser is provided just below the first air diffuser and 10% of the carrier is added. explain. , BOD removal and nitrification of nitrogen are carried out by adding 10% of the carrier, it is necessary to supply oxygen of 1.2 to 2.4 kgO 2 / m 3 of tank m 3 , but the required oxygen amount is 1.2 to 2.4 kgO 2.
/ Of tank m 3 days, the supply of oxygen of 0.3 to 0.5 KGO 2 / tank m 3 days from the first air diffuser provided at the middle of the existing,
Since the oxygen transfer efficiency is 15%, the required air volume of the first air diffuser is 7.22 to 12 air m 3 / tank m 3 days. Required amount of oxygen 1.2 to 2.4 kgO 2 / tank m 3 days subtracted the above from 0.9 to 1.9 kgO 2 / tanm m 3 days of oxygen is supplied from the second diffuser directly below the first diffuser. It The bubbles generated from the second air diffuser have a long residence time,
When using an air diffuser just below the bottom to perform aeration, using 30% of the oxygen transfer efficiency obtained from the preliminary test results, the required air volume is 11 to 23 air m 3 / tank m 3 days. . When the ratio of the air amount per day in the tank 100 m 3 of the first air diffuser and the second air diffuser is taken, 722 to 1200 air m 3 : 1100
Up to 2300 air m 3 = 1: 0.92 to 3.19.

【0018】第3の実施の形態のこれを中段曝気式の
深槽曝気槽で、深層曝気槽の底部の全面に第2の散気装
置を設けて担体10%を添加して行う場合について説明
する。、BOD除去と窒素の硝化を担体10%を添加し
て行う場合には、1.2 〜2.4 kgO2 /槽m3 日の酸素
の供給を必要とするが、必要酸素量、1.2 〜2.4 kgO
2 /槽m3 日の内、既設の中段に設けた第1の散気装置
から0.3 〜0.5 kgO2/槽m3 日の酸素を供給する
と、酸素移動効率は15%であるから、必要空気量は7.
22〜12m3 /槽m3 日となる。酸素の必要量1.2 〜2.4
kgO2 /槽m3 日から、上記を差し引いた0.9 〜1.9
kgO2 /槽m3 日の酸素は底部の全面に設けた第2の
散気装置から供給される。底部の散気装置は全面の設け
られていると共に、そこから発生した気泡は、広範囲に
分散し、旋回流により上昇が抑制されて滞留時間が長い
ので、中段曝気式より酸素移動効率は向上する。底部の
全面に散気装置を設けて曝気する場合に、予備試験結果
から得られた酸素移動効率の35%を用いると、必要空
気量は9.28〜19.6空気m3 /槽m3 日となる。第1の散
気装置と第2の散気装置との槽100m3 で1日当たり
の空気量の比をとると、722 〜1200空気m3 : 928〜19
60空気m3 =1 ;0.77〜2.71となる。なお、曝気槽に供
給した空気中の酸素が、液中にどれだけ移行したかの割
合を示す酸素移動効率は、日本下水道協会発行の「建設
省都市局下水道部監修、下水道施設計画・設計指針と解
説、1994年版」の第5章「エアレ−ションによる酸
素溶解機構」に記載される式(5−108式)に基づき
算出した。
In the third embodiment, this is the middle stage aeration type
In the deep aeration tank, the second diffuser is installed on the entire bottom surface of the deep aeration tank.
Explanation about the case of setting up the container and adding 10% of the carrier
I do. , BOD removal and nitrogen nitrification by adding 10% carrier
1.2 to 2.4 kgOTwo/ Tank mThreeOxygen of the day
The required oxygen amount is 1.2 to 2.4 kgO.
Two/ Tank mThreeThe first air diffuser installed in the existing middle stage of the day
From 0.3 to 0.5 kgOTwo/ Tank mThreeSupply oxygen for the day
Oxygen transfer efficiency is 15%, so the required air volume is 7.
22 ~ 12mThree/ Tank mThreeIt will be the day. Oxygen requirement 1.2-2.4
kgOTwo/ Tank mThreeSubtract the above from the day 0.9-1.9
kgOTwo/ Tank mThreeThe oxygen of the day is the second on the bottom.
Supplied from a diffuser. The bottom air diffuser is provided on the entire surface
The air bubbles generated from the
Dispersed, swirling flow suppresses rise and long residence time
Therefore, the oxygen transfer efficiency is improved as compared with the middle aeration type. Bottom
Preliminary test results when aerating device is installed over the entire surface for aeration
Using 35% of the oxygen transfer efficiency obtained from
Volume is 9.28-19.6 mThree/ Tank mThreeIt will be the day. First
100m tank of air device and second air diffuserThreePer day
722 to 1200 air mThree: 928-19
60 air mThree= 1; 0.77 to 2.71. In addition, use in the aeration tank.
Determining how much oxygen in the supplied air was transferred to the liquid
The oxygen transfer efficiency that indicates the
Supervising the sewerage department of the provincial city bureau, sewerage facility planning and design guidelines and solutions
Theory, 1994 Edition, Chapter 5, "Acid by Aeration"
Based on the formula (Formula 5-108) described in "Elementary dissolution mechanism"
Calculated.

【0019】[0019]

【実施例】水深10mの中段曝気式の深槽曝気槽におい
て、担体を添加し、水深4.8 mの位置に第1の散気装置
を、水深9.5 mの位置に第2の散気装置を設け、全空気
量に対する第2の散気装置の空気量を60%とし(第1
の散気装置の空気量;第2の散気装置の空気量=1;1.
50とし)、第1の散気装置の空気量と第2の散気装置の
空気量とを加算した全空気量と酸素供給量 (kgO2
槽m3 日) との関係を清水により試験した結果を示すの
が図5であり、全空気量と酸素移動動力効率 (kgO2
/kwh)との関係を清水により試験した結果を示すの
が図6である。ここで、実施例1の●印は実施の形態1
の中段曝気式の深槽曝気槽の第1の散気装置の直下のみ
に第2の散気装置を設けたものであり、また、実施例2
の○印は実施の形態3の中段曝気式の深槽曝気槽の底部
の全面に第2の散気装置を設けたものであり、比較例の
×印は中段曝気式の深槽曝気槽の片側の中段部に第1の
散気装置のみを設けたものである。
[Example] A medium aeration type deep tank aeration tank with a water depth of 10 m was prepared by adding a carrier and installing a first air diffuser at a water depth of 4.8 m and a second air diffuser at a water depth of 9.5 m. , The air volume of the second air diffuser to the total air volume is 60% (first
Air volume of the air diffuser of 2; Air volume of the second air diffuser = 1; 1.
50), the total air amount and the oxygen supply amount (kgO 2 / kgO 2 / the air amount of the first air diffuser and the air amount of the second air diffuser)
Fig. 5 shows the result of the test with fresh water for the relationship with the tank m 3 days). The total air amount and the oxygen transfer power efficiency (kgO 2
FIG. 6 shows the result of testing the relationship with / kwh) with fresh water. Here, the mark ● of the first embodiment is the first embodiment.
In the middle aeration type deep tank aeration tank, the second air diffuser is provided only directly below the first air diffuser, and the second embodiment is used.
The circle mark indicates that the second diffuser is provided on the entire bottom surface of the middle-stage aeration type deep tank aeration tank, and the X mark in the comparative example indicates the middle-stage aeration type deep tank aeration tank. Only the first air diffuser is provided in the middle section on one side.

【0020】全空気量 (空気m3 /槽m3 日) に対する
酸素供給量 (kgO2 /槽m3 日)の関係を見ると、図
5に示すように、所定空気量に対する酸素供給量は、比
較例より実施例1および実施例2が全ての範囲で優れて
いる。また、全空気量 (空気m3 /槽m3 日) に対する
酸素移動動力効率 (kgO2 /kwh)の関係を見る
と、図6に示すように、所定空気量に対する酸素移動動
力効率酸素は、比較例より実施例1および実施例2が全
ての範囲で優れている。なお、●印の直下のみに第2の
散気装置を設けた実施例1に比較して、○印の底部の全
面に散気装置を設けた実施例2の方が、酸素供給量、酸
素移動動力効率が共に良くなっているのは、底部からの
全面曝気による酸素移動効率の向上の効果である。
Looking at the relationship between the total air amount (air m 3 / tank m 3 days) and the oxygen supply amount (kgO 2 / tank m 3 days), as shown in FIG. The examples 1 and 2 are superior to the comparative examples in all ranges. Further, looking at the relationship between the oxygen transfer power efficiency (kgO 2 / kwh) with respect to the total air amount (air m 3 / tank m 3 day), as shown in FIG. The examples 1 and 2 are superior to the comparative examples in all ranges. In addition, in comparison with Example 1 in which the second air diffuser was provided only just below the ● mark, Example 2 in which the air diffuser was provided on the entire bottom surface of the ○ mark had a higher oxygen supply amount and oxygen content. The reason why the transfer power efficiency is improved is that the oxygen transfer efficiency is improved by aeration of the entire surface from the bottom.

【0021】表1は酸素供給量が2.2 〜2.5 kgO2
槽m3 日の条件に略揃えた場合について、実施例1およ
び実施例2と比較例の処理状況の詳細を抜粋して対比し
たものである。従来の中段曝気式の深槽曝気槽の比較例
においては、第1の散気装置の設置面積が水面積の40
%(片側の水面積の80%)と多過ぎるため、充分な旋
回流が得られずに、中段からのみ51m3 の空気を供給
した場合の酸素供給量は2.16 (kgO2 /槽m3 日)で
あり、酸素移動効率は14.8%で、酸素移動動力効率は1.
52( kgO2 /kwh)である。これに対して、第2の
散気装置を直下のみに設けた実施例1の場合には、中段
から13m3 、底部から19m3 で合計32m3 の空気
を供給した場合の酸素供給量は2.25 (kgO2 /槽m3
日)であり、第1の散気装置と第2の散気装置とのを総
合した酸素移動効率は25.4%に達しており、酸素移動動
力効率は1.90( kgO2 /kwh)である。また、第2
の散気装置を底部の全面に設けた場合には、中段から1
3m3 、底部から19m3 で合計32m3 の空気を供給
した実施例1の場合の酸素供給量は2.49 (kgO2 /槽
3 日)であり、第1の散気装置と第2の散気装置とを
総合した酸素移動効率は28.1%に達しており、酸素移動
動力効率は2.07( kgO2 /kwh)である。
Table 1 shows that the oxygen supply amount is 2.2 to 2.5 kgO 2 /
The details of the treatment conditions of Example 1 and Example 2 and the comparative example are extracted and compared in the case where the conditions of the tank m 3 days are almost the same. In the comparative example of the conventional middle-stage aeration type deep tank aeration tank, the installation area of the first air diffuser is 40
% (80% of the water area on one side), too much swirling flow was not obtained, and when supplying 51 m 3 of air only from the middle stage, the oxygen supply amount was 2.16 (kgO 2 / tank m 3 days). ), The oxygen transfer efficiency is 14.8%, and the oxygen transfer power efficiency is 1.
52 (kgO 2 / kwh). On the other hand, in the case of Example 1 in which the second air diffuser is provided only directly below, the oxygen supply amount is 2.25 when air of 13 m 3 from the middle stage and 19 m 3 from the bottom is supplied for a total of 32 m 3. (kgO 2 / tank m 3
The total oxygen transfer efficiency of the first air diffuser and the second air diffuser is 25.4%, and the oxygen transfer power efficiency is 1.90 (kgO 2 / kwh). Also, the second
If the air diffuser is installed on the entire bottom surface,
3m 3, the oxygen supply amount in the case from the bottom of the first embodiment in which air is supplied in total 32m 3 in 19 m 3 is 2.49 (KGO 2 / tank m 3 days), variance of the first diffusion device and the second The total oxygen transfer efficiency with the gas device has reached 28.1%, and the oxygen transfer power efficiency is 2.07 (kgO 2 / kwh).

【表1】 上述したように、比較例に比較して、本発明は、少ない
空気量により、酸素供給量を確保と高い酸素移動効率と
酸素移動動力効率とを達成すると共に、深層曝気槽の底
部への汚泥や担体の沈澱もなくしている。なお、酸素供
給量 (kgO2 /槽m3 日) は、深槽曝気槽に供給した
空気量に、空気中の酸素含有割合を0.277 (kgO2
3 空気) を掛けて酸素量を算出し、これを槽容積で割
り算して得たものである。また、酸素移動動力効率(k
gO2 /kwh)は、単位動力当たり液中に溶解する酸
素量を示し、散気装置の消費動力に対する酸素移動速度
の比で示されるが、日本下水道協会発行の「建設省都市
局下水道部監修、下水道施設計画・設計指針と解説、1
994年版」の第5章「エアレ−ションによる酸素溶解
機構」に記載される式(5−110式)に基づき算出し
た。
[Table 1] As described above, in comparison with the comparative example, the present invention achieves a high oxygen transfer efficiency and a high oxygen transfer power efficiency by securing a small amount of air, and sludge to the bottom of the deep aeration tank. It also eliminates the precipitation of carriers. The amount of oxygen supplied (kgO 2 / m3 day) was 0.277 (kgO 2 / kgO 2 / kgO 2 / m 3 day) based on the amount of air supplied to the deep aeration tank.
m 3 air) to calculate the amount of oxygen, and this was obtained by dividing this by the tank volume. Also, the oxygen transfer power efficiency (k
gO 2 / kwh) indicates the amount of oxygen dissolved in the liquid per unit power, and is indicated by the ratio of the oxygen transfer rate to the consumption power of the air diffuser. , Sewer facility planning / design guidelines and explanations, 1
It was calculated based on the formula (5-110 formula) described in Chapter 5, "Oxygen dissolution mechanism by aeration" of "1994 version".

【0022】本発明は中央部に仕切壁を設けた深槽曝気
槽の一方側の中段部に第1の散気装置を設けると共に、
深槽曝気槽の底部に第1の散気装置と独立して送気量を
制御可能な第2の散気装置を設けた深槽曝気装置である
が、BODの除去、窒素の硝化に必要な空気を供給する
と共に、担体や汚泥の沈澱の防止に必要な空気を供給す
るために、全空気量に対する第2の散気装置に供給する
空気量の比率を、どの程度にすることが好ましいのかに
ついて検討した。担体を添加し、水深10mの中段曝気
式の深槽曝気槽において、水深4.8 mの位置の一方側に
第1の散気装置を水面積に対する散気板面積10%と
し、水深9.5mの位置に第2の散気装置を水面積に対す
る散気板面積15%として設けて、全空気量を32m3
/槽m3 日で清水により試験した。第1の散気装置の空
気量と第2の散気装置の空気量の比率を変化させた場合
の酸素供給量 (kgO2 /槽m3 日) との関係を実施例
2として図7に、酸素移動動力効率 (kgO2 /kwh)と
の関係を実施例2として図8に、深層曝気槽の底部の底
面流速(cm/秒)との関係を実施例2として図9にそ
れぞれ示した。
According to the present invention, the first air diffuser is provided in the middle stage portion on one side of the deep tank aeration tank having the partition wall in the center.
It is a deep tank aeration device that has a second air diffuser at the bottom of the deep tank aeration tank that can control the amount of air supplied independently of the first air diffuser, but it is necessary for removing BOD and nitrifying nitrogen. It is preferable to set the ratio of the amount of air supplied to the second air diffusing device to the total amount of air in order to supply the necessary air to prevent the precipitation of the carrier and sludge. I examined whether. In a deep aeration tank of medium aeration type with a depth of 10 m with a carrier added, the first diffuser is set to one side at a depth of 4.8 m with a diffuser plate area of 10% of the water area, and at a depth of 9.5 m. The second air diffuser is installed at 15% of the water diffuser plate area, and the total air volume is 32 m 3
/ Tank m 3 days tested with fresh water. FIG. 7 shows the relationship between the oxygen supply amount (kgO 2 / tank m 3 day) when the ratio of the air amount of the first air diffuser and the air amount of the second air diffuser is changed as Example 2 in FIG. 8 shows the relationship with the oxygen transfer power efficiency (kgO 2 / kwh) as Example 2 and FIG. 9 shows the relationship with the bottom flow velocity (cm / sec) at the bottom of the deep aeration tank as Example 2. .

【0023】図7から、全空気量を100%とした場合
の底部に設けた第2の散気装置の空気量の比率が 40
%未満の範囲においては、必要な酸素供給量の2kgO
2 /槽m3 日を満足することが出来ないから、その比率
を40%以上にすべきことが判る。図8から、全空気量
を100%とした場合の第2の散気装置の空気量が50
〜90%の範囲においては、酸素移動動力効率 (kgO
2 /kwh)が高くなるから、この範囲にすることが好まし
い。図9から、全空気量を100%とした場合の第2の
散気装置の空気量が90%を越える範囲においては、深
層曝気槽の底部の汚泥の沈澱を防止するための臨界的流
速である5cm/秒の底面流速を満足することが出来な
いから、その比率を90%以下にすべきことが判る。以
上の結果を総合すると、先ず全空気量を100%とした
場合の第2の散気装置の空気量の比率を50〜90%の
範囲でなければならないが、その内で酸素移動動力効率
(kgO2 /kwh)がより高い60〜90%の範囲が好ま
しく、さらに、70〜80%の範囲がより好ましいこと
が判る。実際には従来の中段曝気式の深槽曝気槽を改造
して、その底部に第2の散気装置を設けるケ−スが多
く、第1の散気装置の仕様も様々であるから、既存の装
置を活用して不足する空気を底部に設けた第2の散気装
置により供給することが経済的であるものと考えれれ
る。
From FIG. 7, when the total air amount is 100%, the ratio of the air amount of the second air diffuser provided at the bottom is 40%.
In the range of less than%, the required oxygen supply amount of 2 kgO
Since 2 / tank m 3 days cannot be satisfied, it is understood that the ratio should be 40% or more. From FIG. 8, when the total air amount is 100%, the air amount of the second air diffuser is 50%.
In the range of up to 90%, the oxygen transfer power efficiency (kgO
2 / kwh) is high, so it is preferable to set this range. From FIG. 9, when the air amount of the second air diffuser exceeds 90% when the total air amount is 100%, the critical flow velocity for preventing sludge settling at the bottom of the deep aeration tank is obtained. Since the bottom flow velocity of 5 cm / sec cannot be satisfied, it is understood that the ratio should be 90% or less. Summarizing the above results, first, the ratio of the air amount of the second air diffuser when the total air amount is 100% must be in the range of 50 to 90%.
It can be seen that the higher range of (kgO 2 / kwh) is preferably in the range of 60 to 90%, and more preferably in the range of 70 to 80%. Actually, there are many cases in which the conventional middle stage aeration type deep tank aeration tank is modified and a second air diffuser is provided at the bottom of the case, and the specifications of the first air diffuser are various. It is considered economical to utilize this device to supply the deficient air by the second air diffuser provided at the bottom.

【0024】試験結果から見ると、中央部に仕切壁を設
けた深槽曝気槽の一方側の中段部に設けた第1の散気装
置は、水面迄の距離が短いので気泡中の酸素が水中に溶
解されるための滞留時間が短かく、酸素移動効率が15
%程度と低い。これに対して、底部に設けた第2の散気
装置は水面迄の距離が長いので気泡中の酸素が水中に溶
解されるための滞留時間が長く、第1の散気装置と第2
の散気装置の酸素移動効率を総合した酸素移動効率が2
5〜28%と高い。特に、本願発明においては、深槽曝
気槽の一方側の中段部に設けた第1の散気装置の曝気に
より発生する旋回流が、底部に設けた第2の散気装置の
上向流の上昇を抑制するため、気泡中の酸素が水中に溶
解されるための滞留時間が長くなり、酸素移動動力効率
が向上したものと考えられる。深層曝気槽の底部の汚泥
の沈澱を防止するための底面流速は、主として中段部に
設けた第1の散気装置により確保し、BODの除去、窒
素の硝化に必要な空気をは、主としてに、底部に設けた
第2の散気装置により確保することが好ましいものと考
えられる。
As seen from the test results, the first air diffuser provided in the middle stage on one side of the deep tank aeration tank having the partition wall in the center has a short distance to the water surface, so that the oxygen in the bubbles is The residence time for dissolution in water is short and the oxygen transfer efficiency is 15
% Is low. On the other hand, since the second air diffuser provided at the bottom has a long distance to the water surface, the residence time for the oxygen in the bubbles to be dissolved in water is long, and the first air diffuser and the second air diffuser
The total oxygen transfer efficiency of the air diffuser is 2
It is as high as 5-28%. In particular, in the present invention, the swirling flow generated by the aeration of the first air diffuser provided in the middle stage portion on one side of the deep aeration tank is the same as the upward flow of the second air diffuser provided in the bottom portion. It is considered that, because the rise is suppressed, the residence time for the oxygen in the bubbles to be dissolved in water is lengthened, and the oxygen transfer power efficiency is improved. The bottom flow velocity for preventing sludge settling at the bottom of the deep aeration tank is secured mainly by the first air diffuser installed in the middle stage, and the air required for BOD removal and nitrogen nitrification is mainly used. It is considered preferable to secure it by a second air diffuser provided at the bottom.

【0025】[0025]

【発明の効果】以上の説明から明らかなように、本発明
には以下の効果がある。 従来法では空気量が不足して達成できなかった、BO
Dの除去、窒素の硝化、担体や汚泥の沈澱の防止に必要
な空気を供給可能な深槽曝気槽を得たこと。 既存の深槽曝気装置のブロア−や中段に設けた散気装
置、仕切壁を活用して、深層曝気槽の底部に散気装置を
付加することにより、設備費用を低減し、かつ優れた酸
素移動動力効率と酸素移動動力効率を得たこと。
As is clear from the above description, the present invention has the following effects. BO could not be achieved by the conventional method due to insufficient air volume.
Obtained a deep tank aeration tank capable of supplying air necessary for removal of D, nitrification of nitrogen, and prevention of carrier and sludge precipitation. By utilizing the blower of the existing deep tank aeration system, the air diffuser installed in the middle stage, and the partition wall to add an air diffuser to the bottom of the deep aeration tank, the equipment cost can be reduced and excellent oxygen can be obtained. Obtained transfer power efficiency and oxygen transfer power efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施形態を示す深槽曝気槽の縦
断面図である。(直下に設けた第2の散気装置の散気装
置の送気量を一括に制御)
FIG. 1 is a vertical cross-sectional view of a deep tank aeration tank showing a first embodiment of the present invention. (The air supply amount of the air diffuser of the second air diffuser provided directly below is collectively controlled)

【図2】本発明の第2の実施形態を示す深槽曝気槽の縦
断面図である。(直下に設けた第2の散気装置の散気装
置の送気量を分割し制御)
FIG. 2 is a vertical sectional view of a deep tank aeration tank showing a second embodiment of the present invention. (The air supply amount of the air diffuser of the second air diffuser provided directly below is divided and controlled)

【図3】本発明の第3の実施形態を示す深槽曝気槽の縦
断面図である。(全面に設けた第2の散気装置の散気装
置の送気量を一括に制御)
FIG. 3 is a vertical sectional view of a deep tank aeration tank showing a third embodiment of the present invention. (The air supply amount of the air diffuser of the second air diffuser provided on the entire surface is collectively controlled)

【図4】本発明の第4の実施形態を示す深槽曝気槽の縦
断面図である。(全面に設けた第2の散気装置の散気装
置の送気量を分割し制御)
FIG. 4 is a vertical sectional view of a deep tank aeration tank showing a fourth embodiment of the present invention. (The air supply amount of the air diffuser of the second air diffuser provided on the entire surface is divided and controlled)

【図5】実施例1およびと実施例2の空気量と酸素供給
量との関係
FIG. 5 shows the relationship between the amount of air and the amount of oxygen supply in Examples 1 and 2.

【図6】実施例1およびと実施例2の空気量と酸素移動
動力効率との関係
FIG. 6 shows the relationship between the amount of air and the oxygen transfer power efficiency in Examples 1 and 2.

【図7】第1と第2の散気装置の空気量比率と酸素供給
量との関係
FIG. 7 is a relation between the air amount ratio and the oxygen supply amount of the first and second air diffusers.

【図8】第1と第2の散気装置の空気量比率と酸素移動
動力効率との関係
FIG. 8 is a diagram showing the relationship between the air amount ratio and the oxygen transfer power efficiency of the first and second air diffusers.

【図9】第1と第2の散気装置の空気量比率と底部の底
面流速との関係
FIG. 9 shows the relationship between the air volume ratio of the first and second air diffusers and the bottom flow velocity at the bottom.

【図10】従来の旋回流式の標準曝気装置FIG. 10: Conventional swirl flow type standard aeration device

【図11】従来の全面曝気式の標準曝気装置FIG. 11: Conventional full-aeration standard aeration device

【図12】従来の中段曝気式の深槽曝気装置[Fig. 12] Conventional middle-stage aeration type deep tank aeration device

【符号の説明】[Explanation of symbols]

1 実施の形態の深槽曝気槽 2 実施の形態の深槽曝気槽の仕切壁 3a.3b.3c.3d 実施の形態の第1の散気装置 4a.4b.4c.4d 実施の形態の第1の制御装置 5a.5b.5c.5d 実施の形態の第2の散気装置 6a.6b.6c.6d 実施の形態の第2の制御装置 7a.7b.7c.7d 実施の形態の複数にした場合の第2の散
気装置 8a.8b.8c.8d 実施の形態の複数にした場合の第2の制
御装置 11 従来の旋回流式の標準曝気槽 13 従来の旋回流式の標準曝気槽の散気装置 14 従来の旋回流式の標準曝気槽の制御装置 21 従来の全面曝気式の標準曝気槽 23 従来の全面曝気式の標準曝気槽の散気装
置 24 従来の全面曝気式の標準曝気槽の制御装
置 31 従来の中段曝気式の深槽曝気槽 32 従来の中段曝気式の深槽曝気槽の仕切壁 33 従来の中段曝気式の深槽曝気槽の散気装
置 34 従来の中段曝気式の深槽深槽曝気槽の制
御装置
1 Deep Aeration Tank of Embodiment 2 Partition Wall of Deep Aeration Tank of Embodiment 3a.3b.3c.3d First Aeration Device of Embodiment 4a.4b.4c.4d First Aeration Device of Embodiment First control device 5a.5b.5c.5d Second air diffusing device of the embodiment 6a.6b.6c.6d Second control device 7a.7b.7c.7d of the embodiment Second aeration device 8a.8b.8c.8d in the case of multiple operations Second control device in the case of multiple embodiments 11 Conventional swirl flow type standard aeration tank 13 Conventional swirl flow type standard aeration tank Air diffuser 14 Conventional swirl type standard aeration tank controller 21 Conventional full aeration standard aeration tank 23 Conventional full aeration standard aeration tank air diffuser 24 Conventional full aeration standard aeration Tank control device 31 Conventional middle-stage aeration type deep tank aeration tank 32 Conventional middle-stage aeration type deep tank aeration tank partition wall 33 Conventional middle-stage aeration type deep tank aeration tank diffuser 34 Conventional middle-stage aeration type Control of deep tank aeration tank apparatus

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 中央部に仕切壁を設けた深槽曝気槽の一
方側の中段部に第1の散気装置を設けると共に、前記深
槽曝気槽の底部に第1の散気装置と独立して送気量を制
御可能な第2の散気装置を設けたことを特徴とする深槽
曝気装置。
1. A first air diffuser is provided in a middle part of one side of a deep tank aeration tank having a partition wall in the center, and the bottom of the deep tank aeration tank is independent of the first air diffuser. A deep tank aeration device characterized in that a second air diffuser capable of controlling the air supply amount is provided.
【請求項2】 第2の散気装置を深槽曝気槽の底部の全
面に設けた請求項1記載の深槽曝気装置。
2. The deep tank aeration apparatus according to claim 1, wherein the second air diffuser is provided on the entire bottom surface of the deep tank aeration tank.
【請求項3】 深槽曝気槽の底部に複数の第2の散気装
置が設けられていると共に、それらの送気量がそれぞれ
独立して制御可能にされてなる請求項1または請求項2
に記載の深槽曝気装置。
3. The deep aeration tank is provided with a plurality of second air diffusers at the bottom thereof, and the amount of air supplied to each of them is independently controllable.
The deep tank aeration apparatus described in.
【請求項4】 中央部に仕切壁を設けた深槽曝気槽の一
方側の中段部に設けた第1の散気装置により曝気すると
共に、前記深槽曝気槽の底部に設けた第2の散気装置に
より曝気することを特徴とする深槽曝気装置の運転方
法。
4. A deep air aeration tank having a partition wall in the central portion for aeration by a first air diffuser provided at the middle part of one side of the deep aeration tank and a second aeration device provided at the bottom of the deep aeration tank. A method for operating a deep tank aeration device, which comprises aeration with an air diffuser.
【請求項5】 全空気量に対する底部に設けた第2の散
気装置の空気量の比率を、50〜90%にした請求項4
に記載の深槽曝気装置の運転方法。
5. The ratio of the air amount of the second air diffuser provided at the bottom to the total air amount is 50 to 90%.
The method for operating the deep tank aeration system according to 1.
JP09116796A 1996-04-12 1996-04-12 Deep tank aeration device Expired - Fee Related JP3171555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09116796A JP3171555B2 (en) 1996-04-12 1996-04-12 Deep tank aeration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09116796A JP3171555B2 (en) 1996-04-12 1996-04-12 Deep tank aeration device

Publications (2)

Publication Number Publication Date
JPH09276891A true JPH09276891A (en) 1997-10-28
JP3171555B2 JP3171555B2 (en) 2001-05-28

Family

ID=14018928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09116796A Expired - Fee Related JP3171555B2 (en) 1996-04-12 1996-04-12 Deep tank aeration device

Country Status (1)

Country Link
JP (1) JP3171555B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003117583A (en) * 2001-10-12 2003-04-22 Kobe Steel Ltd Bioreaction chamber and agitating method for the same
JP2009028698A (en) * 2007-07-31 2009-02-12 Metawater Co Ltd Reaction tank for sewage treatment
JP2009072785A (en) * 2008-12-01 2009-04-09 Metawater Co Ltd Nitrification carrier circulation method of deep aeration tank
JP2018164894A (en) * 2017-03-28 2018-10-25 住友重機械エンバイロメント株式会社 Arrangement method of water treatment system and diffuser
JP2018164887A (en) * 2017-03-28 2018-10-25 住友重機械エンバイロメント株式会社 Water treatment system and improvement method for water treatment system
JP2021090966A (en) * 2021-02-25 2021-06-17 住友重機械エンバイロメント株式会社 Water treatment system and method for improving water treatment system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003117583A (en) * 2001-10-12 2003-04-22 Kobe Steel Ltd Bioreaction chamber and agitating method for the same
JP2009028698A (en) * 2007-07-31 2009-02-12 Metawater Co Ltd Reaction tank for sewage treatment
JP2009072785A (en) * 2008-12-01 2009-04-09 Metawater Co Ltd Nitrification carrier circulation method of deep aeration tank
JP2018164894A (en) * 2017-03-28 2018-10-25 住友重機械エンバイロメント株式会社 Arrangement method of water treatment system and diffuser
JP2018164887A (en) * 2017-03-28 2018-10-25 住友重機械エンバイロメント株式会社 Water treatment system and improvement method for water treatment system
JP2021104510A (en) * 2017-03-28 2021-07-26 住友重機械エンバイロメント株式会社 Arrangement method of water treatment system and diffuser
JP2021090966A (en) * 2021-02-25 2021-06-17 住友重機械エンバイロメント株式会社 Water treatment system and method for improving water treatment system

Also Published As

Publication number Publication date
JP3171555B2 (en) 2001-05-28

Similar Documents

Publication Publication Date Title
KR100409056B1 (en) Aerobic treatment method and treatment tank of sewage
CN110386723A (en) A kind of sewage autotrophy processing system and method based on MBBR and Magneto separate
JPH09276891A (en) Deep tank aeration apparatus and operation method therefor
JPH06226292A (en) Biological sewage treating device
JP4114128B2 (en) Waste water purification apparatus and method
JPH09323092A (en) Sewage treating device
JP3373015B2 (en) Wastewater nitrification denitrification treatment equipment
JP3150530B2 (en) Biological nitrogen removal equipment
JP3285252B2 (en) Water treatment equipment
JPH0647398A (en) Treatment of organic sewage
JPH02237698A (en) Biological removing method of nitrogen and phosphorus and its apparatus
JP3269722B2 (en) Sewage treatment tank
JPH1110193A (en) Method and apparatus for shared carrier nitrification denitrification reaction
GB1584373A (en) Process for purifying waste waters
JP2504248B2 (en) Sewage treatment equipment
JPH05154496A (en) Controlling method for operation in anaerobic and aerobic activated sludge treating equipment
JP2002066586A (en) Method for circulating nitrification fungus carrier for deep aeration tank
JP2579122B2 (en) Wastewater treatment equipment
JP2598682B2 (en) Floating activated sludge treatment equipment
JPH0677752B2 (en) Swirl type deep aeration tank and aeration method
JPH07136678A (en) Wastewater treatment method and tank
JP3220927B2 (en) Nitrification / denitrification equipment
JPH1094796A (en) Treatment of waste water and device therefor
JP2000279993A (en) Waste water treatment and apparatus therefor
JP2000279992A (en) Waste water treatment and apparatus therefor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090323

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090323

Year of fee payment: 8

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090323

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090323

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090323

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090323

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140323

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees