JPH09276846A - Method and apparatus for disposing of highly concentrated waste water - Google Patents

Method and apparatus for disposing of highly concentrated waste water

Info

Publication number
JPH09276846A
JPH09276846A JP8091332A JP9133296A JPH09276846A JP H09276846 A JPH09276846 A JP H09276846A JP 8091332 A JP8091332 A JP 8091332A JP 9133296 A JP9133296 A JP 9133296A JP H09276846 A JPH09276846 A JP H09276846A
Authority
JP
Japan
Prior art keywords
water
wastewater
concentrated
concentration
reverse osmosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8091332A
Other languages
Japanese (ja)
Inventor
Yoshinari Fusaoka
良成 房岡
Masahiro Kihara
正浩 木原
Hiroyuki Yamamura
弘之 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP8091332A priority Critical patent/JPH09276846A/en
Publication of JPH09276846A publication Critical patent/JPH09276846A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/144Wave energy

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To safely and inexpensively dispose of a highly conc. soln. obtained when a soln. is separated into the highly conc. soln. and a low concn. soln. by preliminarily diluting highly conc. waste water of a reverse osmosis method or a distillation method before discarding the same. SOLUTION: The feed piping 3 of the highly conc. waste water form a highly conc. waste water tank 2 in which highly conc. waste water flows from inflow piping 1 is laid up to a proper offshore place and a disposing tower 4 is formed at the leading end thereof and diluted highly conc. waste water is discharged from the tower 4 by a discarding nozzle 5. At this time, the disposing tower 4 is pref. arranged on the bottom of the sea at a depth of about 5-20m. The disposing nozzle 5 is pref. inclined upwardly at about 35-55 deg.. By this constitution, waste flow 6 can be diffused sufficiently far away. As the drive source feeding highly conc. waste water, there is no special limit but residual energy, the water level difference from the surface of the sea or a pump is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶液を高濃度溶液と低
濃度溶液に分離した際の高濃度溶液の廃棄方法およびそ
の装置に関するものである。本発明によって、不要の高
濃度溶液を安全、かつ環境への影響を抑えて安価に廃棄
することが可能となり、一方では高濃度溶液の濃縮倍率
を高めて、生産する低濃度溶液の回収率を向上すること
ができる方法および装置を提供することができる。本発
明の方法および装置は特に逆浸透法による海水の淡水
化、かん水の脱塩に用いることができ、特に高回収率で
海水の淡水化を行う場合に効果が大きい。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for discarding a high-concentration solution when the solution is separated into a high-concentration solution and a low-concentration solution. According to the present invention, unnecessary high-concentration solution can be safely disposed of at low cost while suppressing the influence on the environment, while increasing the concentration ratio of the high-concentration solution to improve the recovery rate of the low-concentration solution to be produced. A method and apparatus that can be improved can be provided. The method and apparatus of the present invention can be used for desalination of seawater and desalination of brackish water by the reverse osmosis method, and are particularly effective when desalination of seawater is performed at a high recovery rate.

【0002】[0002]

【従来の技術】混合物の分離に関して、溶媒(例えば
水)に溶解した物質(例えば塩類)を除くための技術に
は様々なものがあるが、近年、省エネルギーおよび省資
源のためのプロセスとして膜分離法が利用されてきてい
る。例えば逆浸透法は海水または低濃度の塩水(かん
水)を脱塩して工業用、農業用または家庭用の水を提供
することに利用されている。逆浸透法によれば、塩分を
含んだ水を浸透圧以上の圧力をもって逆浸透膜を透過さ
せることで、脱塩された水を製造することができる。こ
の技術は例えば海水、かん水、有害物を含んだ水から飲
料水を得ることも可能であるし、また、工業用超純水の
製造、排水処理、有価物の回収などにも用いられてき
た。
2. Description of the Related Art Regarding separation of a mixture, there are various techniques for removing substances (for example, salts) dissolved in a solvent (for example, water), but in recent years, membrane separation has been performed as a process for saving energy and resources. The law is being used. For example, the reverse osmosis method is used to desalinate seawater or low-concentration salt water (brine water) to provide industrial, agricultural, or domestic water. According to the reverse osmosis method, desalinated water can be produced by permeating water containing salt through a reverse osmosis membrane at a pressure higher than the osmotic pressure. This technology can obtain drinking water from, for example, seawater, brackish water, and water containing harmful substances, and has also been used for the production of industrial ultrapure water, wastewater treatment, recovery of valuables, etc. .

【0003】特に逆浸透膜による海水淡水化は、蒸発の
ような相変化がないという特徴を有しており、エネルギ
ー的に有利である上に運転管理が容易であり、広く普及
を始めている。
In particular, seawater desalination using a reverse osmosis membrane is characterized in that there is no phase change such as evaporation, is energy-friendly, and is easy to operate and manage, and has started to be widely used.

【0004】逆浸透膜による海水淡水化の場合を例にと
ると、通常の海水淡水化技術では海水から真水を回収す
る割合(回収率)は高々40%であり、海水供給量に対
して40%相当量の真水が膜を透過して得られる結果、
逆浸透膜モジュールの中で海水濃度が3.5%から6%
程度にまで濃縮されることになる。ここで得られた濃縮
海水は、充分に環境アセスメントを行って放流ポイント
を決定して、海水中に放流されている。
Taking the case of seawater desalination using a reverse osmosis membrane as an example, the ratio (recovery rate) of recovering fresh water from seawater in the normal seawater desalination technology is at most 40%, which is 40% of the seawater supply amount. The result is that a significant amount of fresh water permeates the membrane,
Seawater concentration in reverse osmosis membrane module is 3.5% to 6%
It will be concentrated to a certain degree. The concentrated seawater obtained here is discharged into seawater after sufficiently performing an environmental assessment to determine the discharge point.

【0005】[0005]

【発明が解決しようとする課題】海水供給量に対する真
水の回収率は、直接コストに寄与するものであり、回収
率は高いほど好ましいが、実際に回収率を上げることに
ついては運転操作面で種々の問題があった。すなわち、
そのひとつは、回収率を上げると濃縮水の濃度が高くな
り、浸透圧が高くなって淡水を得るためには非常に高い
圧力が必要になることであり、従って使用する逆浸透
膜、エレメントもこの高圧に充分耐えるものが必要にな
ることである。さらに、濃縮水中の海水成分の濃度が高
くなり、ある回収率以上では炭酸カルシウムや硫酸カル
シウム、硫酸ストロンチウムなどの塩、いわゆるスケー
ル成分濃度が溶解度以上になって逆浸透膜の膜面に析出
して膜の目つまりを生じさせる問題もある。また、回収
率が高くなるに従って濃縮水の濃度も高くなるため濃縮
水をそのまま廃棄すると、環境、安全上問題の生じる恐
れがある。
The recovery rate of fresh water relative to the supply of seawater directly contributes to the cost, and the higher the recovery rate, the better. However, actually increasing the recovery rate is various in terms of operation. There was a problem. That is,
One of them is that if the recovery rate is increased, the concentration of concentrated water becomes higher, and the osmotic pressure becomes higher, so that very high pressure is required to obtain fresh water. It is necessary to have enough resistance to this high pressure. In addition, the concentration of seawater components in concentrated water becomes high, and above a certain recovery rate, salts such as calcium carbonate, calcium sulfate, and strontium sulfate, so-called scale component concentrations become more than solubility and precipitate on the membrane surface of the reverse osmosis membrane. There is also the problem of clogging of the membrane. Further, as the recovery rate increases, the concentration of concentrated water also increases. Therefore, if the concentrated water is discarded as it is, environmental and safety problems may occur.

【0006】本発明は、溶液を高濃度溶液と低濃度溶液
に分離した際の高濃度溶液を安全、かつ環境への影響を
抑えて安価に廃棄することを可能とする方法および装置
を提供することにあり、特に40%以上の高回収率で逆
浸透海水淡水化を行う際に得られる濃縮海水を低エネル
ギーで効率的に、安価に、かつ安全に安定して環境への
影響少なく廃棄することができる方法および装置を提供
することを目的とする。
[0006] The present invention provides a method and a device which enable safe disposal of a high-concentration solution when the solution is separated into a high-concentration solution and a low-concentration solution, and suppress the influence on the environment at low cost. Especially, the concentrated seawater obtained when performing reverse osmosis seawater desalination with a high recovery rate of 40% or more is disposed of with low energy efficiently, inexpensively, safely, stably and with little environmental impact. It is an object of the present invention to provide a method and an apparatus capable of performing the above.

【0007】[0007]

【課題を解決するための手段】本発明は下記の構成を有
する。すなわち、「逆浸透法乃至は蒸留法の高濃度排水
をあらかじめ希釈して廃棄することを特徴とする高濃度
排水の廃棄方法。」である。
The present invention has the following arrangement. In other words, it is a "disposal method of high-concentration wastewater characterized by preliminarily diluting and discarding high-concentration wastewater of the reverse osmosis method or distillation method."

【0008】[0008]

【発明の実施の形態】本発明において、高濃度排水とは
混合溶液を分離した際の濃縮水のことであり、例えば逆
浸透法やルースRO法の濃縮水や限外濾過法、精密濾過
法の非透過水、電気透析の濃縮水あるいは蒸発法の濃縮
残さなどである。本発明の方法はこれらの高濃度液の廃
棄に効果があるが特に逆浸透法の濃縮水の場合に効果が
大きい。濃縮水はまた廃棄する前にpH調整、ろ過などの
処理を行ってもかまわない。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, high-concentration wastewater means concentrated water obtained when a mixed solution is separated, for example, concentrated water of reverse osmosis method or loose RO method, ultrafiltration method, and microfiltration method. Non-permeated water, concentrated water for electrodialysis or concentrated residue for evaporation method. The method of the present invention is effective for discarding these high-concentration liquids, but is particularly effective for the concentrated water of the reverse osmosis method. The concentrated water may be subjected to treatment such as pH adjustment and filtration before being discarded.

【0009】本発明の方法を逆浸透法の濃縮水あるいは
濃縮水の処理水に使用する際、逆浸透法の原水が海水、
高濃度かん水など高濃度溶液である場合には、濃縮水の
濃度も高くなるので本発明の方法が好適に用いられる。
特に、逆浸透法がモジュールを多段に配置して1段目の
濃縮水を2段目でさらに分離する方法で透過水の回収率
を向上したシステムでは2段目の濃縮水の濃度がさらに
高くなっているので本発明の方法による濃縮水の廃棄方
法が好ましい。
When the method of the present invention is used for the concentrated water of the reverse osmosis method or the treated water of the concentrated water, the raw water of the reverse osmosis method is seawater,
In the case of a high-concentration solution such as high-concentration brackish water, the concentration of concentrated water also increases, so the method of the present invention is preferably used.
In particular, in the reverse osmosis method, in which the concentration of permeated water is improved by arranging the modules in multiple stages and separating the concentrated water in the first stage further in the second stage, the concentration of concentrated water in the second stage is higher. Therefore, the method for discarding concentrated water according to the method of the present invention is preferable.

【0010】逆浸透法では、逆浸透膜分離装置は供給液
の取水部分、前処理部分、逆浸透膜部分から少なくとも
なる。逆浸透膜部分は造水、濃縮、分離などの目的で被
処理液を加圧下で逆浸透膜モジュールに供給し、透過液
と濃縮液に分離するための部分をいい、通常は逆浸透膜
エレメントと耐圧容器からなる逆浸透膜モジュール、加
圧ポンプなどで構成される。
In the reverse osmosis method, the reverse osmosis membrane separation device comprises at least a water intake portion of the feed liquid, a pretreatment portion, and a reverse osmosis membrane portion. The reverse osmosis membrane part is a part for supplying the liquid to be treated to the reverse osmosis membrane module under pressure for the purpose of water production, concentration, separation, etc., and separating it into a permeated liquid and a concentrated liquid. It is composed of a reverse osmosis membrane module consisting of a pressure vessel and a pressure pump.

【0011】ここで逆浸透膜とは、被分離混合液中の一
部の成分、例えば溶媒を透過させ他の成分を透過させな
い半透性の膜である。その素材には酢酸セルロース系ポ
リマー、ポリアミド、ポリエステル、ポリイミド、ビニ
ルポリマーなどの高分子素材がよく使用されている。ま
たその膜構造は膜の少なくとも片面に緻密層を持ち、緻
密層から膜内部あるいはもう片方の面に向けて徐々に大
きな孔径の微細孔を有する非対称膜、非対称膜の緻密層
の上に別の素材で形成された非常に薄い活性層を有する
複合膜がある。膜形態には中空糸、平膜がある。しか
し、本発明の方法は、逆浸透膜の素材、膜構造や膜形態
によらず利用することができいづれも効果がある。代表
的な逆浸透膜としては、例えば酢酸セルロース系やポリ
アミド系の非対称膜およびポリアミド系、ポリ尿素系の
活性層を有する複合膜などがあげられる。これらのなか
でも、酢酸セルロース系の非対称膜、ポリアミド系の複
合膜に本発明の方法が有効であり、さらに芳香族系のポ
リアミド複合膜では効果が大きい。
Here, the reverse osmosis membrane is a semipermeable membrane that allows a part of components in the liquid mixture to be separated, for example, a solvent to pass therethrough and does not allow other components to pass therethrough. As the material, polymer materials such as cellulose acetate polymer, polyamide, polyester, polyimide, and vinyl polymer are often used. The membrane structure has a dense layer on at least one surface of the film, and an asymmetric film having fine pores having a large pore diameter gradually from the dense layer toward the inside of the film or the other surface. There are composite membranes with a very thin active layer formed of a material. The membrane form includes a hollow fiber and a flat membrane. However, the method of the present invention can be used irrespective of the material, membrane structure and membrane form of the reverse osmosis membrane, and is very effective. Typical reverse osmosis membranes include, for example, a cellulose acetate-based or polyamide-based asymmetric membrane and a composite membrane having a polyamide-based or polyurea-based active layer. Among them, the method of the present invention is effective for cellulose acetate-based asymmetric membranes and polyamide-based composite membranes, and is particularly effective for aromatic polyamide-based composite membranes.

【0012】逆浸透膜エレメントとは上記逆浸透膜を実
際に使用するために形態化したものであり平膜は、スパ
イラル、チューブラー、プレート・アンド・フレームの
エレメントに組み込んで、また中空糸は束ねた上でエレ
メントに組み込んで使用することができるが、本発明は
これらの逆浸透膜エレメントの形態に左右されるもので
はない。
The reverse osmosis membrane element is formed by actually using the above-mentioned reverse osmosis membrane. The flat membrane is incorporated in the elements of spiral, tubular, plate and frame, and the hollow fiber is Although they can be used by being bundled and incorporated into the element, the present invention is not dependent on the form of these reverse osmosis membrane elements.

【0013】逆浸透膜モジュールユニットとは上述の逆
浸透膜エレメントを1〜数本圧力容器の中に収めたモジ
ュールを並列に配置したものでその組合せ、本数、配列
は目的に応じて任意に行なうことができる。
The reverse osmosis membrane module unit is a module in which one or several reverse osmosis membrane elements described above are housed in a pressure vessel and arranged in parallel. The combination, number and arrangement of the modules can be arbitrarily selected according to the purpose. be able to.

【0014】本発明において膜モジュールを多段に配置
する場合には該逆浸透膜モジュールユニットを複数用い
ることと、その配列に特徴がある。該逆浸透膜モジュー
ルユニットの配列は供給液あるいは濃縮液の流れが直列
であることが重要であり、すなわちひとつの逆浸透膜モ
ジュールユニットの濃縮液が次の逆浸透膜モジュールユ
ニットの供給液となる。例えば、濃度3.5%の通常海
水から60%という非常に高い回収率で真水を得る為の
設備は、基本的に2基の逆浸透膜モジュールユニットと
1台の加圧ポンプ、および1台のブースターポンプから
なる逆浸透分離装置である。海水は、前処理で濁質成分
を除去された後、加圧ポンプによって60〜65atm
に加圧され、1段目の逆浸透膜モジュールユニットに供
給される。1段目の逆浸透膜ユニットで、供給液は膜を
透過した低濃度の透過液と膜を透過しない高濃度の濃縮
液とに分離される。次に、透過液はそのまま利用される
が、濃縮液はその圧力の60〜65(簡単のために圧力
損失を無視する)から、回収率60%の高濃度濃縮水の
分離に必須の90atmにまでブースターポンプによっ
てさらに昇圧され、2段目の逆浸透膜モジュールユニッ
トに供給され、再度逆浸透分離が行われて2段目透過液
と同濃縮液とに分離される。この逆浸透膜プラントの供
給水の総量と1段目透過液と2段目の透過液の合計との
比率が淡水回収率であり、この場合は60%となる。段
数、ポンプの数についてはこの限りではなく、任意に設
定することができる。
In the present invention, when arranging the membrane modules in multiple stages, it is characterized by using a plurality of the reverse osmosis membrane module units and the arrangement thereof. In the arrangement of the reverse osmosis membrane module units, it is important that the flow of the feed liquid or the concentrate is in series, that is, the concentrate of one reverse osmosis membrane module unit becomes the feed liquid of the next reverse osmosis membrane module unit. . For example, the equipment for obtaining fresh water from ordinary seawater with a concentration of 3.5% at a very high recovery rate of 60% is basically two reverse osmosis membrane module units, one pressure pump, and one unit. Reverse osmosis separation device consisting of a booster pump. Seawater is 60-65 atm by a pressure pump after the suspended components are removed by pretreatment.
And is supplied to the first-stage reverse osmosis membrane module unit. In the first-stage reverse osmosis membrane unit, the feed liquid is separated into a low-concentration permeate liquid that has permeated the membrane and a high-concentration concentrated liquid that does not permeate the membrane. Next, the permeate is used as it is, but the concentrate has a pressure of 60 to 65 (pressure loss is ignored for the sake of simplicity) to 90 atm, which is essential for separating highly concentrated water with a recovery rate of 60%. The pressure is further increased by the booster pump and is supplied to the second-stage reverse osmosis membrane module unit, and the reverse osmosis separation is performed again to separate the second-stage permeated liquid and the concentrated liquid. The ratio of the total amount of water supplied to this reverse osmosis membrane plant and the total of the first-stage permeate and the second-stage permeate is the fresh water recovery rate, which in this case is 60%. The number of stages and the number of pumps are not limited to this, and can be set arbitrarily.

【0015】逆浸透膜設備の淡水回収率については、特
に高回収率の領域であれば本発明の効果が著しく発揮さ
れるが、特にこの限りではなく、現状の海水淡水化での
40%回収の条件においても適用することができる。
Regarding the desalination recovery rate of the reverse osmosis membrane facility, the effect of the present invention is remarkably exhibited in a particularly high recovery rate area, but the present invention is not particularly limited to this, and 40% recovery in the present desalination of seawater. It can also be applied under the conditions of.

【0016】高濃度排水の溶質の濃度については特に限
定しないが、溶質濃度として5.0重量%以上であるこ
とが好ましい。また、特に好ましくは、高い浸透圧を有
している海水または塩分濃度1%程度以上の高濃度かん
水を逆浸透分離した場合に特に本発明の効果が発揮され
る。
The concentration of solute in the high-concentration wastewater is not particularly limited, but the solute concentration is preferably 5.0% by weight or more. Further, particularly preferably, the effect of the present invention is exerted particularly when seawater having a high osmotic pressure or high concentration brackish water having a salt concentration of about 1% or more is subjected to reverse osmosis separation.

【0017】高濃度排水の希釈は、排水よりも低濃度の
溶液を混合することで行われる。低濃度の溶液としては
例えば、希釈域の水や分離に用いる原水の一部をそのま
ま希釈水として利用することができる。希釈水と原水を
使用する場合は取水したまま特別な処理をしないで用い
る方がコストの面で好ましい。ただし、必要に応じて原
水をろ過したり、薬液を添加して用いてもかまわない。
The high-concentration wastewater is diluted by mixing a solution having a lower concentration than the wastewater. As the low-concentration solution, for example, water in the dilution range or part of the raw water used for separation can be used as it is as the dilution water. When diluting water and raw water are used, it is preferable in terms of cost to use the water without taking any special treatment. However, raw water may be filtered or a chemical solution may be added for use as necessary.

【0018】希釈の倍率は高濃度排水の濃度、容量、と
希釈に使用する溶液の濃度および希釈した溶液を放流す
る方法にも依存するが、通常1.5〜20倍である。希
釈倍率が小さいと廃棄するときの濃度が高くなり、希釈
倍率が高すぎると希釈に使用する低濃度溶液の量が多く
なりすぎて処理コストが高くなる。例えば淡水回収率6
0%の海水淡水化の濃縮水は濃度約8.8%でありこの
濃縮水1m3 を希釈するに必要な海水は0.5〜10m
3 であり、好ましくは0.5〜5m3 である。
The dilution ratio depends on the concentration and volume of the high-concentration wastewater, the concentration of the solution used for dilution, and the method of discharging the diluted solution, but is usually 1.5 to 20 times. If the dilution ratio is small, the concentration at the time of disposal will be high, and if the dilution ratio is too high, the amount of the low-concentration solution used for dilution will be too large and the processing cost will be high. For example, fresh water recovery rate 6
0% seawater desalination concentrate has a concentration of about 8.8% and 1m 3 of this concentrate requires 0.5-10m of seawater.
It is 3 , and preferably 0.5 to 5 m 3 .

【0019】希釈の方法は、図1の高濃度排水槽(2)
に適当な撹拌機構を付けて混合槽にしてその中に高濃度
排水と希釈水を注入して混合する方法、高濃度排水の搬
送配管(3)の中に希釈水を注入または吸引する方法、
逆に希釈水の配管の中に高濃度排水を注入する方法など
があるが、これらの混合方法は高濃度排水の流量、プラ
ントの大きさによって任意に選ぶことができる。
The diluting method is the high-concentration drainage tank (2) of FIG.
A method of mixing a high-concentration wastewater and diluting water into a mixing tank with an appropriate stirring mechanism, a method of injecting or aspirating the diluting water into the high-concentration wastewater transport pipe (3),
On the contrary, there is a method of injecting high-concentration wastewater into the dilution water pipe, and these mixing methods can be arbitrarily selected depending on the flow rate of high-concentration wastewater and the size of the plant.

【0020】また、逆浸透法の濃縮水の場合は逆浸透分
離のために原水を昇圧しており、濃縮排水も圧力エネル
ギーを有しているので、この圧力エネルギーを回収して
から希釈、廃棄することが好ましい。エネルギーの回収
方法としては、高圧ポンプに取り付けたエネルギー回収
装置で回収する方法、ブースターポンプで回収する方法
などがあるが、本発明の方法はこれらのエネルギー回収
方法に限定されるものではない。
Further, in the case of concentrated water of the reverse osmosis method, the raw water is pressurized for reverse osmosis separation, and the concentrated waste water also has pressure energy. Therefore, this pressure energy is recovered, then diluted and discarded. Preferably. Examples of energy recovery methods include a method of recovering with an energy recovery device attached to a high-pressure pump and a method of recovering with a booster pump, but the method of the present invention is not limited to these energy recovery methods.

【0021】一方、濃縮排水を希釈して廃棄する装置と
しては、高濃度排水を希釈する装置および希釈した排水
を廃棄、放流する装置を有していることが必要である。
高濃度排水を希釈する装置としては、濃縮排水と希釈用
水の流入口、希釈された排水の流出口、および攪拌混合
装置を備えた混合槽、濃縮排水の配管内に希釈用水をポ
ンプで注入し、配管内で混合するミキシング装置、ある
いは図2に示す濃縮排水の流れ(7)を利用したエゼク
ターまたはアスピレーター機構による希釈用水の吸引装
置、および配管内混合装置などを使用することができ
る。また、希釈液の流入口から高濃度排水が逆流するの
を防ぐために逆流防止弁(9)を設けることは有効であ
る。混合槽としてはこれを放流水槽として使用してもか
まわない。場合によっては高濃度排水を希釈する装置と
排水を廃棄、放流する装置が両方の機能を有する単一の
装置であってもかまわない。例えば廃棄、放出ノズルを
二重にして高濃度排水と希釈水を同時に放出し、放出直
後に混合希釈する装置や放出ノズルにエゼクター方式の
吸入口を設けて周囲の水を希釈水として取り込んで混合
希釈、放出する装置である。
On the other hand, as an apparatus for diluting concentrated wastewater and discarding it, it is necessary to have an apparatus for diluting highly concentrated wastewater and an apparatus for discarding and discharging the diluted wastewater.
As a device for diluting high-concentration wastewater, the dilution water is pumped into the concentrated wastewater and dilution water inlets, the diluted wastewater outlet, and the mixing tank equipped with a stirring and mixing device, and the concentrated wastewater piping. It is possible to use a mixing device for mixing in a pipe, a suction device for diluting water by an ejector or aspirator mechanism using the flow (7) of concentrated waste water shown in FIG. 2, and a mixing device in a pipe. Further, it is effective to provide a backflow prevention valve (9) in order to prevent the high-concentration wastewater from flowing back from the diluent inlet. The mixing tank may be used as a discharge water tank. In some cases, the device for diluting the highly concentrated wastewater and the device for discarding and discharging the wastewater may be a single device having both functions. For example, the waste and discharge nozzles are doubled to simultaneously discharge high-concentration wastewater and dilution water, and a device for mixing and diluting immediately after discharge or an ejector-type suction port is installed in the discharge nozzle to take in surrounding water as dilution water and mix it. It is a device that dilutes and releases.

【0022】また、最終的に希釈された高濃度排水を放
出する機構として、図1に示したような装置が好適であ
る。即ち、高濃度排水の搬送配管(3)を適当な沖合い
まで配管して、廃棄塔(4)を設け、そこから廃棄ノズ
ル(5)により、希釈された高濃度排水を放出する。
廃棄塔(4)は水深5〜20m程度の海底に設置するこ
とが好ましい。これより浅いと船舶航行の障害となり、
これより深いと設置作業が困難となる。また、海底の地
中にコンクリートなどを敷設して土台とすると廃棄塔が
海流により流される恐れがなくなり好ましい。また、廃
棄ノズル(5)はおおよそ35〜55度の上方に指向し
ていることが好ましい。この角度より小さいと廃棄流
(6)が十分高く流れず、大きいと十分遠方まで広がら
ず、いずれにしても、生態系に影響を及ぼさない程度に
まで十分希釈されない恐れが生じる。
A device as shown in FIG. 1 is suitable as a mechanism for finally discharging the diluted high-concentration wastewater. That is, the high-concentration wastewater transfer pipe (3) is piped to an appropriate location offshore, and a waste tower (4) is provided. From the waste nozzle (5), the diluted high-concentration wastewater is discharged.
The waste tower (4) is preferably installed on the seabed at a water depth of about 5 to 20 m. If it is shallower than this, it will hinder ship navigation,
If it is deeper than this, installation work becomes difficult. It is also preferable to lay concrete or the like in the ground on the bottom of the sea floor to prevent the waste tower from being washed away by the ocean current. Also, the waste nozzle (5) is preferably directed upwards of approximately 35-55 degrees. If it is smaller than this angle, the waste stream (6) does not flow sufficiently high, and if it is large, it does not spread far enough, and in any case, there is a possibility that it will not be diluted enough to not affect the ecosystem.

【0023】なお、高濃度排水の搬送の駆動源としては
特に限定されるものではないが、残存する圧力エネルギ
ー、海面との水位差、あるいはポンプを用いても良い。
The drive source for transporting high-concentration wastewater is not particularly limited, but residual pressure energy, water level difference from the sea surface, or a pump may be used.

【0024】[0024]

【実施例】【Example】

実施例1 東レ製逆浸透膜エレメントSU−820を2本入れたモ
ジュールを並列に2本組込んだモジュール装置を第1段
目のモジュール装置とし、モジュールを1本組込んだモ
ジュール装置を第2段目のモジュール装置とした。第1
段目のモジュール装置の供給液入ラインに高圧ポンプを
連結し、第1段目のモジュール装置の濃縮水ラインをブ
ースターポンプに連結してさらに第2段目のモジュール
装置の供給液入ラインに連結した。この装置にろ過、pH
調整、薬品注入を行った海水を供給して淡水回収率60
%で分離を行った。得られる塩分濃度8.8重量%の濃
縮排水を攪拌設備を有する放流水槽に入れ、放流水槽内
で塩分濃度3.5%の原水の海水を濃縮排水の1.3倍
量混合して5.8%に希釈し、水深10mの地点で斜め
上方海中に放流したところ、放流口から20m離れた海
底で海水濃度は5%以下となった。
Example 1 A module device in which two modules containing two reverse osmosis membrane elements SU-820 manufactured by Toray Industries Inc. were installed in parallel was used as a first-stage module device, and a module device in which one module was installed was second. It was a module device at the stage. First
A high-pressure pump is connected to the feed liquid inlet line of the first-stage module device, the concentrated water line of the first-stage module device is connected to a booster pump, and further connected to the feed-liquid inlet line of the second-stage module device. did. Filter to this device, pH
Adjusted and injected chemical water to supply freshwater recovery rate of 60
Separation was performed in%. 4. The resulting concentrated wastewater with a salt concentration of 8.8% by weight is placed in a discharge water tank equipped with a stirring facility, and raw water with a salt concentration of 3.5% is mixed with 1.3 times the concentrated wastewater in the discharge water tank. When diluted to 8% and released into the sea diagonally upward at a water depth of 10 m, the seawater concentration was 5% or less at the seabed 20 m away from the outlet.

【0025】比較例1 実施例1と同様にして得られた塩分濃度8.8重量%の
濃縮水を希釈しないで実施例1と同様の方法で海中に放
流したところ、放流口から20m離れた地点で濃度は5
%以上となった。
Comparative Example 1 Concentrated water having a salt concentration of 8.8% by weight obtained in the same manner as in Example 1 was discharged into the sea in the same manner as in Example 1 without diluting, and it was 20 m away from the discharge port. Concentration is 5 at the point
% Or more.

【0026】実施例2 海水の混合量を濃縮排水と等量にした以外は実施例1と
同様にして海中に放流したところ、放流口から20m離
れた海底で海水濃度は5%以下となった。
Example 2 Discharging into the sea in the same manner as in Example 1 except that the mixed amount of seawater was made equal to the concentrated wastewater, and the seawater concentration was 5% or less at the seabed 20 m away from the discharge port. .

【0027】実施例3 海水の混合量を濃縮排水の0.5倍量にした以外は実施
例1と同様にして海中に放流したところ、放流口から2
0m離れた海底で海水濃度は5%以下となった。
Example 3 When discharged into the sea in the same manner as in Example 1 except that the mixed amount of seawater was 0.5 times the concentrated wastewater, 2 from the outlet.
The seawater concentration was 5% or less at the seabed 0 m away.

【0028】実施例4 実施例1と同様にして得られた塩分濃度8.8重量%の
濃縮水の排水配管に、希釈水の注入口を2カ所設け、注
入口から塩分濃度3.5%の原水の海水を合計で濃縮排
水の1.3倍量混合して5.8%に希釈し、実施例1と
同様にして海中に放流したところ、放流口から20m離
れた海底で海水濃度は5%以下となった。
Example 4 In the drainage pipe of concentrated water obtained in the same manner as in Example 1 and having a salt concentration of 8.8% by weight, two dilution water inlets were provided, and the salt concentration was 3.5% from the inlet. When the total amount of seawater of the raw water was mixed with 1.3 times the concentrated wastewater and diluted to 5.8% and discharged into the sea in the same manner as in Example 1, the seawater concentration at the seabed 20 m away from the outlet was It was below 5%.

【0029】実施例5 海水の混合量を濃縮排水と等量にした以外は実施例4と
同様にして海中に放流したところ、放流口から20m離
れた海底で海水濃度は5%以下となった。
Example 5 When discharged into the sea in the same manner as in Example 4 except that the mixed amount of seawater was made equal to the concentrated wastewater, the seawater concentration was 5% or less on the seabed 20 m away from the discharge port. .

【0030】実施例6 海水の混合量を濃縮排水の0.5倍量にした以外は実施
例4と同様にして海中に放流したところ、放流口から2
0m離れた海底で海水濃度は5%以下となった。
Example 6 Discharging into the sea in the same manner as in Example 4 except that the amount of seawater mixed was 0.5 times the concentrated wastewater, 2 from the discharge port.
The seawater concentration was 5% or less at the seabed 0 m away.

【0031】実施例7 実施例1と同様にして得られた塩分濃度8.8重量%の
濃縮水を放出ノズルの根本にエゼクター方式の吸入口を
設けた放出装置から廃棄した。その際、ノズル内には周
囲の海水を濃縮水量の約1.3倍量取り込んで希釈しつ
つ、実施例1と同様にして海中に放流したところ、放流
口から20m離れた海底で海水濃度は5%以下となっ
た。
Example 7 Concentrated water having a salt concentration of 8.8% by weight obtained in the same manner as in Example 1 was discarded from a discharging device provided with an ejector-type suction port at the base of the discharging nozzle. At that time, when the surrounding seawater was taken into the nozzle in an amount of about 1.3 times the concentrated water amount and diluted, and was discharged into the sea in the same manner as in Example 1, the seawater concentration was 20 m away from the discharge port. It was below 5%.

【0032】実施例8 海水の混合量を濃縮排水と等量にした以外は実施例7と
同様にして海中に放流したところ、放流口から20m離
れた海底で海水濃度は5%以下となった。
Example 8 Discharging into the sea in the same manner as in Example 7 except that the mixed amount of seawater was made equal to concentrated wastewater, and the seawater concentration was 5% or less at the seabed 20 m away from the discharge port. .

【0033】実施例9 海水の混合量を濃縮排水の0.5倍量にした以外は実施
例7と同様にして海中に放流したところ、放流口から2
0m離れた海底で海水濃度は5%以下となった。
Example 9 When discharged into the sea in the same manner as in Example 7 except that the mixed amount of seawater was 0.5 times the concentrated wastewater, 2 from the outlet.
The seawater concentration was 5% or less at the seabed 0 m away.

【0034】[0034]

【発明の効果】本発明により高濃度の排水を廃棄する
際、特に高回収率で逆浸透分離した濃縮水の廃棄に対し
て安全で、安価、環境への影響の少ない方法を提供する
ことができる。
Industrial Applicability According to the present invention, it is possible to provide a safe, inexpensive and environmentally friendly method for discarding highly concentrated wastewater, especially for discarding concentrated water that has been subjected to reverse osmosis separation with a high recovery rate. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の廃棄設備の模式図である。FIG. 1 is a schematic diagram of a disposal facility of the present invention.

【図2】 本発明で用いるエクゼターの断面図である。FIG. 2 is a cross-sectional view of an exeter used in the present invention.

【符号の説明】[Explanation of symbols]

1:高濃度排水の流入配管 2:高濃度排水槽 3:高濃度排水の搬送配管 4:廃棄塔 5:廃棄ノズル 6:廃棄流 7:高濃度排水の流れ 8:吸入希釈液の流れ 9:逆流防止弁 1: High-concentration drainage inflow pipe 2: High-concentration drainage tank 3: High-concentration drainage transfer pipe 4: Disposal tower 5: Waste nozzle 6: Waste flow 7: High-concentration drainage flow 8: Intake diluent flow 9: Check valve

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 逆浸透法乃至は蒸留法の高濃度排水をあ
らかじめ希釈して廃棄することを特徴とする高濃度排水
の廃棄方法。
1. A method of disposing high-concentration wastewater, which comprises diluting high-concentration wastewater of the reverse osmosis method or distillation method in advance and discarding it.
【請求項2】 高濃度排水が逆浸透法の濃縮水であるこ
とを特徴とする請求項1記載の高濃度排水の廃棄方法。
2. The method of disposing high-concentration wastewater according to claim 1, wherein the high-concentration wastewater is concentrated water of a reverse osmosis method.
【請求項3】 逆浸透法の原水が、海水又は高濃度かん
水であることを特徴とする請求項2記載の高濃度排水の
廃棄方法。
3. The method of disposing high-concentration wastewater according to claim 2, wherein the raw water of the reverse osmosis method is seawater or high-concentration brackish water.
【請求項4】 逆浸透法が膜モジュールを多段に配置
し、1段目の濃縮水を2段目でさらに分離する方法であ
ることを特徴とする請求項2記載の高濃度排水の廃棄方
法。
4. The method of disposing high-concentration wastewater according to claim 2, wherein the reverse osmosis method is a method of arranging membrane modules in multiple stages and further separating the concentrated water in the first stage in the second stage. .
【請求項5】 高濃度排水の溶質濃度が5.0重量%以
上であることを特徴とする請求項1記載の高濃度排水の
廃棄方法。
5. The method of disposing high-concentration wastewater according to claim 1, wherein the solute concentration of the high-concentration wastewater is 5.0% by weight or more.
【請求項6】 高濃度排水の希釈に海水または高濃度か
ん水を用いることを特徴とする請求項1記載の高濃度排
水の廃棄方法。
6. The method of disposing high-concentration wastewater according to claim 1, wherein seawater or high-concentration brackish water is used for diluting the high-concentration wastewater.
【請求項7】 逆浸透法の濃縮水を原水で希釈して廃棄
することを特徴とする請求項2記載の高濃度排水の廃棄
方法。
7. The method for discarding highly concentrated waste water according to claim 2, wherein the concentrated water of the reverse osmosis method is diluted with raw water and discarded.
【請求項8】 逆浸透法の濃縮水を放流域の水で希釈し
て廃棄することを特徴とする請求項2記載の高濃度排水
の廃棄方法。
8. The method for discarding high-concentration wastewater according to claim 2, wherein the concentrated water of the reverse osmosis method is diluted with the water in the discharge area and discarded.
【請求項9】 濃縮水の圧力エネルギーを回収した後、
希釈して廃棄することを特徴とする請求項2記載の高濃
度排水の廃棄方法。
9. After recovering the pressure energy of the concentrated water,
The method for discarding highly concentrated wastewater according to claim 2, wherein the method is diluted and discarded.
【請求項10】 濃縮排水に希釈用水を混合する装置
と、該希釈された濃縮排水を廃棄する手段を有すること
を特徴とする濃縮排水の廃棄装置。
10. An apparatus for discarding concentrated wastewater, comprising a device for mixing concentrated wastewater with dilution water, and a means for discarding the diluted concentrated wastewater.
【請求項11】 濃縮排水に希釈用水を混合する装置が
濃縮排水と希釈用水の流入口、希釈された排水の流出
口、および攪拌混合装置を備えたことを特徴とする請求
項10記載の濃縮排水の廃棄装置。
11. The concentrate according to claim 10, wherein the device for mixing the concentrated wastewater with the diluting water comprises an inlet for the concentrated wastewater and the diluting water, an outlet for the diluted wastewater, and a stirring and mixing device. Wastewater disposal device.
【請求項12】 濃縮排水に希釈用水を混合する装置が
濃縮排水の配管内に希釈用水を注入するものであること
を特徴とする請求項10記載の濃縮排水の廃棄装置。
12. The device for discarding concentrated wastewater according to claim 10, wherein the device for mixing the concentrated wastewater with the dilution water is a device for injecting the diluted water into the pipe for the concentrated wastewater.
【請求項13】 濃縮排水に希釈用水を混合する装置が
濃縮排水の流れを利用したエゼクターまたはアスピレー
ター機構による希釈用水の吸引装置、および混合装置を
備えたことを特徴とする請求項10記載の濃縮排水の廃
棄装置。
13. The concentrating device according to claim 10, wherein the device for mixing the concentrated effluent with the diluting water includes a device for sucking the diluting water by an ejector or aspirator mechanism utilizing the flow of the concentrated effluent and a mixing device. Wastewater disposal device.
JP8091332A 1996-04-12 1996-04-12 Method and apparatus for disposing of highly concentrated waste water Pending JPH09276846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8091332A JPH09276846A (en) 1996-04-12 1996-04-12 Method and apparatus for disposing of highly concentrated waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8091332A JPH09276846A (en) 1996-04-12 1996-04-12 Method and apparatus for disposing of highly concentrated waste water

Publications (1)

Publication Number Publication Date
JPH09276846A true JPH09276846A (en) 1997-10-28

Family

ID=14023497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8091332A Pending JPH09276846A (en) 1996-04-12 1996-04-12 Method and apparatus for disposing of highly concentrated waste water

Country Status (1)

Country Link
JP (1) JPH09276846A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015148489A (en) * 2014-02-05 2015-08-20 和男 麻生 Device for diluting contaminated water with high magnification and dumping it
JP2021081298A (en) * 2019-11-19 2021-05-27 田中 伸一 Method and system for storing polluted water
KR102597709B1 (en) * 2022-11-09 2023-11-02 한국해양과학기술원 Treatment system and methods for the liquid wastes of used thalassotherapy resources

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015148489A (en) * 2014-02-05 2015-08-20 和男 麻生 Device for diluting contaminated water with high magnification and dumping it
JP2021081298A (en) * 2019-11-19 2021-05-27 田中 伸一 Method and system for storing polluted water
KR102597709B1 (en) * 2022-11-09 2023-11-02 한국해양과학기술원 Treatment system and methods for the liquid wastes of used thalassotherapy resources

Similar Documents

Publication Publication Date Title
JP4808399B2 (en) Two-stage nanofiltration seawater desalination system
RU2642794C2 (en) Submersible flat devices for direct osmosis
CN102745776B (en) Method and apparatus for treatment of concentrated reverse osmosis drainage through coupled forward osmosis and reverse osmosis
US20030141250A1 (en) Desalination method and desalination apparatus
JPH08108048A (en) Reverse osmosis separator and reverse osmosis separating method
WO2015156242A1 (en) Water treatment method and water treatment apparatus each using membrane
JP2015077530A (en) Water production method and water production device
EP1894612B1 (en) Method for purifying water by means of a membrane filtration unit
JP2011072939A (en) Membrane treatment equipment
JP2003200160A (en) Water making method and water making apparatus
US11014834B2 (en) Osmotic concentration of produced and process water using hollow fiber membrane
WO1997018166A2 (en) Direct osmotic concentration contaminated water
US20170001883A1 (en) Water treatment system and water treatment method
JP2008279335A (en) Apparatus and method for water reclamation
JPH09248429A (en) Separation method and apparatus therefor
JP6613323B2 (en) Water treatment apparatus and water treatment method
KR101344783B1 (en) Hybrid seawater desalination apparatus and method for reclaiming concentrate in reverse osmosis
CN1696067A (en) Reverse cleaning system including off line module of reverse osmosis membrane
JPH09276846A (en) Method and apparatus for disposing of highly concentrated waste water
KR101305747B1 (en) Hybrid Seawater Desalination Apparatus and Process without Concentrate Discharge in Reverse Osmosis Process
JP2011041907A (en) Water treatment system
JP5587223B2 (en) Combined desalination system
JP3353810B2 (en) Reverse osmosis seawater desalination system
NL1028484C2 (en) Treating a wastewater stream from a bioreactor comprises immersing a membrane filtration unit in the wastewater stream
Wilf et al. Membrane types and factors affecting membrane performance

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050222