JPH0927650A - Surface light emitting laser and manufacture thereof - Google Patents

Surface light emitting laser and manufacture thereof

Info

Publication number
JPH0927650A
JPH0927650A JP17380195A JP17380195A JPH0927650A JP H0927650 A JPH0927650 A JP H0927650A JP 17380195 A JP17380195 A JP 17380195A JP 17380195 A JP17380195 A JP 17380195A JP H0927650 A JPH0927650 A JP H0927650A
Authority
JP
Japan
Prior art keywords
emitting laser
layer
surface emitting
growth layer
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17380195A
Other languages
Japanese (ja)
Inventor
Kouta Tateno
功太 舘野
Hirokazu Takenouchi
弘和 竹ノ内
Yoshitaka Oiso
義孝 大磯
Atsushi Wakatsuki
温 若月
Taketaka Kohama
剛孝 小濱
Takashi Kurokawa
隆志 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP17380195A priority Critical patent/JPH0927650A/en
Publication of JPH0927650A publication Critical patent/JPH0927650A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a refractive index waveguide surface light emitting laser having a flat surface without performing an etching process and a method of manufacturing the laser. SOLUTION: In the manufacture of a surface light emitting laser, after a crystal growth, accelerated ions are implanted in the periphery of an element, defects 5 are deeply formed in a growth layer and after that, molecules containing O or N of H2 O, NH3 and the like are introduced in the layer through the defects 5 and the growth layer is deeply oxidized or nitrided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は面発光レーザ及びそ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface emitting laser and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、面発光レーザはエッチング、埋め
込み成長、イオン注入法、AlGaAs水蒸気酸化法に
より電子の注入領域を形成していた。エッチングによっ
て作製される面発光レーザは段差が大きく電極配線等の
プロセスが難しい問題点があった。イオン注入法により
素子分離して作製される面発光レーザは、平坦な表面を
有しプロセスが容易である反面、屈折率導波構造を有し
ていないため光出力時に横モードが多モード化しやすく
動作が不安定であるなどの問題点があった。また、埋め
込み法による面発光レーザは平坦な表面をもつ屈折率導
波構造であるが、エッチングした後に半導体層を再成長
するため界面不純物による素子特性のばらつきや、また
再成長に時間がかかる等の欠点があった。
2. Description of the Related Art Conventionally, in a surface emitting laser, an electron injection region is formed by etching, buried growth, an ion injection method, and AlGaAs steam oxidation method. The surface-emitting laser manufactured by etching has a large step, and there is a problem that the process of electrode wiring is difficult. The surface-emitting laser manufactured by element isolation by the ion implantation method has a flat surface and is easy to process, while it does not have a refractive index waveguide structure, so that the transverse mode easily becomes multimode at the time of optical output. There were problems such as unstable operation. Further, the surface emitting laser by the embedding method has a refractive index waveguide structure having a flat surface, but since the semiconductor layer is regrown after etching, variations in device characteristics due to interface impurities, and re-growth takes a long time, etc. There was a drawback.

【0003】近年、400℃付近でのH2OによるAl
GaAs膜の酸化を用いた技術が、屈折率が半導体より
も47%程小さく電気的に絶縁性である均一な多結晶が
得られるため、電子の注入領域の形成のみならず光学的
特徴においても有望視されている。このような技術の対
応としてエッチングにより素子分離した面発光レーザを
水蒸気酸化することにより屈折率導波構造を形成する方
法と、上面の半導体多層膜反射鏡(DBR)の構成部の
Al組成の高い層をエッチング後に選択的に水蒸気酸化
することにより反射鏡を作製する方法が報告されてい
る。前者では、単にエッチングを行った素子に比べて表
面再結合電流を小さくすることが可能であり、さらに導
波路構造であるため、しきい値電流が低い面発光レーザ
が得られている。後者では、3ペアのDBRで99%以
上の高反射率が得られ、成長時間が短時間で行えること
などの長所を有している。しかしながら、これらの作製
はエッチングのみによる電流注入型と同じであるため、
段差の影響により作製プロセスが複雑であることに変わ
りはない。
Recently, Al by H 2 O at around 400 ° C.
Since the technique using the oxidation of the GaAs film can obtain a uniform polycrystal whose refractive index is 47% smaller than that of the semiconductor and which is electrically insulating, not only in the formation of the electron injection region but also in the optical characteristics. Promising. As a countermeasure for such a technique, a method of forming a refractive index waveguide structure by steam-oxidizing a surface emitting laser element-isolated by etching, and a high Al composition of a constituent portion of a semiconductor multilayer film reflecting mirror (DBR) on the upper surface. A method of making a reflector by etching the layer after selective steam oxidation has been reported. In the former case, the surface recombination current can be made smaller than that of the element simply etched, and the surface emitting laser having a low threshold current is obtained because of the waveguide structure. The latter has the advantage that a high reflectance of 99% or more can be obtained with 3 pairs of DBRs and the growth time can be shortened. However, since these fabrications are the same as the current injection type by etching only,
The manufacturing process remains complicated due to the influence of the step.

【0004】[0004]

【発明が解決しようとする課題】本発明は、エッチング
することなく平坦な表面を有し、素子特性のばらつきの
少ない屈折率導波型の面発光レーザをの作製する。さら
に、加えてAlを含むDBRのAl組成の高い層まで選
択的に酸化あるいは窒素化を進行させることにより、D
BRの層数の少ない、つまり成長時間の短縮された面発
光レーザを作製する。
DISCLOSURE OF THE INVENTION The present invention produces a surface emitting laser of a refractive index guided type which has a flat surface without etching and has a small variation in device characteristics. Furthermore, by selectively advancing oxidation or nitridation to a layer having a high Al composition of DBR containing Al, D
A surface emitting laser having a small number of BR layers, that is, a shortened growth time is manufactured.

【0005】[0005]

【課題を解決するための手段】本発明の請求項1では、
成長層に形成された欠陥を通しH2OあるいはNH3等の
O又はNを含む分子を導入して成長層深く酸化層又は窒
化層を形成してなる。
According to claim 1 of the present invention,
Molecules containing O or N such as H 2 O or NH 3 are introduced through the defects formed in the growth layer to form an oxide layer or a nitride layer deep in the growth layer.

【0006】また請求項2では、面発光レーザの作製に
おける、結晶成長の後、素子周辺に加速されたイオンを
注入し成長層深く欠陥を形成する工程と、その後H
2O、NH3等のO又はNを含む分子を導入し成長層深く
酸化あるいは窒化工程とを有する。また請求項3では、
請求項2において更に酸化又は窒化を進行させてAl組
成の高い成長層を選択的に酸化又は窒化し反射鏡等を形
成する工程を含む。
According to a second aspect of the present invention, in the fabrication of the surface emitting laser, after the crystal growth, a step of implanting accelerated ions in the periphery of the element to form a defect deep in the growth layer, and then H
A process of introducing a molecule containing O or N such as 2 O or NH 3 and deeply oxidizing or nitriding the growth layer is included. Further, in claim 3,
The method according to claim 2 further includes a step of further oxidizing or nitriding to selectively oxidize or nitride the growth layer having a high Al composition to form a reflecting mirror or the like.

【0007】本発明によれば、エッチングをすることの
ないため、平坦な表面を有し、かつ素子特性のばらつき
の少ない面発光レーザが作製可能となり、さらに、酸化
物又は窒化物と半導体の屈折差を利用した屈折率導波型
の面発光レーザの作製が可能となる。また、Alを含む
半導体層をさらに横方向に選択的に坂又は窒素化するこ
とにより、酸化層又は窒化層をDBRの構成層の一部に
利用することが可能である。その結果、面発光レーザの
成長時間を従来の構造よりも短時間で行える長所がもた
らされる。
According to the present invention, since no surface etching is performed, a surface emitting laser having a flat surface and less variation in device characteristics can be manufactured, and further refraction of an oxide or a nitride and a semiconductor is possible. It becomes possible to fabricate a surface emitting laser of the refractive index guided type utilizing the difference. Further, the oxide layer or the nitride layer can be used as a part of the constituent layer of the DBR by selectively laterally hilling or nitrogenizing the semiconductor layer containing Al. As a result, there is an advantage that the surface emitting laser can be grown in a shorter time than the conventional structure.

【0008】[0008]

【発明の実施の形態】図1は本発明の第一の実施の形態
を説明する図である。本実施の形態はGaAs基板1を
用い、λ=0.85μmの発振波長に対して光学長λ/
4のn型Al0.15Ga0.85As層と同じく光学長λ/4
のn型AlAs層をペアとする繰り返し多層膜からなる
第一の反射層2、6層のGaAs量子井戸とAl0.2
0.8As障壁層からなる活性層を含む光学波長mλの
スペーサ層3、光学長λ/4のp型Al0.15Ga0.85
s層と同じく光学長λ/4のp型AlAs層をペアとす
る繰り返し多層膜からなる第二の反射層4を成長する。
素子径10μm、間隔が250μmとなるようにSiO
2層上にレジストを重ねたマスクを面発光レーザ上に形
成する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram for explaining a first embodiment of the present invention. In this embodiment, a GaAs substrate 1 is used, and an optical length λ / is set for an oscillation wavelength of λ = 0.85 μm.
The same optical length λ / 4 as the n-type Al 0.15 Ga 0.85 As layer of 4
First n-type AlAs layer pair consisting of repeating multi-layered films 2 and 6 GaAs quantum wells and Al 0.2 G
a spacer layer 3 having an optical wavelength mλ including an active layer composed of a 0.8 As barrier layer, p-type Al 0.15 Ga 0.85 A having an optical length λ / 4
Similarly to the s layer, the second reflective layer 4 is grown, which is a repetitive multi-layer film in which a p-type AlAs layer having an optical length of λ / 4 is paired.
The element diameter is 10 μm and the interval is 250 μm.
A mask with two layers of resist is formed on the surface emitting laser.

【0009】引き続き、加速電圧50keVかつドーズ
2×1015cm-3(1回目)、加速電圧200keVか
つドーズ2×1015cm-3(2回目)、加速電圧400
keVかつドーズ2×1015cm-3(3回目)の条件で
合計3回水素イオン注入を行いイオン注入領域5を形成
する。
Subsequently, an acceleration voltage of 50 keV and a dose of 2 × 10 15 cm -3 (first time), an acceleration voltage of 200 keV and a dose of 2 × 10 15 cm -3 (second time), an acceleration voltage of 400
Hydrogen ion implantation is performed a total of three times under the conditions of keV and a dose of 2 × 10 15 cm −3 (third time) to form an ion implantation region 5.

【0010】その後レジスト層をアセトン、SiO2
を希釈弗酸等で除去し、窒素雰囲気中水蒸気を400℃
30分吹き付けることによりイオン注入により形成した
欠陥領域5の酸化を行う。
After that, the resist layer is removed with acetone and the SiO 2 layer is removed with diluted hydrofluoric acid or the like, and steam at 400 ° C. is used in a nitrogen atmosphere.
The defect region 5 formed by ion implantation is oxidized by spraying for 30 minutes.

【0011】その後、SiO2層6を形成し、光出力部
分を希釈弗酸で除去した後、p電極7としてAuZnN
i、n電極8としてAuGeNiを形成する。
After that, a SiO 2 layer 6 is formed, the light output portion is removed by diluted hydrofluoric acid, and AuZnN is used as the p electrode 7.
AuGeNi is formed as the i and n electrodes 8.

【0012】このようにして作製された面発光レーザの
チップの特性を調べた。面発光レーザに対して電流を注
入し、I−L特性を調べた。しきい値電流10μAにお
いて、I−L曲線は立ち上がり、0.85μmの発振波
長でレーザ発振を確認した。横モードは光出力が2mW
までシングルモードであることを確認した。
The characteristics of the surface emitting laser chip thus manufactured were examined. A current was injected into the surface emitting laser and the IL characteristics were examined. When the threshold current was 10 μA, the IL curve rose, and laser oscillation was confirmed at an oscillation wavelength of 0.85 μm. Transverse mode has an optical output of 2 mW
I confirmed that it was in single mode.

【0013】図2は、本発明の第二の実施形態を説明す
る図で、(a)は断面図、(b)平面図である。本実施形態は
n型GaAs基板21を用い、λ=0.85μmの発振
波長に対して光学長λ/4のn−Al0.15Ga0.85As
層と同じく光学長λ/4のAlAs層の5ペアの層から
なる第一の反射層22、GaAs量子井戸6層とAl
0.2Ga0.8As障壁層からなる活性層を含む光学波長m
λ/4のスペーサ層23、Al0.95Ga0.05As電流狭
窄層24、光学長λ/4のp−Al0.15Ga0.85As層
と同じく光学長λ/4のAl0.9Ga0.1As層の22ペ
アからなる第二の反射層25を成長する。
2A and 2B are views for explaining the second embodiment of the present invention. FIG. 2A is a sectional view and FIG. 2B is a plan view. In this embodiment, an n-type GaAs substrate 21 is used, and n-Al 0.15 Ga 0.85 As having an optical length of λ / 4 is used for an oscillation wavelength of λ = 0.85 μm.
The first reflective layer 22, which is composed of 5 pairs of AlAs layers each having an optical length of λ / 4, and 6 layers of GaAs quantum wells and Al.
Optical wavelength m including active layer consisting of 0.2 Ga 0.8 As barrier layer
From a pair of λ / 4 spacer layer 23, Al 0.95 Ga 0.05 As current confinement layer 24, and p-Al 0.15 Ga 0.85 As layer with optical length λ / 4, and 22 pairs of Al 0.9 Ga 0.1 As layer with optical length λ / 4. The second reflective layer 25 is grown.

【0014】300×1500μm2のバー状のイオン
注入部をSiO2層上に重ねたレジストよりなるマスク
により形成し、引き続き、加速電圧100keV、ドー
ズ1×1016cm-3、加速電圧300keV、ドーズ1
×1016cm-3、加速電圧700keV、ドーズ1×1
16cm-3で3回H+イオン注入を行いイオン注入領域
26を形成する。アセトンでレジストを剥離後同様に素
子径10μm、間隔が250μmとなるようにSiO2
層上に重ねたレジストよりなるマスクを面発光レーザ上
に形成し加速電圧50keV、ドーズ2×1015
-3、加速電圧200keV、ドーズ2×1015
-3、加速電圧400keV、ドーズ2×1015cm-3
で3回H+イオン注入を行いイオン注入領域27を面発
光レーザ周辺に形成する。
A 300 × 1500 μm 2 bar-shaped ion-implanted portion is formed by a mask made of a resist layered on the SiO 2 layer, and subsequently an accelerating voltage of 100 keV, a dose of 1 × 10 16 cm -3 , an accelerating voltage of 300 keV, and a dose. 1
× 10 16 cm -3 , acceleration voltage 700 keV, dose 1 × 1
The ion implantation region 26 is formed by performing H + ion implantation three times at 0 16 cm −3 . After removing the resist with acetone, the element diameter was set to 10 μm and the interval was set to 250 μm in the same manner as SiO 2
A mask made of a resist layered on the layer is formed on the surface emitting laser, the acceleration voltage is 50 keV, and the dose is 2 × 10 15 c.
m −3 , acceleration voltage 200 keV, dose 2 × 10 15 c
m -3 , acceleration voltage 400 keV, dose 2 × 10 15 cm -3
Then, H + ion implantation is performed three times to form an ion implantation region 27 around the surface emitting laser.

【0015】その後、レジストをアセトン、SiO2
を弗酸等で除去し、窒素雰囲気中水蒸気を400℃2時
間吹き付けることによりイオン注入領域及び反射鏡の一
部の酸化28を行う。Al組成の最も多い下側DBR2
2中のAlAs層は600μmと広い領域に横方向に酸
化が進行し酸化膜と半導体からなる反射鏡が面発光レー
ザ素子下部に形成される。次にAl組成の多い上側DB
R25中のAl0.9Ga0.1As層は1μm横方向に酸化
され屈折率導波構造が形成される。
After that, the resist is removed with acetone and the SiO 2 film is removed with hydrofluoric acid or the like, and steam is blown in a nitrogen atmosphere at 400 ° C. for 2 hours to oxidize 28 part of the ion implantation region and the reflecting mirror. Lower DBR2 with most Al composition
The AlAs layer in No. 2 has a wide area of 600 μm and is laterally oxidized to form a reflecting mirror made of an oxide film and a semiconductor under the surface emitting laser element. Next, the upper DB with a large Al composition
The Al 0.9 Ga 0.1 As layer in R25 is laterally oxidized by 1 μm to form a refractive index waveguide structure.

【0016】その後、SiO2コート29を形成し、光
出力部分を希釈弗酸で除去した後、p電極30としてA
uZnNi、n電極31としてAuGeNiを形成す
る。
After that, a SiO 2 coat 29 is formed, and the light output portion is removed by dilute hydrofluoric acid, and then A is used as the p electrode 30.
AuZnNi and AuGeNi are formed as the n-electrode 31.

【0017】面発光レーザは電圧を加えると電流方向
(二点鎖線方向)に沿って電流が注入され、光出力が得
られる。
When a voltage is applied to the surface emitting laser, a current is injected along the current direction (the direction of the chain double-dashed line), and an optical output is obtained.

【0018】このようにして作製された面発光レーザの
チップの特性を調べた。面発光レーザに対して電流を注
入し、I−L特性を調べた。実施形態1と同様にしきい
値電流12μAにおいて、I−L曲線は立ち上がり、
0.85μmの発振波長でレーザー発振を確認した。横
モードは光出力が5mWまでシングルモードであること
を確認した。また、酸化の過程を450℃4時間の窒素
雰囲気中NH3による窒化に変えても同様なレーザー発
振を確認した。
The characteristics of the surface emitting laser chip thus manufactured were examined. A current was injected into the surface emitting laser and the IL characteristics were examined. At the threshold current of 12 μA as in the first embodiment, the IL curve rises,
Laser oscillation was confirmed at an oscillation wavelength of 0.85 μm. In the transverse mode, it was confirmed that the light output was a single mode up to 5 mW. Further, similar laser oscillation was confirmed even when the oxidation process was changed to nitriding with NH 3 in a nitrogen atmosphere at 450 ° C. for 4 hours.

【0019】[0019]

【発明の効果】以上説明したように、本発明によれば、
エッチングをすることない平坦な表面を有したばらつき
の少ない屈折率導波型の面発光レーザと、さらに成長時
間の比較的少ない面発光レーザの作製が可能である。
As described above, according to the present invention,
It is possible to manufacture a refractive index guided surface emitting laser having a flat surface with no etching and a surface emitting laser having a relatively short growth time.

【0020】[0020]

【図面の簡単な説明】[Brief description of drawings]

【0021】[0021]

【図1】本発明の実施形態1の説明図FIG. 1 is an explanatory diagram of a first embodiment of the present invention.

【0022】[0022]

【図2】本発明の実施形態2の説明図FIG. 2 is an explanatory diagram of Embodiment 2 of the present invention.

【0023】[0023]

【符号の説明】[Explanation of symbols]

1…n−GaAs基板、2…n−Al0.15Ga0.85As
層とn−AlAs層との繰り返し多層膜からなる第一の
反射層、3…活性層を含む光学波長mλ(λは発振波
長)のスペーサ層、4…p−Al0.15Ga0.85As層と
p−AlAs層との繰り返し多層膜からなる第二の反射
層、5…イオン注入領域、6…SiO2コート。
1 ... n-GaAs substrate, 2 ... n-Al 0.15 Ga 0.85 As
First reflective layer composed of a repeating multilayer film of a layer and an n-AlAs layer, a spacer layer having an optical wavelength mλ (λ is an oscillation wavelength) including an active layer, a p-Al 0.15 Ga 0.85 As layer and a p-Al 0.15 Ga 0.85 As layer A second reflective layer consisting of a repeating multilayer film with an AlAs layer, 5 ... ion-implanted region, 6 ... SiO 2 coat.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 若月 温 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 (72)発明者 小濱 剛孝 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 (72)発明者 黒川 隆志 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Wakatsuki, 1-1, 6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation (72) Inventor, Taketaka Obama 1-1-1, Uchisaiwaicho, Chiyoda-ku, Tokyo No. 6 Nihon Telegraph and Telephone Corporation (72) Inventor Takashi Kurokawa 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】成長層に形成された欠陥と、該欠陥を通し
2O、NH3等のO又はNを含む分子を導入して成長層
に形成された酸化部又は窒化部とを有する、 ことを特徴とする面発光レーザ。
1. A growth layer having a defect and an oxidation part or a nitriding part formed in the growth layer by introducing a molecule containing O or N such as H 2 O or NH 3 through the defect. A surface-emitting laser characterized by the following.
【請求項2】面発光レーザの作製における、結晶成長の
後、 素子周辺に加速されたイオンを注入し成長層深く欠陥を
形成する工程と、 その後H2O、NH3等のO又はNを含む分子を導入し成
長層深く酸化又は窒化する工程とを有する、 ことを特徴とする面発光レーザの製造方法。
2. A step of injecting accelerated ions into the periphery of an element to form a defect deep in the growth layer after crystal growth in the fabrication of a surface emitting laser, and then adding O or N such as H 2 O or NH 3 to the growth layer. A method of manufacturing a surface emitting laser, comprising the step of introducing a molecule containing the compound and oxidizing or nitriding deeply in the growth layer.
【請求項3】酸化又は窒化を更に進行させてAl組成の
高い成長層を選択的に酸化又は窒化し反射鏡等を形成す
る工程を含むことを特徴とする請求項2記載の面発光レ
ーザの製造方法。
3. The surface emitting laser according to claim 2, further comprising a step of further oxidizing or nitriding to selectively oxidize or nitride the growth layer having a high Al composition to form a reflecting mirror or the like. Production method.
JP17380195A 1995-07-10 1995-07-10 Surface light emitting laser and manufacture thereof Pending JPH0927650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17380195A JPH0927650A (en) 1995-07-10 1995-07-10 Surface light emitting laser and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17380195A JPH0927650A (en) 1995-07-10 1995-07-10 Surface light emitting laser and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0927650A true JPH0927650A (en) 1997-01-28

Family

ID=15967416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17380195A Pending JPH0927650A (en) 1995-07-10 1995-07-10 Surface light emitting laser and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0927650A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223975A (en) * 1997-02-12 1998-08-21 Fuji Xerox Co Ltd Surface emission type semiconductor laser device and its manufacture
WO1999018641A1 (en) * 1997-10-08 1999-04-15 Seiko Epson Corporation Surface light emitting laser and method of production thereof
JP2002289967A (en) * 2001-03-28 2002-10-04 Rohm Co Ltd Surface emitting type semiconductor laser and its manufacturing method
JP2005183912A (en) * 2003-11-27 2005-07-07 Ricoh Co Ltd Surface-emitting laser element, surface-emitting laser array, optical interconnection system, optical communication system, electrophotography system, and optical disc system
JP2007053406A (en) * 1997-03-06 2007-03-01 Finisar Corp Laser having selectively variable electric current closing layer
WO2017018017A1 (en) * 2015-07-28 2017-02-02 ソニー株式会社 Light emitting element

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223975A (en) * 1997-02-12 1998-08-21 Fuji Xerox Co Ltd Surface emission type semiconductor laser device and its manufacture
JP2007053406A (en) * 1997-03-06 2007-03-01 Finisar Corp Laser having selectively variable electric current closing layer
JP4700593B2 (en) * 1997-03-06 2011-06-15 フィニサー コーポレイション Laser with a selectively confined current confinement layer
WO1999018641A1 (en) * 1997-10-08 1999-04-15 Seiko Epson Corporation Surface light emitting laser and method of production thereof
US6594296B1 (en) 1997-10-08 2003-07-15 Seiko Epson Corporation Surface-emitting laser and method of fabrication thereof
JP2002289967A (en) * 2001-03-28 2002-10-04 Rohm Co Ltd Surface emitting type semiconductor laser and its manufacturing method
JP2005183912A (en) * 2003-11-27 2005-07-07 Ricoh Co Ltd Surface-emitting laser element, surface-emitting laser array, optical interconnection system, optical communication system, electrophotography system, and optical disc system
WO2017018017A1 (en) * 2015-07-28 2017-02-02 ソニー株式会社 Light emitting element
CN107851967A (en) * 2015-07-28 2018-03-27 索尼公司 Light-emitting component
JPWO2017018017A1 (en) * 2015-07-28 2018-05-17 ソニー株式会社 Light emitting element
CN107851967B (en) * 2015-07-28 2020-03-03 索尼公司 Light emitting element

Similar Documents

Publication Publication Date Title
US5034958A (en) Front-surface emitting diode laser
KR100623406B1 (en) Vertical cavity surface emitting laser
JP4184769B2 (en) Surface emitting semiconductor laser and manufacturing method thereof
US7387906B2 (en) Multi-wavelength surface emitting laser and method for manufacturing the same
JP4141172B2 (en) Surface emitting semiconductor laser device manufacturing method, surface emitting semiconductor laser device, and optical transmission system
JPH0927650A (en) Surface light emitting laser and manufacture thereof
US6654396B1 (en) Semiconductor laser device and method for fabricating thereof
JP3924859B2 (en) Semiconductor laser and manufacturing method thereof
JP2917971B2 (en) Surface emitting laser
US6671301B1 (en) Semiconductor device and method for producing the same
JP3147328B2 (en) Surface emitting semiconductor laser manufacturing method
JP2546150B2 (en) Three-dimensional cavity surface emitting laser
JPH11112086A (en) Embedded type surface emitting laser and manufacture thereof
JP2953450B2 (en) Semiconductor laser manufacturing method and semiconductor laser
KR100224883B1 (en) Vertical cavity surface emitting laser and manufacturing method thereof
JPH05211372A (en) Manufacture of semiconductor laser
JP3440977B2 (en) Surface emitting semiconductor laser and method of manufacturing the same
JP2005085836A (en) Surface luminescence semiconductor laser element and its manufacturing method
KR100224882B1 (en) Vertical cavity surface emitting laser and manufacturing method thereof
JP2000101189A (en) Manufacture of semiconductor laser element
JPH01186688A (en) Semiconductor laser device
JP2001257424A (en) Vertical resonator surface light emitting element
JPH04275478A (en) Manufacture of surface light emitting semiconductor laser
JP2004158664A (en) Surface-luminescent semiconductor laser device and its manufacturing method
JPH09260770A (en) Plane emission laser