JP3147328B2 - Surface emitting semiconductor laser manufacturing method - Google Patents

Surface emitting semiconductor laser manufacturing method

Info

Publication number
JP3147328B2
JP3147328B2 JP26958595A JP26958595A JP3147328B2 JP 3147328 B2 JP3147328 B2 JP 3147328B2 JP 26958595 A JP26958595 A JP 26958595A JP 26958595 A JP26958595 A JP 26958595A JP 3147328 B2 JP3147328 B2 JP 3147328B2
Authority
JP
Japan
Prior art keywords
layer
conductivity type
substrate
reflecting mirror
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26958595A
Other languages
Japanese (ja)
Other versions
JPH09116223A (en
Inventor
義孝 大礒
隆志 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP26958595A priority Critical patent/JP3147328B2/en
Publication of JPH09116223A publication Critical patent/JPH09116223A/en
Application granted granted Critical
Publication of JP3147328B2 publication Critical patent/JP3147328B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18305Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] with emission through the substrate, i.e. bottom emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/1838Reflector bonded by wafer fusion or by an intermediate compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願発明は、直接接着法を用
いた電流狭窄構造を有する面発光レーザの作製方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a surface emitting laser having a current confinement structure using a direct bonding method.

【0002】[0002]

【従来の技術】近年、長波長面発光レーザは二次元高密
度集積が可能なことから、光信号処理や光情報処理用の
発光光源としてのキーデバイスとしてその開発が非常に
望まれている。
2. Description of the Related Art In recent years, two-dimensional high-density integration of long-wavelength surface emitting lasers is possible, so that their development as key devices as light emitting light sources for optical signal processing and optical information processing has been greatly desired.

【0003】従来、この種の素子は、例えばAppl. Phy
s. lett. 66 1995 pp.1030 に開示されるように、DB
R部分と発光層とを貼り合わせた後、電流を微小領域の
活性層に効率良く注入するめの電流狭窄構造としてIn
Pクラッド層の上部までポスト型にエッチングして形成
していた。
Heretofore, this type of device has been disclosed, for example, in Appl.
s. lett. 66 1995 pp.1030
After bonding the R portion and the light emitting layer, the current confining structure for efficiently injecting the current into the active layer in the minute region is In.
It was formed by etching in a post type up to the upper part of the P clad layer.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上述の素
子において、エッチングを施し微小径のポスト型にした
場合には活性層の表面再結合等の影響による非発光過程
の増加を伴い、レーザ発振にいたる閾値電流の増加とい
う問題点があった。
However, in the above-mentioned device, when a post type having a small diameter is etched by etching, a non-light-emitting process is increased due to the influence of surface recombination of the active layer and the like, leading to laser oscillation. There is a problem that the threshold current increases.

【0005】また、直接接着後イオン注入により電流狭
窄構造を作製した場合、活性層にダメージを与えたり、
深い領域(例えば4μm)にイオン注入するため、加速
電圧の制限から注入するイオンが軽い原子量の元素に限
られ、高温動作時における信頼性等に問題点があった。
Further, when a current constriction structure is manufactured by ion implantation after direct bonding, the active layer may be damaged,
Since ions are implanted into a deep region (for example, 4 μm), the ions to be implanted are limited to light atomic weight elements due to the limitation of the acceleration voltage, and there is a problem in reliability at the time of high-temperature operation.

【0006】また、極微細構造を作製する際、半導体多
層膜の抵抗が著しく高くなり素子特性の劣化が問題とな
っていた。
Further, when fabricating an ultrafine structure, the resistance of the semiconductor multilayer film is significantly increased, and there has been a problem of deterioration of device characteristics.

【0007】また、電子回路との集積の際には、イオン
注入するイオン原子の種類が限られることから、エッチ
ングの深さが10μm程度になり、段差構造におけるプ
ロセスの方法に様々な問題が生じ、最適な構造が作製し
にくいという問題点が生じていた。
In addition, when integrated with an electronic circuit, the type of ion atoms to be implanted is limited, so that the etching depth becomes about 10 μm, and various problems occur in the process method in the step structure. However, there has been a problem that it is difficult to manufacture an optimum structure.

【0008】[0008]

【課題を解決するための手段】本発明は、電流狭窄構造
を反射鏡もしくはクラッド層の中に予め形成し、その後
直接接着により面発光半導体レーザを作製することを主
要な特徴とし、以下のような手段によって上述の課題を
解決するものである。
The main feature of the present invention is to form a current confining structure in a reflecting mirror or a cladding layer in advance and then fabricate a surface emitting semiconductor laser by direct bonding. The above-mentioned problem is solved by various means.

【0009】<第1の発明の態様>本発明の第1の面発
光半導体レーザ製造方法は、第1の導電型を有するGa
As基板上に、第1の導電型及び光学波長の1/4 の膜厚
を有するAlx1Ga1-x1As膜とAlx2Ga1-x2As膜
(0≦x1,x2≦1)とを交互に積層し第1の光反射
鏡を形成する工程と、InP基板上に第1の導電型を有
するクラッド層と活性層と第2の導電型を有するクラッ
ド層とを具備する積層構造を、該第1の導電型を有する
クラッド層を該InP基板に対向して形成する工程と、
第2の導電型を有するGaAs基板に、第2の導電型及
び光学波長の1/4 の膜厚とを有するAlx13 Ga1-x3
s膜とAlx4Ga1-x4As膜(0≦x3,x4≦1)を
交互に積層し第2の光反射鏡を形成する工程と、前記第
1乃至は前記第2の光反射鏡にAlGaAsを高抵抗化
するイオン種を閉領域を残して注入する工程と、前記第
1の反射鏡と前記InP基板上の積層構造とを密着させ
加熱することにより接着する工程と、前記接着する工程
を経た前記積層構造から前記InP基板を除去する工程
と、前記InP基板が除去された前記積層構造と前記第
2の光反射鏡とを密着させ、加熱・接着する工程とから
なることを特徴とする。
<First Embodiment of the Invention> A first method for manufacturing a surface emitting semiconductor laser according to the present invention is directed to a method of manufacturing a semiconductor device having Ga having a first conductivity type.
An Al x1 Ga 1-x1 As film and an Al x2 Ga 1-x2 As film (0 ≦ x1, x2 ≦ 1) having the first conductivity type and a film thickness of / 4 of the optical wavelength are formed on an As substrate. A step of alternately stacking to form a first light reflecting mirror, and a stacked structure including a cladding layer having a first conductivity type, an active layer, and a cladding layer having a second conductivity type on an InP substrate; Forming a cladding layer having the first conductivity type facing the InP substrate;
On a GaAs substrate having the second conductivity type, Al x13 Ga 1-x3 A having the second conductivity type and a film thickness of / 4 of the optical wavelength is used.
forming a second light reflecting mirror by alternately laminating an s film and an Al x4 Ga 1-x4 As film (0 ≦ x3, x4 ≦ 1); and forming the first and second light reflecting mirrors. A step of implanting an ionic species for increasing the resistance of AlGaAs while leaving a closed region; a step of bonding the first reflecting mirror and the laminated structure on the InP substrate by heating; and a step of bonding. Removing the InP substrate from the laminated structure that has passed through, and bringing the laminated structure from which the InP substrate has been removed into close contact with the second light reflecting mirror, and heating and bonding. I do.

【0010】<第2の発明の態様>本発明の第2の面発
光半導体レーザ製造方法は、第1の導電型を有するGa
As基板に第1の導電型及び光学波長の1/4 の膜厚を有
するAlx1Ga1-x1As膜とAlx2Ga1-x2As膜(0
≦x1,x2≦1)を交互に積層し第1の光反射鏡を形
成する工程と、InP基板上に不純物をドーピングしな
い第1のクラッド層と活性層と不純物をドーピングしな
い第2のクラッド層を具備する積層構造を該第1のクラ
ッド層を該InP基板に対向させ形成する工程と、第2
の導電型を有するGaAs基板に第2の導電型及び光学
波長の1/4 の膜厚を有するAlx13 Ga1-x3As膜とA
x4Ga1-x4As膜(0≦x3,x4≦1)を交互に積
層し第2の光反射鏡を形成する工程と、前記第2のクラ
ッド層内の閉領域を第2の導電型にする工程と、前記第
2の反射鏡と前記積層構造を密着させ加熱することによ
り接着する工程と、前記接着する工程を経た前記積層構
造から前記InP基板を除去する工程と、前記InP基
板を除去する工程を経た積層構造の前記第1のクラッド
層に位置し、前記第2のクラッド層の第2の導電型にし
た領域に向かい合う閉領域を第1の導電型にする工程
と、前記第1のクラッド層に位置する閉領域を第1の導
電型にした前記積層構造と前記第1の光反射鏡を密着さ
せ、加熱・接着する工程とからなることを特徴とする。
<Embodiment of Second Invention> A second method for manufacturing a surface emitting semiconductor laser according to the present invention is directed to a method of manufacturing a semiconductor device having Ga having the first conductivity type.
An Al x1 Ga 1-x1 As film and an Al x2 Ga 1-x2 As film having a first conductivity type and a thickness of / 4 of the optical wavelength are formed on an As substrate.
.Ltoreq.x1, x2.ltoreq.1) to form a first light reflecting mirror, a first cladding layer not doped with impurities, an active layer, and a second cladding layer doped with no impurities on the InP substrate. Forming a stacked structure comprising: a first cladding layer facing the InP substrate; and
An Al x13 Ga 1-x3 As film having a second conductivity type and a thickness of 1 of the optical wavelength on a GaAs substrate having a conductivity type of
forming a second light reflecting mirror by alternately laminating 1 x4 Ga 1-x4 As films (0 ≦ x3, x4 ≦ 1); and forming a closed region in the second cladding layer to a second conductivity type. A step of adhering the second reflecting mirror and the laminated structure by bringing the laminated structure into close contact with each other and heating; removing the InP substrate from the laminated structure having undergone the bonding step; A step of setting a closed region, which is located in the first clad layer of the laminated structure having undergone the removing step and facing the region of the second clad layer having the second conductivity type, to the first conductivity type, And a step of heating and bonding the laminated structure in which the closed region located in the first clad layer has the first conductivity type and the first light reflecting mirror.

【0011】<第3の発明の態様>本発明の第3の面発
光半導体レーザ製造方法は、上記面発光半導体レーザの
製造方法において、前記第1または第2の反射鏡と該反
射鏡が形成される前記GaAs基板の間に、電子素子の
能動層を具備する層構造を形成する工程と、前記第1の
反射鏡と前記活性層を具備する前記積層構造を接着する
工程及び前記第2の反射鏡と前記活性層を具備する前記
積層構造を接着する工程の後に、該層構造の形成された
前記GaAs基板を除去する工程と、前記GaAs基板
を除去する前記工程の後に該層構造に電子素子を形成す
る工程とからなることを特徴とする。
<A third aspect of the invention> A third method for manufacturing a surface emitting semiconductor laser according to the present invention is the method for manufacturing a surface emitting semiconductor laser described above, wherein the first or second reflecting mirror and the reflecting mirror are formed. Forming a layer structure including an active layer of an electronic device between the GaAs substrates to be formed, bonding the first reflecting mirror and the laminated structure including the active layer, and the second step. After the step of bonding the laminated structure including the reflecting mirror and the active layer, the step of removing the GaAs substrate on which the layer structure is formed, and the step of removing the GaAs substrate, And forming an element.

【0012】<作用>上述のような課題を解決するため
に本発明において、以下のように前述の問題点を解決し
ている。すなわち、活性層にイオン注入領域及びイオン
の通過領域が全く存在しないため、電流狭窄構造が活性
層へのダメージフリーの状態で形成できる。またイオン
注入の深さが極めて浅い領域となるため加速電圧を小さ
くでき、高温動作時でも安定な重い原子のイオンを注入
出来る。また極微細構造を作製する際、電気抵抗の高い
反射鏡である半導体多層膜中を広範囲な電流パスを持つ
ように作製することが容易で発熱の影響を抑えることが
可能となる。電子回路を集積する際には、イオン注入に
よって絶縁層を形成するだけでなく、p型、n型の様々
なイオン種を注入でき、広範囲な作製工程が可能となっ
た。
<Operation> In order to solve the above-mentioned problems, the present invention solves the above-mentioned problems as follows. That is, since there is no ion implantation region or ion passage region in the active layer, the current confinement structure can be formed without damaging the active layer. Further, since the depth of the ion implantation is extremely small, the acceleration voltage can be reduced, and stable heavy atom ions can be implanted even at the time of high-temperature operation. Further, when fabricating an ultrafine structure, it is easy to fabricate a semiconductor multilayer film which is a reflector having a high electric resistance so as to have a wide range of current paths, and it is possible to suppress the influence of heat generation. When an electronic circuit is integrated, not only an insulating layer can be formed by ion implantation, but also various p-type and n-type ion species can be implanted, and a wide range of manufacturing steps can be performed.

【0013】[0013]

【発明の実施の形態】以下、本発明に係る面発光半導体
レーザの製造方法の実施の形態を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for manufacturing a surface emitting semiconductor laser according to the present invention will be described below.

【0014】(第1の実施の形態例)図1及び図2に本
発明の長波長面発光レーザの実施の形態例の製造方法の
工程手順を示す。これらの、図面に示すように、本実施
の形態例における長波長面発光レーザの製造方法は、以
下の工程により製造される。 第1の基板上に第1反射鏡を作製する工程 第1の導電型を有する第一GaAs基板10上に、第1
の導電型及び光学波長の1/4 の膜厚を有するAlx1Ga
1-x1As膜とAlx2Ga1-x2As膜(0≦x1,x2≦
1)とを交互に積層し第一光反射鏡11としてのエピタ
キシャル成長を形成する工程(図1(a)参照) 第3の基板上に積層構造を作製する工程 InP基板17上に第1の導電型を有するクラッド層1
4と活性層15と第2の導電型を有するクラッド層16
とを具備する積層構造を、該第1の導電型を有するクラ
ッド層14を該InP基板17に対向させ形成する工程
(図1(b)参照) 第2の基板上に第2反射鏡を作製する工程 第2の導電型を有するGaAs基板19に、第2の導電
型及び光学波長の1/4 の膜厚とを有するAlx13 Ga
1-x3As膜とAlx4Ga1-x4As膜(0≦x3,x4≦
1)を交互に積層し第二光反射鏡18としてのエピタキ
シャル成長を形成する工程(図1(c)参照) イオン種を注入する工程 前記第1の光反射鏡であるエピタキシャル成長18にA
lGaAsを高抵抗化するイオン種としての酸素を閉領
域を残してイオン注入12する工程 第1の基板の第1反射鏡側に第3基板の積層構造を対
向して密着させる工程 前記第1の反射鏡11と前記InP基板17上の積層構
造とを密着させ加熱することにより接着する工程(図2
(a)参照) 密着後の第3基板を除去する工程 前記接着する工程を経た前記積層構造から前記InP基
板17を除去する工程 第1基板の第1反射鏡側に密着した積層構造に第2の
反射鏡を密着する工程 前記InP基板17が除去された前記積層構造と前記第
2の光反射鏡18とを密着させ、加熱・接着する工程
(図2(b)参照)
(First Embodiment) FIGS. 1 and 2 show the steps of a method of manufacturing a long-wavelength surface emitting laser according to an embodiment of the present invention. As shown in the drawings, the method for manufacturing a long-wavelength surface emitting laser according to the present embodiment is manufactured by the following steps. Step of Producing First Mirror on First Substrate First GaAs substrate 10 having the first conductivity type
Al x1 Ga having a conductivity type of and a film thickness of 1/4 of the optical wavelength
1-x1 As film and Al x2 Ga 1-x2 As film (0 ≦ x1, x2 ≦
1) and alternately stacking to form an epitaxial growth as the first light reflecting mirror 11 (see FIG. 1A). Step of manufacturing a stacked structure on the third substrate. Cladding layer 1 having mold
4, an active layer 15, and a cladding layer 16 having a second conductivity type
Forming a cladding layer 14 having the first conductivity type so as to face the InP substrate 17 (see FIG. 1B). Fabrication of a second reflecting mirror on the second substrate A GaAs substrate 19 having the second conductivity type is provided with Al x13 Ga having a second conductivity type and a film thickness of 1 of the optical wavelength.
1-x3 As film and Al x4 Ga 1-x4 As film (0 ≦ x3, x4 ≦
1) alternately stacking to form epitaxial growth as the second light reflecting mirror 18 (see FIG. 1 (c)). Step of implanting ion species.
a step of ion-implanting 12 oxygen as an ion species for increasing the resistance of lGaAs while leaving a closed region; and a step of bringing a laminated structure of a third substrate into close contact with the first reflector side of the first substrate. Step of bonding the reflecting mirror 11 and the laminated structure on the InP substrate 17 by heating them together (FIG. 2)
(Refer to (a)) Step of removing the third substrate after adhesion Step of removing the InP substrate 17 from the laminated structure after the adhering step The second structure is added to the laminated structure adhered to the first reflector side of the first substrate. A step of heating and bonding the laminated structure from which the InP substrate 17 has been removed and the second light reflecting mirror 18 (see FIG. 2B)

【0015】以下、本実施の形態例の詳細な製造工程を
説明する。
Hereinafter, a detailed manufacturing process of this embodiment will be described.

【0016】まず、図1(a)に示すように、第一反射
鏡11として、第一基板であるGaAs基板10上に、
n型で3×1018cm-3ドープしたGaAs層とAlAs
層を交互に光学波長の1/4 の膜厚で交互に30対エピタ
キシャル成長をする。また、図1(c)に示すように、
第二反射鏡18として、第二基板であるGaAs基板1
9上、にp型ドープしたGaAs層とAlAs層を交互
に光学波長の1/4 の膜厚で交互に30対エピタキシャル
成長18をする。
First, as shown in FIG. 1A, a first reflecting mirror 11 is formed on a GaAs substrate 10 as a first substrate.
GaAs layer doped with n × 3 × 10 18 cm −3 and AlAs
The layers are alternately epitaxially grown at a thickness of 1/4 of the optical wavelength. Also, as shown in FIG.
As the second reflecting mirror 18, the GaAs substrate 1 as the second substrate
On top of this, a p-type doped GaAs layer and an AlAs layer are alternately grown 30 pairs at a film thickness of 1/4 of the optical wavelength.

【0017】次に、第一基板上の成長膜11の上にレジ
ストで直径10μmのパターン形成した後、加速電圧8
0keV 、ドーズ量2×1014cm-3で酸素のイオン注入1
2を行う。レジスト除去後、水素雰囲気中で450℃で
アニールする。
Next, after a pattern having a diameter of 10 μm is formed with a resist on the growth film 11 on the first substrate, an acceleration voltage 8
Oxygen ion implantation 1 at 0 keV and a dose of 2 × 10 14 cm -3
Do 2 After removing the resist, annealing is performed at 450 ° C. in a hydrogen atmosphere.

【0018】次に、図1(b)に示すように、第三基板
であるInP基板17上に、InPに格子整合したIn
GaAsエッチングストップ層13と、5×1017cm-3
p型ドープしたInP第一クラッド層14と、ノンドー
プでInGaAsP(1.3μm組成),InGaAs
の交互に5.5対からなるMQW活性層15と、5×1
17cm-3でnドープしたInP第二クラッド層16と
を、エッチングストップ層13を除いた全層膜厚が光学
波長λの厚さになるように順次エピタキシャル成長す
る。
Next, as shown in FIG. 1B, an InP lattice-matched to InP is formed on an InP substrate 17 as a third substrate.
GaAs etching stop layer 13 and 5 × 10 17 cm −3
p-type doped InP first cladding layer 14, non-doped InGaAsP (1.3 μm composition), InGaAs
Of the MQW active layer 15 composed of 5.5 pairs alternately and 5 × 1
The InP second cladding layer 16 n-doped at 0 17 cm -3 is epitaxially grown so that the total film thickness excluding the etching stop layer 13 becomes the thickness of the optical wavelength λ.

【0019】第一基板10と第三基板17との各々のエ
ピタキシャル成長膜の表面酸化膜をHFで取り除いた
後、水素雰囲気中で600℃でアニールし直接接着をす
る(図2(a)参照)。
After removing the surface oxide film of the epitaxially grown film of each of the first substrate 10 and the third substrate 17 with HF, the substrate is annealed at 600 ° C. in a hydrogen atmosphere to directly adhere (see FIG. 2A). .

【0020】次にInP基板17をHClとH3 PO4
でエッチングし取り除くと共に、InGaAsエッチン
グストップ層13を硫酸,過酸化水素水及び水で取り除
く。
Next, HCl and H 3 PO 4 are deposited on the InP substrate 17.
And remove the InGaAs etching stop layer 13 with sulfuric acid, hydrogen peroxide solution and water.

【0021】次に第二基板19のエピタキシャル成長膜
の表面酸化膜をHFで取り除いた後、p型であるInP
第一クラッド層14上に水素雰囲気中で600℃でアニ
ールし直接接着をする。
Next, after removing the surface oxide film of the epitaxial growth film of the second substrate 19 with HF, the p-type InP
The first clad layer 14 is annealed at 600 ° C. in a hydrogen atmosphere to be directly bonded.

【0022】その後、アンモニア水と過酸化水溶液の混
合溶液で第二基板であるGaAs19を取り除き、HF
水溶液で反射鏡の一部であるAlAs層をエッチングす
る。
Thereafter, GaAs 19 as the second substrate is removed with a mixed solution of aqueous ammonia and aqueous peroxide solution, and HF is removed.
The AlAs layer which is a part of the reflector is etched with the aqueous solution.

【0023】その後、素子間の電気的な分離のためRI
BEでエッチングを行う。
Thereafter, RI is used for electrical isolation between elements.
Etching is performed by BE.

【0024】最後に上面にAuZnNiのp型電極をパ
ターン形成21し、基板側に戻り光を少なくするために
ARコート22を蒸着させた後、パターニングを行いA
uGeNi22を蒸着する(図2(b)参照)。
Finally, an AuZnNi p-type electrode is patterned 21 on the upper surface, and an AR coat 22 is deposited on the substrate side to reduce return light, and then patterned to form an A
uGeNi22 is deposited (see FIG. 2B).

【0025】上記のようにして構成された長波長面発光
レーザにおいて、電流−光出力特性を測定したところ、
閾値電流4mAで発振波長1.55μmのレーザ発振が確
認された。また電流狭窄が抵抗の高いDBR層にないた
め、素子抵抗が閾値電流近傍で20Ωと小さくなった。
When the current-light output characteristics of the long-wavelength surface emitting laser having the above-described structure were measured,
Laser oscillation with an oscillation wavelength of 1.55 μm at a threshold current of 4 mA was confirmed. In addition, since the current confinement was not present in the high-resistance DBR layer, the element resistance was reduced to 20Ω near the threshold current.

【0026】尚、本実施例では反射鏡として半導体多層
膜を用いたが、どちらか一方を誘電体多層膜を使用して
も良い。また電流狭窄層として酸素のイオン注入を用い
たが、他の元素を使用しても同様な効果が得られること
は言うまでもない。
In this embodiment, a semiconductor multilayer film is used as a reflecting mirror, but one of them may be a dielectric multilayer film. In addition, although ion implantation of oxygen was used as the current confinement layer, it goes without saying that a similar effect can be obtained by using other elements.

【0027】(第2の実施の形態例)図3に本発明の長
波長面発光レーザの実施例の製造方法の工程手順を示
す。第2の実施の形態例にかかる面発光レーザにおいて
も、基本的には、上述した第1の実施の形態例と同様の
工程によるものであるので、図面の一部を省略して説明
する。
(Second Embodiment) FIG. 3 shows a process procedure of a manufacturing method of an embodiment of a long-wavelength surface emitting laser according to the present invention. In the surface emitting laser according to the second embodiment, the process is basically the same as that of the first embodiment described above.

【0028】まず、図3に示すように、第一反射鏡とし
て第一基板であるGaAs基板30上にn型GaAs層
とAlAs層を交互に光学波長の1/4 の膜厚で交互に3
0対エピタキシャル成長30をする(図3(a))。
First, as shown in FIG. 3, an n-type GaAs layer and an AlAs layer are alternately formed on a GaAs substrate 30, which is a first substrate, with a film thickness of 1/4 of the optical wavelength.
Zero-pair epitaxial growth 30 is performed (FIG. 3A).

【0029】また、別途第二反射鏡として第二基板であ
るGaAs基板上にp型GaAs層とAlAs層を交互
に光学波長の1/4 の膜厚で交互に30対エピタキシャル
成長をする。
Separately, a pair of p-type GaAs layers and AlAs layers are alternately grown on a GaAs substrate as the second substrate as a second reflecting mirror with a thickness of / 4 of the optical wavelength alternately.

【0030】次に第三基板であるInP基板32上に、
InGaAsエッチングストップ層36と、InP第一
クラッド層35、InGaAsP(1.3μm組成),
InGaAsの交互に5.5対からなるMQW活性層3
4、InP第二クラッド層33をエッチングストップ層
を除いた全層膜厚が光学波長λの厚さになるようにノン
ドープで順次エピタキシャル成長する。
Next, on an InP substrate 32 as a third substrate,
InGaAs etching stop layer 36, InP first cladding layer 35, InGaAsP (1.3 μm composition),
MQW active layer 3 composed of 5.5 pairs of InGaAs alternately
4. The InP second cladding layer 33 is epitaxially grown non-doped sequentially so that the total film thickness excluding the etching stop layer becomes the thickness of the optical wavelength λ.

【0031】次に、第三基板上の成長膜の上にレジスト
で直径10μmのパターン形成した後、加速電圧100
keV 、ドーズ量2×1016cm-3でSiのイオン注入37
aをInP第二クラッド層33中に行う。レジスト除去
後、水素雰囲気中で450℃でアニールする。
Next, after a pattern having a diameter of 10 μm is formed with a resist on the growth film on the third substrate, an acceleration voltage of 100 μm is formed.
Si ion implantation 37 at keV and dose 2 × 10 16 cm -3
a is performed in the InP second cladding layer 33. After removing the resist, annealing is performed at 450 ° C. in a hydrogen atmosphere.

【0032】第一基板30と第三基板32の各々のエピ
タキシャル成長膜の表面酸化膜をHFで取り除いた後、
水素雰囲気中で600℃でアニールし直接接着をする。
次にInP基板をHClとH3 PO4 でエッチングし取
り除くと共に、InGaAsエッチングストップ層36
を硫酸,過酸化水素水及び水で取り除く。
After removing the surface oxide film of each of the epitaxially grown films of the first substrate 30 and the third substrate 32 with HF,
Anneal at 600 ° C. in a hydrogen atmosphere for direct bonding.
Next, the InP substrate is etched away with HCl and H 3 PO 4 , and the InGaAs etching stop layer 36 is removed.
Is removed with sulfuric acid, hydrogen peroxide and water.

【0033】次にレジストで直径10μmのパターン形
成した後、加速電圧100keV 、ドーズ量2×1016cm
-3でBeのイオン注入37bをInP第一クラッド層3
5中に行う。レジスト除去後、水素雰囲気中で450℃
でアニールする。
Next, after forming a pattern having a diameter of 10 μm with a resist, an acceleration voltage of 100 keV and a dose of 2 × 10 16 cm are used.
-3 with Be ion implantation 37b and InP first cladding layer 3
Perform during 5. After resist removal, 450 ° C in hydrogen atmosphere
Anneal.

【0034】次に第二基板のエピタキシャル成長膜の表
面酸化膜をHFで取り除いた後、InP第一クラッド層
上に水素雰囲気中で600℃でアニールし直接接着を
し、アンモニア水と過酸化水溶液の混合溶液で第二基板
であるGaAsを取り除き、HF水溶液で反射鏡の一部
であるAlAs層をエッチングする。
Next, after removing the surface oxide film of the epitaxially grown film of the second substrate with HF, it is annealed at 600 ° C. in a hydrogen atmosphere on the first cladding layer of InP and directly adhered thereto. The GaAs as the second substrate is removed with the mixed solution, and the AlAs layer as a part of the reflecting mirror is etched with the HF aqueous solution.

【0035】最後に、図3(b)に示すように、上面に
AuZnNiのp型電極をパターン39bを形成し、基
板側に戻り光を少なくするためにARコート39を蒸着
させた後、パターニングを行い、AuGeNi39aを
蒸着する。最後に、素子間分離のためRIBEでDBR
層をエッチングする。
Finally, as shown in FIG. 3 (b), an AuZnNi p-type electrode pattern 39b is formed on the upper surface, and an AR coat 39 is deposited on the substrate side to reduce return light, followed by patterning. And AuGeNi39a is deposited. Finally, DBR by RIBE for isolation between devices
Etch the layer.

【0036】上記のようにして構成された長波長面発光
レーザにおいて電流−光出力特性を測定したところ、閾
値電流6mAでレーザ発振が確認された。
When the current-light output characteristics of the long-wavelength surface emitting laser configured as described above were measured, laser oscillation was confirmed at a threshold current of 6 mA.

【0037】尚、本実施例では反射鏡として半導体多層
膜を用いたが、どちらか一方を誘電体多層膜を使用して
も良い。また本実施例ではクラッド層にイオン注入をし
たが、半導体多層膜である反射鏡の一部をノンドープに
してその領域にイオン注入をしても同様な効果が得られ
ることは言うまでもない。
In this embodiment, a semiconductor multilayer film is used as a reflecting mirror, but one of them may be a dielectric multilayer film. In this embodiment, ions are implanted into the cladding layer. However, it goes without saying that the same effect can be obtained by ion-implanting a part of the reflector, which is a semiconductor multilayer film, into a non-doped region.

【0038】(第3の実施の形態例)図4に本発明の長
波長面発光レーザの実施例の製造方法の工程手順を示
す。
(Third Embodiment) FIG. 4 shows a process procedure of a manufacturing method of an embodiment of a long-wavelength surface emitting laser according to the present invention.

【0039】第3の実施の形態例にかかる面発光レーザ
においても、基本的には、上述した第1の実施の形態例
と同様の工程によるものであるので、図面の一部を省略
して説明する。図4に示すように、第1の実施の形態例
と同様に操作して、第一反射鏡として第一基板であるG
aAs基板上にn型GaAs層とAlAs層を交互に光
学波長の1/4 の膜厚で交互に30対エピタキシャル成長
50し、また第二反射鏡として第二基板であるGaAs
基板上にInGaPエッチストップ層、Siドープした
+ GaAsコンタクト層45と、n- GaAsチャネ
ル層(能動層として働く)46と、ノンドープ層のGa
As層47と、InGaPエッチストップ層、p型ドー
プしたGaAs層とAlAs層を交互に光学波長の1/4
の膜厚で交互に30対順次エピタキシャル成長51をす
る。
In the surface emitting laser according to the third embodiment, the process is basically the same as that of the first embodiment described above. explain. As shown in FIG. 4, by operating in the same manner as in the first embodiment, the first substrate G as the first reflecting mirror is used.
An n-type GaAs layer and an AlAs layer are alternately epitaxially grown 50 on the aAs substrate at a thickness of 1/4 of the optical wavelength alternately, and GaAs as the second substrate is used as a second reflecting mirror.
An InGaP etch stop layer, a Si-doped n + GaAs contact layer 45, an n - GaAs channel layer (acting as an active layer) 46 and a non-doped Ga
An As layer 47, an InGaP etch stop layer, a p-type doped GaAs layer and an AlAs layer are alternately formed by 1 of the optical wavelength.
30 pairs of epitaxial growths 51 are alternately performed sequentially with a film thickness of.

【0040】次に第一基板上の成長膜の上にレジストで
直径10μmのパターン形成した後、加速電圧80keV
、ドーズ量2×1014cm-3で酸素のイオン注入を行う
(図4(a)52)。レジスト除去後、水素雰囲気中で
450℃でアニールする。
Next, after a pattern having a diameter of 10 μm is formed with a resist on the growth film on the first substrate, an acceleration voltage of 80 keV is applied.
Then, oxygen ions are implanted at a dose of 2 × 10 14 cm −3 (52 in FIG. 4A). After removing the resist, annealing is performed at 450 ° C. in a hydrogen atmosphere.

【0041】次に第三基板であるInP基板上に、In
Pに格子整合したInGaAsエッチングストップング
層、5×1017cm-3p型ドープしたInP第一クラッド
層54と、ノンドープでInGaAsP(1.3μm組
成)、InGaAsの交互に5.5対からなるMQW活
性層53と、5×1017cm-3でnドープしたInP第二
クラッド層55とをエッチングストップ層を除いた全層
膜厚が光学波長λの厚さになるように順次エピタキシャ
ル成長する。
Next, on the InP substrate as the third substrate, In
An InGaAs etching stopping layer lattice-matched to P, a 5 × 10 17 cm −3 p-type doped InP first cladding layer 54, and 5.5 pairs of non-doped InGaAsP (1.3 μm composition) and InGaAs alternately. The MQW active layer 53 and the InP second cladding layer 55 n-doped with 5 × 10 17 cm −3 are sequentially epitaxially grown so that the total film thickness excluding the etching stop layer becomes the thickness of the optical wavelength λ.

【0042】第一基板と第三基板のエピタキシャル成長
膜の表面酸化膜をHFで取り除いた後、水素雰囲気中で
600℃でアニールし直接接着をする。次にInP基板
をHClとH3 PO4 でエッチングし取り除く。
After removing the surface oxide films of the epitaxially grown films of the first substrate and the third substrate with HF, they are annealed at 600 ° C. in a hydrogen atmosphere to perform direct bonding. Next, the InP substrate is removed by etching with HCl and H 3 PO 4 .

【0043】次に第二基板のエピタキシャル成長膜の表
面酸化膜をHFで取り除いた後、p型であるInP第一
クラッド層上に水素雰囲気中で600℃でアニールし直
接接着をする。
Next, after removing the surface oxide film of the epitaxially grown film of the second substrate with HF, the film is annealed at 600 ° C. in a hydrogen atmosphere on the p-type InP first cladding layer to directly adhere.

【0044】その後、アンモニア水と過酸化水溶液の混
合溶液で第二基板であるGaAsを取り除き、塩酸でI
nGaAsPエッチングストップ層を、HF水溶液で反
射鏡の一部であるAlAs層をエッチングする。
Thereafter, the GaAs as the second substrate is removed with a mixed solution of aqueous ammonia and an aqueous solution of peroxide, and the I.sub.2 is removed with hydrochloric acid.
The nGaAsP etching stop layer is etched with an HF aqueous solution to etch the AlAs layer which is a part of the reflecting mirror.

【0045】その後、面発光レーザの形成部分のn+
aAsコンタクト層45と、n- GaAsチャネル層4
6と、ノンドープ層のGaAs47と、InGaPエッ
チストップ層をエッチングする。
Thereafter, the n + G
aAs contact layer 45 and n - GaAs channel layer 4
6, GaAs 47 of the non-doped layer, and the InGaP etch stop layer are etched.

【0046】面発光レーザ部分には、AuZnNiのp
型電極をパターン形成し、基板側に戻り光を少なくする
ためにARコート49を蒸着させた後、パターニングを
行い第一基板の裏面にAuGeNi層48を蒸着する。
In the surface emitting laser part, p of AuZnNi is used.
After patterning a mold electrode and depositing an AR coat 49 on the substrate side to reduce return light, patterning is performed and an AuGeNi layer 48 is deposited on the back surface of the first substrate.

【0047】またMESFETを形成するためゲート部
分のn+ GaAsコンタクト層45をエッチングし、ゲ
ート長、ゲート幅がそれぞれ3μm、20μmでTi/
Pt/Au層43を形成する。
In order to form a MESFET, the n + GaAs contact layer 45 in the gate portion is etched, and when the gate length and the gate width are 3 μm and 20 μm, respectively, Ti /
A Pt / Au layer 43 is formed.

【0048】その後ソース、ドレインの電極をn+ コン
タクト層上に形成し、ソース電極と面発光レーザ部分の
p電極をCr/Au41で接続する。
After that, source and drain electrodes are formed on the n + contact layer, and the source electrode and the p electrode of the surface emitting laser are connected by Cr / Au 41.

【0049】上記のようにして構成されたMESFET
と長波長面発光レーザを集積した例を図4に示す。
MESFET constructed as described above
FIG. 4 shows an example in which a laser and a long-wavelength surface emitting laser are integrated.

【0050】ドレイン電圧を8Vにした時のゲート電圧
−光出力特性を測定したところ、図5の様になり、ME
SFETによる面発光レーザの変調動作が確認された。
When the gate voltage-light output characteristics when the drain voltage was 8 V were measured, the results were as shown in FIG.
The modulation operation of the surface emitting laser by the SFET was confirmed.

【0051】尚、本実施例では面発光レーザとFETを
集積したが、その他の電子デバイス、例えばHBT(ヘ
テロバイポーラトランジスタ)等と組み合わせても良
い。また面発光レーザの構造を実施例2としても同様の
効果が得られることは言うまでもない。
In this embodiment, the surface emitting laser and the FET are integrated, but may be combined with another electronic device such as an HBT (hetero bipolar transistor). It goes without saying that the same effect can be obtained even when the structure of the surface emitting laser is set to the second embodiment.

【0052】[0052]

【発明の効果】以上、実施例に基づいて説明したよう
に、本発明の長波長帯面発光レーザによれば、電流狭窄
構造が活性層へのダメージフリーの状態で形成でき、イ
オン注入の深さが極めて浅い領域となるため加速電圧を
小さくでき、高温動作時でも安定な重い原子のイオンを
注入することが可能となる。
As described above with reference to the embodiments, according to the long wavelength band surface emitting laser of the present invention, the current confinement structure can be formed without damaging the active layer, and the depth of ion implantation can be increased. Since the region becomes extremely shallow, the acceleration voltage can be reduced, and stable heavy ion implantation can be performed even during high-temperature operation.

【0053】また電子回路を集積する際には、イオン注
入によって絶縁層を形成するだけでなく、p型、n型の
様々なイオン種を注入でき、広範囲な作製工程が可能と
なり、異種基板同士の貼り合わせ技術と共にOEICの
分野で広く応用することが出来る。
When an electronic circuit is integrated, not only an insulating layer can be formed by ion implantation, but also various ion types of p-type and n-type can be implanted, so that a wide range of manufacturing steps can be performed. It can be widely applied in the field of OEIC together with the bonding technology.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の面発光レーザを構成する部分の3種類
の基板のエピ構成を示す。
FIG. 1 shows epi structures of three types of substrates constituting a surface emitting laser of the present invention.

【図2】実施例1に示した工程の一部分(a)と、本発
明による面発光レーザの構造図を示す(b)。
FIG. 2 shows a part (a) of the process shown in Example 1 and (b) a structural view of a surface emitting laser according to the present invention.

【図3】実施例2に示した本発明による面発光レーザの
作製工程(a)と、面発光レーザの断面構造図(b)を
示す。
FIGS. 3A and 3B show a manufacturing step (a) of the surface emitting laser according to the present invention shown in Example 2 and a sectional structural view (b) of the surface emitting laser.

【図4】実施例3に示した本発明に示したFETと面発
光レーザの集積した断面構造図を示す。
FIG. 4 is an integrated sectional structural view of the FET and the surface emitting laser according to the present invention shown in Embodiment 3;

【図5】ゲート電圧−光出力特性図である。FIG. 5 is a graph showing gate voltage-light output characteristics.

【符号の説明】[Explanation of symbols]

10 第一GaAs基板 11 第一光反射鏡 12 酸素イオン注入領域 13 InGaAsエッチングストップ層 14 p型InPクラッド層 15 MQW活性層 16 n型InPクラッド層 17 InP基板 18 第二光反射鏡 19 GaAs基板 21 AuZnNi/Au電極 22 ARコート膜 23 AuGeNi/Au電極 31 第一反射鏡 32 InP基板 33 n型InPクラッド層 34 MQW活性層 35 p型InPクラッド層 36 InGaAsエッチングストップ層 37a Siイオン注入領域 37b Beイオン注入領域 38 第二反射鏡 39 ARコート膜 39a AuGeNi/Au電極 39b AuZnNi/Au電極 41 AuZnNi配線電極 42 ドレイン電極 43 Ti/Pt/Auゲート電極 44 ソース電極 45 n+ GaAs層 46 n- GaAsチャネル層 47 i−GaAs層 48 AuGeNi/Au電極 49 ARコート膜 50 反射鏡部 51 反射鏡部 52 イオン注入部 53 MQW活性層 54 InPクラッド層 55 InPクラッド層Reference Signs List 10 first GaAs substrate 11 first light reflecting mirror 12 oxygen ion implantation region 13 InGaAs etching stop layer 14 p-type InP cladding layer 15 MQW active layer 16 n-type InP cladding layer 17 InP substrate 18 second light reflecting mirror 19 GaAs substrate 21 AuZnNi / Au electrode 22 AR coating film 23 AuGeNi / Au electrode 31 First reflector 32 InP substrate 33 n-type InP cladding layer 34 MQW active layer 35 p-type InP cladding layer 36 InGaAs etching stop layer 37a Si ion implantation region 37b Be ion implanted region 38 second reflecting mirror 39 AR coat film 39a AuGeNi / Au electrode 39b AuZnNi / Au electrode 41 AuZnNi wiring electrode 42 drain electrode 43 Ti / Pt / Au gate electrode 44 source electrode 45 n + aAs layer 46 n - GaAs channel layer 47 i-GaAs layer 48 AuGeNi / Au electrode 49 AR coat film 50 reflecting mirror 51 reflecting mirror portion 52 ion implantation section 53 MQW active layer 54 InP cladding layer 55 InP cladding layer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−335967(JP,A) Appl.Phys.Lett.64 [12](1994)p.1463−1465 Appl.Phys.Lett.62 [7](1993)p.738−740 (58)調査した分野(Int.Cl.7,DB名) H01S 5/00 - 5/50 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-7-335967 (JP, A) Appl. Phys. Lett. 64 [12] (1994) p. 146-1465 Appl. Phys. Lett. 62 [7] (1993) p. 738-740 (58) Field surveyed (Int. Cl. 7 , DB name) H01S 5/00-5/50

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 第1の導電型を有するGaAs基板上
に、第1の導電型及び光学波長の1/4 の膜厚を有するA
x1Ga1-x1As膜とAlx2Ga1-x2As膜(0≦x
1,x2≦1)とを交互に積層し第1の光反射鏡を形成
する工程と、 InP基板上に第1の導電型を有するクラッド層と活性
層と第2の導電型を有するクラッド層とを具備する積層
構造を、該第1の導電型を有するクラッド層を該InP
基板に対向して形成する工程と、 第2の導電型を有するGaAs基板に、第2の導電型及
び光学波長の1/4 の膜厚とを有するAlx13 Ga1-x3
s膜とAlx4Ga1-x4As膜(0≦x3,x4≦1)を
交互に積層し第2の光反射鏡を形成する工程と、 前記第1乃至は前記第2の光反射鏡にAlGaAsを高
抵抗化するイオン種を閉領域を残して注入する工程と、 前記第1の反射鏡と前記InP基板上の積層構造とを密
着させ加熱することにより接着する工程と、 前記接着する工程を経た前記積層構造から前記InP基
板を除去する工程と、 前記InP基板が除去された前記積層構造と前記第2の
光反射鏡とを密着させ、加熱・接着する工程とからなる
ことを特徴とする面発光半導体レーザ製造方法。
An GaAs substrate having a first conductivity type has a first conductivity type and an A film having a thickness of 1/4 of an optical wavelength.
l x1 Ga 1-x1 As film and Al x2 Ga 1-x2 As film (0 ≦ x
1, x2 ≦ 1) alternately to form a first light reflecting mirror; and a cladding layer having a first conductivity type, an active layer, and a cladding layer having a second conductivity type on an InP substrate. And a cladding layer having the first conductivity type by the InP.
Forming opposite the substrate, the first two of the GaAs substrate having a conductivity type, Al x13 Ga 1-x3 A and a quarter of the thickness of the second conductive type, and an optical wavelength
forming a second light reflecting mirror by alternately laminating an s film and an Al x4 Ga 1-x4 As film (0 ≦ x3, x4 ≦ 1); and forming the first and second light reflecting mirrors. A step of implanting an ion species for increasing the resistance of AlGaAs while leaving a closed region; a step of adhering the first reflecting mirror and the laminated structure on the InP substrate by heating; and a step of adhering; Removing the InP substrate from the laminated structure that has passed through, and bringing the laminated structure from which the InP substrate has been removed into close contact with the second light reflecting mirror, and heating and bonding. Surface emitting semiconductor laser manufacturing method.
【請求項2】 第1の導電型を有するGaAs基板に第
1の導電型及び光学波長の1/4 の膜厚を有するAlx1
1-x1As膜とAlx2Ga1-x2As膜(0≦x1,x2
≦1)を交互に積層し第1の光反射鏡を形成する工程
と、 InP基板上に不純物をドーピングしない第1のクラッ
ド層と活性層と不純物をドーピングしない第2のクラッ
ド層を具備する積層構造を該第1のクラッド層を該In
P基板に対向させ形成する工程と、 第2の導電型を有するGaAs基板に第2の導電型及び
光学波長の1/4 の膜厚を有するAlx13 Ga1-x3As膜
とAlx4Ga1-x4As膜(0≦x3,x4≦1)を交互
に積層し第2の光反射鏡を形成する工程と、 前記第2のクラッド層内の閉領域を第2の導電型にする
工程と、 前記第2の反射鏡と前記積層構造を密着させ加熱するこ
とにより接着する工程と、 前記接着する工程を経た前記積層構造から前記InP基
板を除去する工程と、 前記InP基板を除去する工程を経た積層構造の前記第
1のクラッド層に位置し、前記第2のクラッド層の第2
の導電型にした領域に向かい合う閉領域を第1の導電型
にする工程と、 前記第1のクラッド層に位置する閉領域を第1の導電型
にした前記積層構造と前記第1の光反射鏡を密着させ、
加熱・接着する工程とからなることを特徴とする面発光
半導体レーザ製造方法。
Wherein Al x1 G having a quarter of the thickness of the first conductivity type and the optical wavelength GaAs substrate having a first conductivity type
a 1-x1 As film and Al x2 Ga 1-x2 As film (0 ≦ x1, x2
≦ 1) alternately to form a first light reflecting mirror, and a stack comprising a first clad layer not doped with impurities, an active layer and a second clad layer not doped with impurities on the InP substrate. The structure is the first cladding layer
Forming an Al x13 Ga 1-x3 As film and an Al x4 Ga 1 film having a second conductivity type and a film thickness of の of the optical wavelength on a GaAs substrate having the second conductivity type; forming a second light reflecting mirror by alternately laminating -x4 As films (0 ≦ x3, x4 ≦ 1); and setting a closed region in the second cladding layer to a second conductivity type. A step of adhering the second reflecting mirror and the laminated structure by bringing the laminated structure into close contact with each other and heating; a step of removing the InP substrate from the laminated structure after the step of adhering; and a step of removing the InP substrate. The second clad layer is located on the first clad layer of
Making the closed region facing the region of the first conductivity type the first conductivity type; and forming the stacked structure having the closed region located on the first cladding layer of the first conductivity type and the first light reflection. Attach the mirror,
A method for manufacturing a surface emitting semiconductor laser, comprising a step of heating and bonding.
【請求項3】 請求項1又は請求項2の面発光半導体レ
ーザの製造方法において、 前記第1または第2の反射鏡と該反射鏡が形成される前
記GaAs基板の間に、電子素子の能動層を具備する層
構造を形成する工程と、 前記第1の反射鏡と前記活性層を具備する前記積層構造
を接着する工程及び前記第2の反射鏡と前記活性層を具
備する前記積層構造を接着する工程の後に、該層構造の
形成された前記GaAs基板を除去する工程と、 前記GaAs基板を除去する前記工程の後に該層構造に
電子素子を形成する工程とからなることを特徴とする面
発光半導体レーザ製造方法。
3. The method for manufacturing a surface emitting semiconductor laser according to claim 1, wherein an active element of an electronic element is provided between the first or second reflecting mirror and the GaAs substrate on which the reflecting mirror is formed. Forming a layer structure comprising a layer; bonding the first reflecting mirror to the laminated structure comprising the active layer; and forming the laminated structure comprising the second reflecting mirror and the active layer. The method comprises the steps of: removing the GaAs substrate on which the layer structure is formed after the bonding step; and forming an electronic element on the layer structure after the step of removing the GaAs substrate. Surface emitting semiconductor laser manufacturing method.
JP26958595A 1995-10-18 1995-10-18 Surface emitting semiconductor laser manufacturing method Expired - Fee Related JP3147328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26958595A JP3147328B2 (en) 1995-10-18 1995-10-18 Surface emitting semiconductor laser manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26958595A JP3147328B2 (en) 1995-10-18 1995-10-18 Surface emitting semiconductor laser manufacturing method

Publications (2)

Publication Number Publication Date
JPH09116223A JPH09116223A (en) 1997-05-02
JP3147328B2 true JP3147328B2 (en) 2001-03-19

Family

ID=17474416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26958595A Expired - Fee Related JP3147328B2 (en) 1995-10-18 1995-10-18 Surface emitting semiconductor laser manufacturing method

Country Status (1)

Country Link
JP (1) JP3147328B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015394A (en) * 1999-07-01 2001-01-19 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor device
JP2005322857A (en) * 2004-05-11 2005-11-17 Nippon Telegr & Teleph Corp <Ntt> Optical resonator and method for manufacturing same
JP5017804B2 (en) * 2005-06-15 2012-09-05 富士ゼロックス株式会社 Tunnel junction type surface emitting semiconductor laser device and manufacturing method thereof
WO2023248654A1 (en) * 2022-06-20 2023-12-28 ソニーグループ株式会社 Surface-emitting laser and ranging device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Appl.Phys.Lett.62[7](1993)p.738−740
Appl.Phys.Lett.64[12](1994)p.1463−1465

Also Published As

Publication number Publication date
JPH09116223A (en) 1997-05-02

Similar Documents

Publication Publication Date Title
CA2034987C (en) Front surface emitting diode laser
JP2545188B2 (en) Embedded heterostructure laser
JP2686764B2 (en) Method for manufacturing optical semiconductor device
CN109217108B (en) Method for manufacturing semiconductor laser by impurity induced hybrid technology
US5737351A (en) Semiconductor laser including ridge structure extending between window regions
JPH09107153A (en) Short-wave vcsel having active region with no aluminum
JPH06314854A (en) Surface light emitting element and its manufacture
JP2618610B2 (en) Vertical cavity surface emitting semiconductor laser
JP3147328B2 (en) Surface emitting semiconductor laser manufacturing method
JP2950028B2 (en) Method for manufacturing optical semiconductor device
US20070127533A1 (en) Long-wavelength vertical cavity surface emitting lasers having oxide aperture and method for manufacturing the same
JP2005051124A (en) Plane light emitting semiconductor element
JPH04162689A (en) Manufacture of semiconductor light emitting device
JP4056717B2 (en) Semiconductor laser and manufacturing method thereof
JPH1187837A (en) Semiconductor laser and manufacture thereof
JP4816990B2 (en) LIGHT EMITTING ELEMENT, SEMICONDUCTOR ELEMENT AND MANUFACTURING METHOD THEREOF
JP2944312B2 (en) Method for manufacturing semiconductor laser device
JPH0927650A (en) Surface light emitting laser and manufacture thereof
JP3132445B2 (en) Long wavelength band surface emitting semiconductor laser and method of manufacturing the same
JP3440977B2 (en) Surface emitting semiconductor laser and method of manufacturing the same
JP2916037B2 (en) Method for manufacturing semiconductor device
JPH11112086A (en) Embedded type surface emitting laser and manufacture thereof
JP2921385B2 (en) Surface emitting laser, method for manufacturing the same, and method for manufacturing edge emitting laser
JPH09246668A (en) Surface light emission type semiconductor laser device and manufacture thereof
JP2001053381A (en) Semiconductor laser and manufacture thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees