JPH09273970A - Electro-static pressure sensor and gas abnormality monitor using the same - Google Patents

Electro-static pressure sensor and gas abnormality monitor using the same

Info

Publication number
JPH09273970A
JPH09273970A JP8125196A JP8125196A JPH09273970A JP H09273970 A JPH09273970 A JP H09273970A JP 8125196 A JP8125196 A JP 8125196A JP 8125196 A JP8125196 A JP 8125196A JP H09273970 A JPH09273970 A JP H09273970A
Authority
JP
Japan
Prior art keywords
pressure sensor
electrode
gas
capacitance type
type pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8125196A
Other languages
Japanese (ja)
Inventor
Hideto Monju
秀人 文字
Yuko Fujii
優子 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8125196A priority Critical patent/JPH09273970A/en
Publication of JPH09273970A publication Critical patent/JPH09273970A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing And Monitoring For Control Systems (AREA)
  • Measuring Volume Flow (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To secure long-period stability of a pressure sensor by oppositely disposing a fixed board for forming a first electrode and a diaphragm for forming a second electrode, and providing a liquid part therebetween. SOLUTION: A fixed board 31 forms a first electrode (sensitive electrode) 33A and a first electrode (reference electrode) on its surface, and a diaphragm 32 shapes a second electrode 34 on its surface. The first electrodes 33A, 33B are oppositely disposed to the second electrode 34, and the fixed board 31 is bonded to the diaphragm 32 through a bonding layer 37. After liquid which has small water absorbance, evaporation and viscosity is dropped in a vent 35, they are set in a pressure-reduced vessel, a clearance between the fixed board 31 and the diaphragm 32 is filled with liquid (perfluoropolyether) to provide a liquid part 36 and a sensor element is manufactured. Thereby temperature correction of filling liquid is facilitated, liquid is not absorbed, not evaporated to be reduced, and temperature can be quickly followed up to pressure fluctuation. Thus, long-period stability of a pressure sensor can be secured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はガス圧等の流体の圧
力変化を検知する静電容量式圧力センサ及びこのセンサ
を用いたガス異常監視装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capacitance type pressure sensor for detecting a pressure change of a fluid such as gas pressure and a gas abnormality monitoring device using this sensor.

【0002】[0002]

【従来の技術】近年、都市ガスあるいはLPガス設備の
安全性を向上するために、例えばガスメータについて
は、ガスメータから下流側で異常事態が発生した場合、
ガスの供給を自動的に遮断するガス異常監視装置をガス
メータの中に組み込むことが検討されている。また圧力
調整器については、圧力調整手段の調整圧異常やLPガ
スボンベからガスメータまでのガス漏洩検出等を安全管
理のチェックを自動的に行えるガス異常監視装置の組み
込みについて検討されている。LPガスの圧力調整器の
圧力調整機能が正常に動作している場合、ガス器具使用
状態ではガスの供給圧力は230〜330mmH2Oの間
に保たれており、ガス供給圧が正常であるかを圧力セン
サで監視している。またガス設備内でガス漏れ等の異常
がある場合、例えば遮断弁を動作させてガス配管を閉じ
ると、ガス圧がガス漏れによって徐々に低下(数mmH2
O〜数10mmH2O)するので、このガス圧低下を監視
することによってガス設備にガス漏れ等の異常が起こっ
ているかどうかを検知できる。
2. Description of the Related Art In recent years, in order to improve the safety of city gas or LP gas equipment, for example, in the case of a gas meter, if an abnormal situation occurs downstream from the gas meter,
It has been considered to incorporate a gas abnormality monitoring device that automatically shuts off gas supply into a gas meter. As for the pressure regulator, the incorporation of a gas abnormality monitoring device capable of automatically performing a safety management check, such as an abnormal adjustment pressure of the pressure adjusting means or a gas leak detection from the LP gas cylinder to the gas meter, is being studied. When the pressure regulating function of the pressure regulator of the LP gas is operating normally, the gas appliance use state supply pressure of the gas is kept between 230~330mmH 2 O, or the gas supply pressure is normal Is monitored by a pressure sensor. Also, if there is an abnormality such as a gas leak in the gas facility, for example, if the shutoff valve is operated and the gas pipe is closed, the gas pressure will gradually decrease due to the gas leak (several mmH 2
Since the pressure is 0 to several tens of mmH 2 O), it is possible to detect whether or not there is an abnormality such as a gas leak in the gas equipment by monitoring this decrease in gas pressure.

【0003】圧力センサが組み込まれるこれらの装置
は、ガス配管あるいはガス自身に含まれる微細粉塵、ミ
スト、オイルなどの異物がある雰囲気に暴露されるの
で、センサはこれらの異物によって異常な動作を起こし
やすい環境で使用される。一方これらの装置は長期間
(約10年間)にわたって特性が変動してはいけないと
いう高い信頼性が要求される。このような特性を満足で
きる圧力センサとして、静電容量式圧力センサが有望視
されている。静電容量式圧力センサは、圧力によってダ
イアフラムが変形し、電極間距離が変化することによっ
て電極間に生ずる静電容量が変化することを利用したも
のである。図7に示した特開平7−49244号公報に
記載されている従来の静電容量式圧力センサ素子は、フ
レーム1とカバー2に形成した可動電極4と固定電極3
の間に囲まれた空間6にシリコンオイルなどの高誘電率
の液体が充填されている。カバー2にはメサ部7と複数
個の差圧穴5が設けられており、圧力変動があると高誘
電率の液体は空間6と差圧穴5との間を行き来してい
る。
Since these devices in which the pressure sensor is incorporated are exposed to an atmosphere containing foreign matter such as fine dust, mist, oil contained in the gas pipe or the gas itself, the sensor causes abnormal operation due to these foreign matter. Used in an easy environment. On the other hand, these devices are required to have high reliability that their characteristics must not change over a long period (about 10 years). Capacitive pressure sensors are considered promising as pressure sensors that can satisfy such characteristics. The electrostatic capacitance type pressure sensor utilizes the fact that the diaphragm is deformed by pressure and the distance between the electrodes is changed, so that the electrostatic capacitance generated between the electrodes is changed. The conventional capacitance type pressure sensor element described in Japanese Patent Application Laid-Open No. 7-49244 shown in FIG. 7 has a movable electrode 4 and a fixed electrode 3 formed on a frame 1 and a cover 2.
The space 6 surrounded by the space is filled with a high dielectric constant liquid such as silicon oil. The cover 2 is provided with a mesa portion 7 and a plurality of differential pressure holes 5, and when the pressure fluctuates, the liquid having a high dielectric constant moves back and forth between the space 6 and the differential pressure holes 5.

【0004】[0004]

【発明が解決しようとする課題】しかしながら従来のガ
スメータ及び圧力調整器等のガス異常監視装置に用いら
れていた圧力センサにおいて、高精度な性能を長期間に
わたって維持することができなかった。静電容量式圧力
センサでは被測定気体と大気圧との差圧(ゲージ圧)を
検知する場合、大気導入のための微細孔から水分や異物
が基板−ダイアフラム間の静電容量検出部に侵入する
と、電極間の容量が変化したり、異常な特性を示すとい
った現象があるので、長期間にわたって圧力センサの機
能を維持することが難しいという課題があった。すなわ
ち従来の技術に記載した静電容量式圧力センサでは被測
定気体と大気圧との差圧(ゲージ圧)を検知する場合、
可動電極と固定電極の間に充填されたシリコン等の高誘
電率の液体で形成される静電容量の温度変化が空気の場
合より大きいために温度補正が難しくなること、複数個
の差圧穴が開いているために差圧孔から水分が高誘電率
の液体に溶解して高誘電率の液体が変質したり、高誘電
率の液体が容易に蒸発してギャップ間に空気層が発生す
ること、高誘電率の液体の粘性によって圧力応答性が悪
いこと、あるいはセンサの取り付け姿勢によっては高誘
電率の液体が差圧穴から流失するという課題があった。
However, in the pressure sensor used in the conventional gas abnormality monitoring device such as the gas meter and the pressure regulator, it is not possible to maintain the highly accurate performance for a long period of time. When detecting the differential pressure (gauge pressure) between the gas to be measured and atmospheric pressure with a capacitance type pressure sensor, moisture and foreign matter enter the capacitance detection section between the substrate and diaphragm through the fine holes for introducing the atmosphere. Then, since there is a phenomenon that the capacitance between the electrodes changes or an abnormal characteristic is exhibited, there is a problem that it is difficult to maintain the function of the pressure sensor for a long period of time. That is, in the capacitance type pressure sensor described in the prior art, when detecting the differential pressure (gauge pressure) between the measured gas and atmospheric pressure,
It is difficult to correct the temperature because the temperature change of the capacitance formed by the liquid of high dielectric constant such as silicon filled between the movable electrode and the fixed electrode is larger than that of air, and it is difficult to correct the temperature difference. Since it is open, water may dissolve into the high dielectric constant liquid from the differential pressure hole and the high dielectric constant liquid may be altered, or the high dielectric constant liquid may easily evaporate and an air layer may be generated between the gaps. However, there is a problem that the pressure response is poor due to the viscosity of the liquid having a high dielectric constant, or the liquid having a high dielectric constant is washed away from the differential pressure hole depending on the mounting posture of the sensor.

【0005】そしてガス異常監視装置を長期間動作させ
ている間に、圧力センサが経時変化で劣化すればガス設
備に異常ありとガス異常監視装置が誤った判定をしやす
くなる。したがって定期的に圧力センサの特性を作業員
がいちいち点検・校正する必要があるので、圧力センサ
の点検・校正に多大の労力とコストがかかり、ガス異常
監視装置が非常に高価になるという課題があった。
If the pressure sensor deteriorates over time while the gas abnormality monitoring device is operating for a long period of time, the gas abnormality monitoring device is likely to make an erroneous determination that there is an abnormality in the gas facility. Therefore, since it is necessary for an operator to regularly inspect and calibrate the characteristics of the pressure sensor, it takes a lot of labor and cost to inspect and calibrate the pressure sensor, and the gas abnormality monitoring device becomes very expensive. there were.

【0006】本発明は、このような従来の課題を解決す
るもので、圧力センサの特性が長期間にわたって変化し
ないようにすることを主の目的とする。
The present invention is intended to solve such conventional problems, and its main purpose is to prevent the characteristics of the pressure sensor from changing over a long period of time.

【0007】[0007]

【課題を解決するための手段】本発明においては、第一
の電極が形成された固定基板と、第二の電極が形成され
たダイアフラムとを対向配置し、ダイアフラムと固定基
板との間に液体部を設けたものである。
In the present invention, a fixed substrate having a first electrode formed thereon and a diaphragm having a second electrode formed thereon are opposed to each other, and a liquid is provided between the diaphragm and the fixed substrate. Parts are provided.

【0008】この本発明によれば、圧力センサの特性は
長期間にわたって変化しない。
According to this invention, the characteristics of the pressure sensor do not change over a long period of time.

【0009】[0009]

【発明の実施の形態】本発明は上記目的を達成するため
に、一面に第一の電極が形成された電気絶縁性材料から
なる固定基板と、第二の電極が一面に形成された電気絶
縁性弾性材料からなるダイアフラムと、前記第一の電極
と前記第二の電極とが対向配置し前記第一の電極と前記
第二の電極との少なくとも一方の周縁部に形成して前記
固定基板と前記ダイアフラムとを微小な間隙をもって接
合した接着層と、前記固定基板に設けた一つの大気孔
と、前記ダイアフラムと前記固定基板との間に充填した
液体部とからなる静電容量式圧力センサである。
BEST MODE FOR CARRYING OUT THE INVENTION In order to achieve the above object, the present invention provides a fixed substrate made of an electrically insulating material having a first electrode formed on one surface, and an electrically insulating substrate having a second electrode formed on one surface. A diaphragm made of a flexible elastic material, the first electrode and the second electrode are arranged to face each other, and the diaphragm is formed on the peripheral portion of at least one of the first electrode and the second electrode, and the fixed substrate. A capacitance type pressure sensor comprising an adhesive layer in which the diaphragm is joined with a minute gap, one atmospheric hole provided in the fixed substrate, and a liquid portion filled between the diaphragm and the fixed substrate. is there.

【0010】また本発明は上記目的を達成するために、
上記静電容量式圧力センサと、前記静電容量式圧力セン
サからの電気信号で前記静電容量式圧力センサの異常を
判定する判定手段と、前記静電容量式圧力センサによっ
てガス圧が検出されるガス設備と、前記ガス設備のガス
流量を検出する流量検出手段と、前記静電容量式圧力セ
ンサと前記流量検出手段からの電気信号で前記ガス設備
の異常を判定する判定手段と、前記判定手段からの信号
により動作する動作手段とを備えたガス異常監視装置で
ある。
Further, in order to achieve the above object, the present invention provides
A gas pressure is detected by the capacitance type pressure sensor, a determination unit that determines an abnormality of the capacitance type pressure sensor based on an electric signal from the capacitance type pressure sensor, and the capacitance type pressure sensor. Gas equipment, a flow rate detection means for detecting a gas flow rate of the gas equipment, a determination means for determining an abnormality of the gas equipment by an electric signal from the capacitance type pressure sensor and the flow rate detection means, and the determination And a gas abnormality monitoring device including an operating unit that operates according to a signal from the unit.

【0011】本発明は上記構成によって下記の作用を有
する。すなわち本発明の静電容量式の圧力センサにおい
て、第一の電極または第二の電極が感圧電極と基準電極
とから構成されていること、固定基板に設けた大気孔が
一つだけであること、ダイアフラムと固定基板との微少
空間に吸水性と蒸発性と粘性が小さい液体を充填するこ
とで、充填した液体の温度補正が容易になること、充填
した液体の漏れがないこと、吸水しないこと、液体が蒸
発して減らないこと、圧力変動に素早く追随することが
可能になる。したがって圧力センサの特性が長期間にわ
たって変化しないこと、圧力センサの温度補償を容易に
行うことによって、小型で低コストな圧力センサにする
ことができる。
The present invention has the following effects due to the above configuration. That is, in the capacitance type pressure sensor of the present invention, the first electrode or the second electrode is composed of the pressure sensitive electrode and the reference electrode, and the fixed substrate has only one atmospheric hole. By filling the minute space between the diaphragm and the fixed substrate with a liquid with low water absorption, evaporation and viscosity, it is easy to correct the temperature of the filled liquid, there is no leakage of the filled liquid, and there is no water absorption. That is, the liquid does not evaporate and decreases, and it is possible to quickly follow the pressure fluctuation. Therefore, the characteristics of the pressure sensor do not change over a long period of time, and temperature compensation of the pressure sensor is easily performed, so that a small and low-cost pressure sensor can be obtained.

【0012】また圧力センサ自身が上記の働きを有する
ことで、定期的な圧力センサの点検が不要になり、ガス
異常監視装置において、ガス異常監視装置の点検業務を
省人化することができる。また圧力センサの自己診断機
能が低電力で行われることによって、少ない電池で動作
させることができ、ガス異常監視装置の小型化と低コス
ト化を実現する。
Further, since the pressure sensor itself has the above-mentioned function, it is not necessary to regularly inspect the pressure sensor, and in the gas abnormality monitoring device, the inspection work of the gas abnormality monitoring device can be saved. Further, since the self-diagnosis function of the pressure sensor is performed with low power, the pressure sensor can be operated with a small number of batteries, and the gas abnormality monitoring device can be downsized and reduced in cost.

【0013】(実施例1)以下、本発明の実施例1を図
1、図2、図3及び図4を参照しながら説明する。
(Embodiment 1) Hereinafter, Embodiment 1 of the present invention will be described with reference to FIGS. 1, 2, 3 and 4.

【0014】図1において、表面に第一の電極(感圧電
極)33Aと第一の電極(基準電極)33Bが形成された
電気絶縁性材料の固定基板31と、第二の電極34が表
面に形成された電気絶縁性弾性材料からなるダイアフラ
ム32と、第一の電極23と第二の電極34との少なく
とも一方の周縁部に形成した接着層37を備え、第一の
電極(感圧電極)33Aと第一の電極(基準電極)33B
とが第二の電極24に対向配置し、かつ接着層37を介
して固定基板31とダイアフラム32とを接合する。吸
水性と蒸発性と粘性が小さい液体をセンサ素子の通気孔
35に垂らしたあと、減圧した容器にセットして液体
(パーフルオロポリエーテル)を固定基板31とダイア
フラム32で形成された隙間に充填して、液体部36を
有したセンサ素子を作製する。ある圧力をダイアフラム
32に印加すると、ある圧力と大気圧との圧力差に応じ
たダイアフラム32のたわみが発生する。このダイアフ
ラム32のたわみは、第一の電極(感圧電極)33Aと
第二の電極34による容量値と、第一の電極(基準電
極)33Bと第二の電極34による容量値とを比較演算
する回路(不図示)に通し、非直線性補正及び利得、オ
フセット調整を施して所定の出力をさせて外部に取り出
される。気体(例えば空気)の誘電率は約1でありその
温度係数は非常に小さいのに対して、液体(例えばパー
フルオロポリエーテル)の誘電率は約2でありその温度
係数は数百ppm/℃であり誘電率が温度によって大き
く変化する。したがって、液体を充填した隙間に感圧電
極33Aと基準電極33Bとを共存させて比較演算させる
ことで誘電率の温度補正を行うことができる。
In FIG. 1, a fixed substrate 31 of an electrically insulating material having a first electrode (pressure sensitive electrode) 33A and a first electrode (reference electrode) 33B formed on the surface thereof, and a second electrode 34 on the surface thereof. A diaphragm 32 made of an electrically insulating elastic material and an adhesive layer 37 formed on the peripheral portion of at least one of the first electrode 23 and the second electrode 34. ) 33A and first electrode (reference electrode) 33B
Are arranged to face the second electrode 24, and the fixed substrate 31 and the diaphragm 32 are bonded to each other via the adhesive layer 37. A liquid having low water absorption, evaporation and viscosity is dropped into the vent hole 35 of the sensor element and then set in a depressurized container to fill the liquid (perfluoropolyether) into the gap formed by the fixed substrate 31 and the diaphragm 32. Then, the sensor element having the liquid portion 36 is manufactured. When a certain pressure is applied to the diaphragm 32, the diaphragm 32 is bent in accordance with the pressure difference between the certain pressure and the atmospheric pressure. The deflection of the diaphragm 32 is calculated by comparing the capacitance value of the first electrode (pressure sensitive electrode) 33A and the second electrode 34 with the capacitance value of the first electrode (reference electrode) 33B and the second electrode 34. A non-linearity correction and gain / offset adjustment are performed through a circuit (not shown) to output a predetermined output and the data is taken out to the outside. The dielectric constant of gas (eg air) is about 1 and its temperature coefficient is very small, whereas the dielectric constant of liquid (eg perfluoropolyether) is about 2 and its temperature coefficient is several hundred ppm / ° C. Therefore, the dielectric constant changes greatly with temperature. Therefore, the temperature correction of the dielectric constant can be performed by making the pressure sensitive electrode 33A and the reference electrode 33B coexist in the gap filled with the liquid and performing the comparison calculation.

【0015】ここで吸水性と蒸発性と粘性が小さい液体
部36は、低温(−30℃)から高温(70℃)におい
て吸水性がほとんどゼロであること、蒸気圧が10−4
Torrより小さいこと、粘度が5000cstより小さいこ
と等を満足するものであり、例えば材料的にはパーフル
オロポリエーテル、トリメチルペンタフェニルトリシロ
キサン、テトラメチルフェニルトリシロキサン、ペンタ
フェニルエーテル、イソシールナフタリンが好ましい。
Here, the liquid portion 36 having low water absorption, evaporation and viscosity has almost zero water absorption at low temperature (-30 ° C.) to high temperature (70 ° C.), and vapor pressure of 10-4.
It is smaller than Torr and has a viscosity smaller than 5000 cst. For example, perfluoropolyether, trimethylpentaphenyltrisiloxane, tetramethylphenyltrisiloxane, pentaphenylether, and isosealnaphthalene are preferable as materials. .

【0016】本発明の静電容量式圧力センサを、高温高
湿試験(温度60℃、湿度95%RH、1000時間)と
サイクル試験(温度70℃*1時間保持、温度−30℃
*1時間保持を1サイクルとしトータル500サイク
ル)を行った後、センサの特性を測定評価すると、圧力
0〜500mmH2Oで出力電圧0.2〜1.2V、精度
0.5%フルスケール(2.5mmH2O)であり、セン
サ特性に変化がほとんどなかった(0.1%フルスケー
ルのドリフト)。
The capacitance type pressure sensor of the present invention was subjected to a high temperature and high humidity test (temperature 60 ° C., humidity 95% RH, 1000 hours) and a cycle test (temperature 70 ° C. * hold for 1 hour, temperature -30 ° C.).
* After maintaining for 1 hour as 1 cycle and total 500 cycles), the characteristics of the sensor are measured and evaluated. When the pressure is 0 to 500 mmH 2 O, the output voltage is 0.2 to 1.2 V and the accuracy is 0.5% full scale ( 2.5 mmH 2 O), and there was almost no change in the sensor characteristics (0.1% full scale drift).

【0017】(実施例2)次に、本発明の実施例2を図
1、図2および図3を参照しながら説明する。図2は本
発明のガス異常監視装置の一実施例のブロック図であ
る。図2において、12は圧力調整器、13はガス異常
監視装置、14はガス設備である。ガス異常監視装置1
3は、圧力センサ21と流量検出手段22(例えば流量
計)と判定手段23(例えばマイコン)と動作手段24
(例えば遮断弁)とで構成されている。
(Second Embodiment) Next, a second embodiment of the present invention will be described with reference to FIGS. 1, 2 and 3. FIG. 2 is a block diagram of an embodiment of the gas abnormality monitoring device of the present invention. In FIG. 2, 12 is a pressure regulator, 13 is a gas abnormality monitoring device, and 14 is a gas facility. Gas abnormality monitoring device 1
3 is a pressure sensor 21, a flow rate detecting means 22 (for example, a flow meter), a judging means 23 (for example, a microcomputer), and an operating means 24.
(For example, a shutoff valve).

【0018】また図3はガス異常監視装置13の動作を
示すフローチャートである。ガスの漏洩検出は、動作手
段24(例えば遮断弁)を動作して、ガス設備14を使
用していない時の流量及び圧力変動の有無を流量検出手
段22及び圧力センサ21で検出し、判定手段23で判
断することによって行う。すなわち微量のガスが漏洩し
ているのであれば、ガス流量が0のとき配管内のガス圧
は時間と共にわずかずつ低下する。このガス圧のわずか
な変化の状態を圧力センサ21でモニターし、マイコン
等の判定手段23で判定し、圧力低下が所定の値より大
きければ、ガス漏洩ありと判断して、動作手段24遮断
弁)を動作させる。また判定手段23がガス漏洩がない
と判定したときは再び動作手段24と圧力センサ21と
流量検出手段22とを動作させてガス設備14の圧力と
流量を測定して長期間のガス漏れをモニターする。
FIG. 3 is a flow chart showing the operation of the gas abnormality monitoring device 13. For gas leak detection, the operating means 24 (for example, a shutoff valve) is operated to detect the flow rate and the presence or absence of pressure fluctuations when the gas facility 14 is not used by the flow rate detecting means 22 and the pressure sensor 21, and the determining means. This is done by judging at 23. That is, if a small amount of gas is leaking, when the gas flow rate is 0, the gas pressure in the pipe gradually decreases with time. The state of this slight change in gas pressure is monitored by the pressure sensor 21 and is judged by the judging means 23 such as a microcomputer. If the pressure drop is larger than a predetermined value, it is judged that there is gas leakage, and the operating means 24 shutoff valve ) To work. When the determination unit 23 determines that there is no gas leakage, the operation unit 24, the pressure sensor 21, and the flow rate detection unit 22 are operated again to measure the pressure and flow rate of the gas facility 14 to monitor a long-term gas leak. To do.

【0019】実施例1で説明した静電容量式圧力センサ
21をガス異常監視装置13に組み込み、ガス配管から
わずかな漏れがあるように疑似的に作製したガス配管シ
ステムを用いて、経過時間とガス圧との関係を調べた。
すなわちガス設備14の実際のガス圧が200mmH2
(別の基準の圧力センサで測定)であったものを、ガス
設備14のコックと動作手段24としての遮断弁を閉に
してガス流量を0にした状態でガス異常監視装置13と
ガス設備14との間のガス配管の圧力変化を調べた結
果、ガス圧が20秒で約6mmH2O低下したことが測定
でき、ガス配管からのわずかな漏れの有無を短時間で検
知することができた。短時間でガスの圧力変動を検知・
判別することができたので、ガス異常監視装置の消費電
力を低減することができ、電池を10年間交換する必要
がなかった。さらに寒冷地及び高温多湿地で実地テスト
を行った結果、同様に10年間以上正常に動作し、定期
的な圧力センサの校正を必要としなかったのでランニン
グコストを低減することができた。
The capacitance type pressure sensor 21 described in the first embodiment is incorporated in the gas abnormality monitoring device 13, and a simulated gas piping system is used so that there is a slight leak from the gas piping. The relationship with gas pressure was investigated.
That is, the actual gas pressure of the gas facility 14 is 200 mmH 2 O.
The gas abnormality monitoring device 13 and the gas facility 14 were measured (measured by a pressure sensor of another standard) while the cock of the gas facility 14 and the shutoff valve as the operating means 24 were closed to reduce the gas flow rate to zero. As a result of investigating the pressure change of the gas pipe between and, it was possible to measure that the gas pressure dropped by about 6 mmH 2 O in 20 seconds, and it was possible to detect the presence or absence of a slight leak from the gas pipe in a short time. . Detects gas pressure fluctuations in a short time
Since it was possible to determine, it was possible to reduce the power consumption of the gas abnormality monitoring device, and it was not necessary to replace the battery for 10 years. Furthermore, as a result of conducting field tests in cold regions and hot and humid regions, it was possible to operate normally for 10 years or more, and it was possible to reduce running costs because it did not require periodic pressure sensor calibration.

【0020】(実施例3)次に本発明の実施例3を図6
を用いて説明する。
(Embodiment 3) Next, Embodiment 3 of the present invention will be described with reference to FIG.
This will be described with reference to FIG.

【0021】図6は本願発明の静電容量式圧力センサの
別の実施例であり、実施例1の静電容量式圧力センサの
構成と比べると、固定基板31に第一の電極33Aと第
二の電極33Bの配線を反対側に配線するための配線孔
38を設け、配線孔38を封止するために封止部39を
設けたことが異なっている。配線孔38は第一の電極3
3A及び33Bと第二の電極34を反対側に設けた回路に
接続する際に配線をできるかぎり短くして浮遊容量を小
さくするためと、充填すべき液体をより確実に固定基板
31とダイアフラム32で形成された隙間に充填するた
めである。すなわち圧力センサに液体を充填する際に、
導入口が一つであれば減圧した容器で固定基板31とダ
イアフラム32で形成された隙間を減圧したあと、液体
中に浸せきさせて毛細管現象で隙間に液体を充填させる
ことができるが表面張力の大きい液体では難しい。一
方、導入口が複数あると表面張力の大きな液体であって
も同様の方法で隙間に液体を充填させることができる。
しかしながら導入口が複数あると充填した液体が動きや
すくなる、液体が蒸発しやすくなる、吸水しやすくなる
などの問題があるので配線孔38は液体を充填したあと
封止部39で封止する。実施例1と同様に、液体(パー
フルオロポリエーテル)を固定基板31とダイアフラム
32で形成された隙間に充填して、液体部36を有した
センサ素子を作製し、配線孔38を半田(封止部39)
で封止するとともにセンサ回路を半田付けして静電容量
式圧力センサとした。
FIG. 6 shows another embodiment of the electrostatic capacity type pressure sensor of the present invention. Compared with the structure of the electrostatic capacity type pressure sensor of the first embodiment, the fixed substrate 31 has a first electrode 33A and a first electrode 33A. The difference is that a wiring hole 38 for wiring the wiring of the second electrode 33B on the opposite side is provided and a sealing portion 39 is provided for sealing the wiring hole 38. The wiring hole 38 is the first electrode 3
In order to reduce the stray capacitance by shortening the wiring as much as possible when connecting 3A and 33B and the second electrode 34 to the circuit provided on the opposite side, the liquid to be filled is more reliably fixed substrate 31 and diaphragm 32. This is for filling the gap formed in (4). That is, when filling the pressure sensor with liquid,
If there is only one inlet, it is possible to decompress the gap formed by the fixed substrate 31 and the diaphragm 32 with a decompressed container and then immerse it in the liquid to fill the gap by a capillary phenomenon. Difficult with large liquids. On the other hand, if there are a plurality of inlets, even if the liquid has a large surface tension, the liquid can be filled in the gap by the same method.
However, if there are a plurality of inlets, the filled liquid is likely to move, the liquid is easily evaporated, and water is easily absorbed. Therefore, the wiring hole 38 is filled with the liquid and then sealed by the sealing portion 39. Similar to the first embodiment, a liquid (perfluoropolyether) is filled in the gap formed by the fixed substrate 31 and the diaphragm 32 to manufacture a sensor element having the liquid portion 36, and the wiring hole 38 is soldered (sealed). Stop 39)
And the sensor circuit was soldered to form a capacitance type pressure sensor.

【0022】本発明の静電容量式圧力センサを、高温高
湿試験(温度60℃、湿度95%RH、1000時間)と
サイクル試験(温度70℃*1時間保持、温度−30℃
*1時間保持を1サイクルとしトータル500サイク
ル)を行った後、センサの特性を測定評価すると、圧力
0〜500mmH2Oで出力電圧0.2〜1.2V、精度
0.5%フルスケール(2.5mmH2O)であり、セン
サ特性に変化がなかった(0.1%フルスケールのドリ
フト)。
The capacitance type pressure sensor of the present invention was subjected to a high temperature and high humidity test (temperature 60 ° C., humidity 95% RH, 1000 hours) and a cycle test (temperature 70 ° C. * 1 hour hold, temperature -30 ° C.).
* After maintaining for 1 hour as 1 cycle and total 500 cycles), the characteristics of the sensor are measured and evaluated. When the pressure is 0 to 500 mmH 2 O, the output voltage is 0.2 to 1.2 V and the accuracy is 0.5% full scale ( 2.5 mmH 2 O), and there was no change in the sensor characteristics (0.1% full scale drift).

【0023】(実施例4)次に、本発明の実施例4を図
6、図4および図5を参照しながら説明する。
(Fourth Embodiment) Next, a fourth embodiment of the present invention will be described with reference to FIGS. 6, 4 and 5.

【0024】図4は本発明のガス異常監視装置のブロッ
ク図である。図4において、11はガス供給源、13は
ガス異常監視装置、14はガス設備である。ガス異常監
視装置13は、圧力調整手段20、静電容量式圧力セン
サ21と流量検出手段22(例えば流量計)と判定手段
23(例えばマイコン)と動作手段24(例えば遮断
弁)とで構成されている。
FIG. 4 is a block diagram of the gas abnormality monitoring apparatus of the present invention. In FIG. 4, 11 is a gas supply source, 13 is a gas abnormality monitoring device, and 14 is a gas facility. The gas abnormality monitoring device 13 includes a pressure adjusting unit 20, a capacitance type pressure sensor 21, a flow rate detecting unit 22 (for example, a flow meter), a determining unit 23 (for example, a microcomputer), and an operating unit 24 (for example, a shutoff valve). ing.

【0025】また図5はガス異常監視装置13の動作を
示すフローチャートである。本装置がスタートしている
状態において、ガス供給源11から供給され圧力調整手
段20で調圧されたガス圧は静電容量式圧力センサ21
で測定され(ステップ1)、流量検出手段22で流量を
測定してガス流量があることを確認して(ステップ
2)、通常のガスの使用パターンをマイコン等の判定手
段23に記憶させる。ガス圧と流量の変化を静電容量式
圧力センサ21及び流量検出手段22で絶えずモニター
し、通常のガスの使用パターンとは異なったガス圧と流
量が検知されると、それらの値が所定の値より大きけれ
ば、ガス異常監視装置13の圧力調整手段20に異常あ
りと判定手段23が判断する(ステップ3)。ガス設備
に異常あり判断すると、動作手段24(例えば遮断弁)
を動作させてガス供給をストップする(ステップ4)。
またガス設備を点検して異常を取り除くかあるいは異常
がないことが確認されれば、再び圧力測定動作(ステッ
プ1)に戻り、継続して測定・判定を行うことにより、
ガス異常監視装置13の圧力調整手段20の長期間の変
化をモニターする。
FIG. 5 is a flow chart showing the operation of the gas abnormality monitoring device 13. In the state where the present apparatus is started, the gas pressure supplied from the gas supply source 11 and adjusted by the pressure adjusting means 20 is the capacitance type pressure sensor 21.
Is measured (step 1), the flow rate detecting means 22 measures the flow rate to confirm that there is a gas flow rate (step 2), and the normal gas usage pattern is stored in the determining means 23 such as a microcomputer. The capacitance pressure sensor 21 and the flow rate detecting means 22 are constantly monitored for changes in gas pressure and flow rate, and when a gas pressure and flow rate different from the normal gas usage pattern are detected, those values are determined to be predetermined values. If it is larger than the value, the judging means 23 judges that the pressure adjusting means 20 of the gas abnormality monitoring device 13 has an abnormality (step 3). When it is determined that there is an abnormality in the gas facility, the operating means 24 (eg, shutoff valve)
To stop the gas supply (step 4).
In addition, if the gas equipment is inspected and it is confirmed that there is no abnormality or if there is no abnormality, the procedure returns to the pressure measurement operation (step 1) again, and measurement / judgment is continuously performed.
The long-term change of the pressure adjusting means 20 of the gas abnormality monitoring device 13 is monitored.

【0026】図4において図6に示した実施例3の静電
容量式圧力センサ21を用いた場合、圧力調整手段20
による調整圧が315mmH2O(別の基準の圧力センサ
で測定)であったものを、1mmH2O以下の精度で測定
でき、調整圧に異常がないことを約30秒で判定するこ
とができた。短時間でガスの圧力変動を検知・判別する
ことができたので、ガス異常監視装置としての消費電力
を低減することができ、電池を10年間交換する必要が
なかった。また寒冷地及び高温多湿地で実地テストを行
った結果、同様に10年間以上正常に動作し、定期的な
圧力センサの校正を必要としなかったのでランニングコ
ストを低減することができた。
When the electrostatic capacity type pressure sensor 21 of the third embodiment shown in FIG. 6 is used in FIG. 4, the pressure adjusting means 20 is used.
The adjustment pressure by 315 mmH 2 O (measured by another standard pressure sensor) can be measured with an accuracy of 1 mmH 2 O or less, and it can be judged in about 30 seconds that there is no abnormality in the adjustment pressure. It was Since it was possible to detect and discriminate the gas pressure fluctuation in a short time, it was possible to reduce the power consumption as a gas abnormality monitoring device, and it was not necessary to replace the battery for 10 years. Also, as a result of conducting field tests in cold regions and hot and humid regions, it was possible to operate normally for more than 10 years, and it was possible to reduce the running cost because it did not require periodic calibration of the pressure sensor.

【0027】(実施例5)次に本発明の実施例5を図1
を用いて説明する。基本的な構成は実施例1で説明した
ものと同じであるが、通気孔35の体積が固定基板31
とダイアフラム32と接着層37とで囲まれた部分の体
積の0.5〜1.5倍としたものである。固定基板とダ
イアフラムと接着層とで囲まれた部分に充填された液体
は、ダイアフラムに圧力が印加されたり、外界の温度が
上がって熱膨張することで外側に押し出されるようにな
る。このとき通気孔35の体積が充填された液体の体積
の0.5より小さければ液体が外へ漏れてしまう。また
通気孔35の体積が充填された液体の体積の1.5より
大きければ通気孔35の開口面積が大きくなって蒸発し
やすくなったり、固定基板の厚みが厚くなって板厚が厚
くなったり、コスト高になったり、表面と裏面との配線
が難しくなる。すなわち通気孔35の体積が固定基板3
1とダイアフラム32と接着層37とで囲まれた部分の
体積の0.5倍、0.8倍、1.2倍、1.5倍の圧力
センサを作製した。これらの圧力センサを実施例1と同
様に、高温高湿試験(温度60℃、湿度95%RH、10
00時間)とサイクル試験(温度70℃*1時間保持、
温度−30℃*1時間保持を1サイクルとしトータル5
00サイクル)を行った後、いずれのセンサの特性を測
定評価すると、圧力0〜500mmH2Oで出力電圧0.
2〜1.2V、精度0.4%フルスケール(2.5mmH
2O)であり、センサ特性に変化がなかった(0.08
%フルスケールのドリフト)。
(Fifth Embodiment) Next, a fifth embodiment of the present invention will be described with reference to FIG.
This will be described with reference to FIG. The basic structure is the same as that described in the first embodiment, but the volume of the vent holes 35 is fixed.
The volume of the portion surrounded by the diaphragm 32 and the adhesive layer 37 is set to 0.5 to 1.5 times. The liquid filled in the portion surrounded by the fixed substrate, the diaphragm, and the adhesive layer is extruded to the outside when pressure is applied to the diaphragm or the outside temperature rises and thermal expansion occurs. At this time, if the volume of the vent hole 35 is smaller than 0.5 of the volume of the filled liquid, the liquid leaks out. Further, if the volume of the vent holes 35 is larger than 1.5 of the volume of the filled liquid, the opening area of the vent holes 35 becomes large and the vaporization easily occurs, or the fixed substrate becomes thick and the plate thickness becomes thick. However, the cost becomes high and the wiring between the front surface and the back surface becomes difficult. That is, the volume of the ventilation hole 35 is equal to that of the fixed substrate 3.
A pressure sensor having 0.5 times, 0.8 times, 1.2 times, and 1.5 times the volume of the portion surrounded by 1, the diaphragm 32, and the adhesive layer 37 was manufactured. Similar to Example 1, these pressure sensors were subjected to a high temperature and high humidity test (temperature 60 ° C., humidity 95% RH, 10%).
00 hours) and cycle test (temperature 70 ℃ * 1 hour hold,
Temperature -30 ° C * Total of 5 with 1 hour holding as 1 cycle
00 cycles) after, when evaluated measuring characteristics of any of the sensors, the output voltage at a pressure 0~500mmH 2 O 0.
2 to 1.2V, accuracy 0.4% full scale (2.5mmH
2 O), and the sensor characteristics did not change (0.08
% Full scale drift).

【0028】次に比較例として、複数個の差圧穴が大気
にオープンにされた静電容量式圧力センサ44を用いた
ガス異常監視装置について図7と図2とを用いて説明す
る。
Next, as a comparative example, a gas abnormality monitoring apparatus using a capacitance type pressure sensor 44 having a plurality of differential pressure holes opened to the atmosphere will be described with reference to FIGS. 7 and 2.

【0029】センサ素子は図7のようにフレーム1とカ
バー2に形成した可動電極4と固定電極3の間に囲まれ
た空間6にシリコンオイルなどの高誘電率の液体が充填
し、カバー2にはメサ部7と複数個の差圧穴5が設けた
ものである。温度が−30℃から60℃まで変化したと
き、初期容量が80.43pFであったものが、76.
81pFと大きく変化した。また初期容量が74.24
pFであったセンサを温度70℃を1時間保持し、温度
−30℃を1時間保持するのを1サイクルとする温度サ
イクル試験を100回繰り返すと76.12pFであ
り、大きく変化した。いずれの場合も回路で補正するこ
とができなかった。また圧力センサを傾けて設置して温
度サイクル試験を行うと、充填した高誘電率の液体が漏
れ出ていた。
In the sensor element, as shown in FIG. 7, a space 6 formed between the movable electrode 4 and the fixed electrode 3 formed in the frame 1 and the cover 2 is filled with a liquid having a high dielectric constant such as silicon oil, and the cover 2 Is provided with a mesa portion 7 and a plurality of differential pressure holes 5. When the temperature changed from −30 ° C. to 60 ° C., the initial capacitance was 80.43 pF.
It was a large change of 81 pF. The initial capacity is 74.24.
When a temperature cycle test was repeated 100 times, in which the temperature of 70 ° C. was held for 1 hour and the temperature of −30 ° C. was held for 1 hour, the temperature of the sensor was 76.12 pF, which was a large change. In either case, the circuit could not correct. When the temperature sensor was tilted and installed in a temperature cycle test, the filled high-dielectric constant liquid leaked out.

【0030】そして実施例2と同じガス異常監視装置に
この静電容量式圧力センサを組み込んだ場合、同様の高
温高湿試験(温度60℃、湿度95%RH、1000時
間)とサイクル試験(温度70℃*1時間保持、温度−
30℃*1時間保持を1サイクルとしトータル500サ
イクル)を行った後、圧力調整器の実際の調整圧が31
5mmH2O(別の基準の圧力センサで測定)であるにも
関わらず圧力調整手段が異常であると判断した。また寒
冷地及び高温多湿地で実地テストを行った結果、約4年
経過したときに異常な動作をした。
When this capacitance type pressure sensor was incorporated in the same gas abnormality monitoring device as in Example 2, the same high temperature and high humidity test (temperature 60 ° C., humidity 95% RH, 1000 hours) and cycle test (temperature) were carried out. 70 ℃ * 1 hour hold, temperature-
After carrying out a total of 500 cycles with one cycle of holding at 30 ° C * 1 hour, the actual adjustment pressure of the pressure regulator was 31
Despite being 5 mmH 2 O (measured by another standard pressure sensor), it was judged that the pressure adjusting means was abnormal. In addition, as a result of conducting field tests in cold areas and hot and humid areas, abnormal operation was observed after about 4 years had passed.

【0031】なお本発明のガス異常監視装置において、
静電容量式圧力センサの各種材料(液体部、ダイアフラ
ム、固定基板等)、センサ形状(径、電極パターン、厚
み、ギャップ、ダイアフラム等)、設置場所、回路構
成、測定圧力、各種信頼性試験方法、ガス異常監視装置
の構成等は本実施例に限定されるものではない。
In the gas abnormality monitoring device of the present invention,
Various materials for capacitive pressure sensor (liquid, diaphragm, fixed substrate, etc.), sensor shape (diameter, electrode pattern, thickness, gap, diaphragm, etc.), installation location, circuit configuration, measured pressure, various reliability test methods The configuration of the gas abnormality monitoring device is not limited to this embodiment.

【0032】[0032]

【発明の効果】以上の説明から明かなように、本発明の
圧力センサ及びこの圧力センサを用いたガス異常監視装
置によれば次の効果が得られる。
As is apparent from the above description, according to the pressure sensor of the present invention and the gas abnormality monitoring device using this pressure sensor, the following effects can be obtained.

【0033】本発明の圧力センサにおいて、第一の電極
または第二の電極が感圧電極と基準電極とから構成され
ていること、固定基板に設けた大気孔が一つだけである
こと、ダイアフラムと固定基板との微少空間に吸水性と
蒸発性と粘性が小さい液体を充填することで、充填した
液体の温度補正が容易になること、充填した液体の漏れ
がないこと、吸水しないこと、液体が蒸発して減らない
こと、圧力変動に素早く追随することが可能になる。し
たがって圧力センサの特性が長期間にわたって変化しな
いこと、圧力センサの温度補償を容易に行うことによっ
て、小型で低コストな圧力センサにすることができる。
In the pressure sensor of the present invention, the first electrode or the second electrode is composed of the pressure sensitive electrode and the reference electrode, the fixed substrate has only one atmospheric hole, and the diaphragm. By filling a small space between the fixed substrate and the fixed substrate with a liquid with low water absorption, evaporation and viscosity, it is easy to correct the temperature of the filled liquid, there is no leakage of the filled liquid, no water absorption, and liquid Will not evaporate and decrease, and it will be possible to quickly follow pressure fluctuations. Therefore, the characteristics of the pressure sensor do not change over a long period of time, and temperature compensation of the pressure sensor is easily performed, so that a small and low-cost pressure sensor can be obtained.

【0034】したがって、ガス異常監視装置において、
上記構成の式圧力センサを用いることによって、ガス設
備の異常の判定時間を短縮し、また圧力センサの動作時
間を短くして電池の消耗を抑制し、さらに定期的な圧力
センサの校正・調整を不要にすることができる。
Therefore, in the gas abnormality monitoring device,
By using the pressure sensor with the above configuration, it is possible to shorten the gas equipment abnormality determination time, shorten the pressure sensor operating time to suppress battery consumption, and perform periodic pressure sensor calibration and adjustment. It can be unnecessary.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1及び2を示す圧力センサの断
面図
FIG. 1 is a sectional view of a pressure sensor showing Embodiments 1 and 2 of the present invention.

【図2】同センサを用いたガス異常監視装置を示すブロ
ック図
FIG. 2 is a block diagram showing a gas abnormality monitoring device using the same sensor.

【図3】同装置のフローチャートFIG. 3 is a flowchart of the apparatus.

【図4】本発明の他の実施例のガス異常監視装置を示す
ブロック図
FIG. 4 is a block diagram showing a gas abnormality monitoring device according to another embodiment of the present invention.

【図5】同装置のフローチャートFIG. 5 is a flowchart of the apparatus.

【図6】本発明の圧力センサの他の実施例の断面図FIG. 6 is a sectional view of another embodiment of the pressure sensor of the present invention.

【図7】従来の静電容量式圧力センサの断面図FIG. 7 is a sectional view of a conventional capacitance type pressure sensor.

【符号の説明】[Explanation of symbols]

31 固定基板 32 ダイアフラム 33A 第一の電極(感圧電極) 33B 第一の電極(基準電極) 34 第二の電極 35,37 接着層 36 液体部 31 Fixed Substrate 32 Diaphragm 33A First Electrode (Pressure Sensitive Electrode) 33B First Electrode (Reference Electrode) 34 Second Electrode 35, 37 Adhesive Layer 36 Liquid Part

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】一面に第一の電極が形成された電気絶縁性
材料からなる固定基板と、第二の電極が一面に形成され
た電気絶縁性弾性材料からなるダイアフラムと、前記第
一の電極と前記第二の電極とが対向配置し前記第一の電
極と前記第二の電極との少なくとも一方の周縁部に形成
して前記固定基板と前記ダイアフラムとを微小な間隙を
もって接合した接着層と、前記固定基板に設けた孔と、
前記ダイアフラムと前記固定基板との間に充填した液体
部とからなる静電容量式圧力センサ。
1. A fixed substrate made of an electrically insulating material having a first electrode formed on one surface, a diaphragm made of an electrically insulating elastic material having a second electrode formed on one surface, and the first electrode. And an adhesive layer in which the second electrode is disposed so as to face each other and is formed on at least one peripheral portion of the first electrode and the second electrode, and the fixed substrate and the diaphragm are joined with a minute gap therebetween. , A hole provided in the fixed substrate,
A capacitance type pressure sensor comprising a liquid part filled between the diaphragm and the fixed substrate.
【請求項2】第一の電極または第二の電極が感圧電極と
基準電極とから構成されている請求項1記載の静電容量
式圧力センサ。
2. The capacitance type pressure sensor according to claim 1, wherein the first electrode or the second electrode comprises a pressure sensitive electrode and a reference electrode.
【請求項3】液体部は吸水性と蒸発性と粘性が小さな物
理特性を有する請求項1記載の静電容量式圧力センサ。
3. The capacitance type pressure sensor according to claim 1, wherein the liquid portion has physical properties such as water absorption, evaporation and viscosity.
【請求項4】第一の電極または第二の電極が感圧電極と
基準電極とから構成されている請求項3記載の静電容量
式圧力センサ。
4. The capacitance type pressure sensor according to claim 3, wherein the first electrode or the second electrode comprises a pressure sensitive electrode and a reference electrode.
【請求項5】固定基板に設けられ第一の電極と第二の電
極の配線を反対側に配線するための配線孔を有する請求
項3記載の静電容量式圧力センサ。
5. The capacitance type pressure sensor according to claim 3, further comprising a wiring hole provided on the fixed substrate for wiring the wirings of the first electrode and the second electrode on opposite sides.
【請求項6】第一の電極または第二の電極が感圧電極と
基準電極とから構成されている請求項5記載の静電容量
式圧力センサ。
6. The capacitance type pressure sensor according to claim 5, wherein the first electrode or the second electrode comprises a pressure sensitive electrode and a reference electrode.
【請求項7】大気孔と配線孔の中いずれか一方を大気に
解放にして請求項5記載の静電容量式圧力センサ。
7. A capacitance type pressure sensor according to claim 5, wherein one of the atmosphere hole and the wiring hole is opened to the atmosphere.
【請求項8】一面に第一の電極が形成された電気絶縁性
材料からなる固定基板と、第二の電極が一面に形成され
た電気絶縁性弾性材料からなるダイアフラムと、前記第
一の電極と前記第二の電極とが対向配置し前記第一の電
極と前記第二の電極との少なくとも一方の周縁部に形成
して前記固定基板と前記ダイアフラムとを微小な間隙を
もって接合した接着層と、前記固定基板に設けた大気孔
と、前記固定基板に設けて前記第一の電極と前記第二の
電極の配線を反対側に配線する配線孔と、ダイアフラム
と固定基板との間に充填し吸水性と蒸発性と粘性が小さ
い液体部を有する請求項5記載の静電容量式圧力セン
サ。
8. A fixed substrate made of an electrically insulating material having a first electrode formed on one surface, a diaphragm made of an electrically insulating elastic material having a second electrode formed on one surface, and the first electrode. And an adhesive layer in which the second electrode is disposed so as to face each other and is formed on at least one peripheral portion of the first electrode and the second electrode, and the fixed substrate and the diaphragm are joined with a minute gap therebetween. Filling the space between the diaphragm and the fixed substrate, the air hole provided in the fixed substrate, the wiring hole provided in the fixed substrate for wiring the wires of the first electrode and the second electrode on opposite sides, The capacitance type pressure sensor according to claim 5, further comprising a liquid portion having low water absorption, evaporation and viscosity.
【請求項9】第一の電極または第二の電極が感圧電極と
基準電極とから構成されている請求項8記載の静電容量
式圧力センサ。
9. The capacitance type pressure sensor according to claim 8, wherein the first electrode or the second electrode comprises a pressure sensitive electrode and a reference electrode.
【請求項10】大気孔と配線孔の中いずれか一方を大気
に解放にした請求項8記載の静電容量式圧力センサ。
10. The capacitance type pressure sensor according to claim 8, wherein either one of the air hole and the wiring hole is opened to the atmosphere.
【請求項11】大気孔の体積が、固定基板とダイアフラ
ムと接着層とで囲まれた部分の体積の0.5〜1.5倍
である請求項1、3、5、および8記載の静電容量式圧
力センサ。
11. The static electricity storage device according to claim 1, wherein the volume of the air holes is 0.5 to 1.5 times the volume of the portion surrounded by the fixed substrate, the diaphragm and the adhesive layer. Capacitive pressure sensor.
【請求項12】請求項1記載の静電容量式圧力センサ
と、前記静電容量式圧力センサからの電気信号で前記静
電容量式圧力センサの異常を判定する判定手段と、前記
静電容量式圧力センサによってガス圧が検出されるガス
設備と、前記ガス設備のガス流量を検出する流量検出手
段と、前記静電容量式圧力センサと前記流量検出手段か
らの電気信号で前記ガス設備の異常を判定する判定手段
と、前記判定手段からの信号により動作する動作手段と
を備えたガス異常監視装置。
12. A capacitance type pressure sensor according to claim 1, a determination means for determining abnormality of the capacitance type pressure sensor based on an electric signal from the capacitance type pressure sensor, and the capacitance. Equipment whose gas pressure is detected by a pressure sensor, a flow rate detecting means for detecting a gas flow rate of the gas equipment, and an abnormality of the gas equipment by an electric signal from the capacitance type pressure sensor and the flow rate detecting means. A gas abnormality monitoring apparatus comprising: a determination unit that determines whether the gas is abnormal and an operation unit that operates according to a signal from the determination unit.
【請求項13】請求項3記載の静電容量式圧力センサ
と、前記静電容量式圧力センサからの電気信号で前記静
電容量式圧力センサの異常を判定する判定手段と、前記
静電容量式圧力センサによってガス圧が検出されるガス
設備と、前記ガス設備のガス流量を検出する流量検出手
段と、前記静電容量式圧力センサと前記流量検出手段か
らの電気信号で前記ガス設備の異常を判定する判定手段
と、前記判定手段からの信号により動作する動作手段と
を備えたガス異常監視装置。
13. A capacitance type pressure sensor according to claim 3, a determination means for determining abnormality of the capacitance type pressure sensor based on an electric signal from the capacitance type pressure sensor, and the capacitance. Equipment whose gas pressure is detected by a pressure sensor, a flow rate detecting means for detecting a gas flow rate of the gas equipment, and an abnormality of the gas equipment by an electric signal from the capacitance type pressure sensor and the flow rate detecting means. A gas abnormality monitoring apparatus comprising: a determination unit that determines whether the gas is abnormal and an operation unit that operates according to a signal from the determination unit.
【請求項14】請求項5記載の静電容量式圧力センサ
と、前記静電容量式圧力センサからの電気信号で前記静
電容量式圧力センサの異常を判定する判定手段と、前記
静電容量式圧力センサによってガス圧が検出されるガス
設備と、前記ガス設備のガス流量を検出する流量検出手
段と、前記静電容量式圧力センサと前記流量検出手段か
らの電気信号で前記ガス設備の異常を判定する判定手段
と、前記判定手段からの信号により動作する動作手段と
を備えたガス異常監視装置。
14. A capacitance type pressure sensor according to claim 5, a determination means for determining abnormality of the capacitance type pressure sensor based on an electric signal from the capacitance type pressure sensor, and the capacitance. Equipment whose gas pressure is detected by a pressure sensor, a flow rate detecting means for detecting a gas flow rate of the gas equipment, and an abnormality of the gas equipment by an electric signal from the capacitance type pressure sensor and the flow rate detecting means. A gas abnormality monitoring apparatus comprising: a determination unit that determines whether the gas is abnormal and an operation unit that operates according to a signal from the determination unit.
【請求項15】請求項8記載の静電容量式圧力センサ
と、前記静電容量式圧力センサからの電気信号で前記静
電容量式圧力センサの異常を判定する判定手段と、前記
静電容量式圧力センサによってガス圧が検出されるガス
設備と、前記ガス設備のガス流量を検出する流量検出手
段と、前記静電容量式圧力センサと前記流量検出手段か
らの電気信号で前記ガス設備の異常を判定する判定手段
と、前記判定手段からの信号により動作する動作手段と
を備えたガス異常監視装置。
15. A capacitance type pressure sensor according to claim 8, a determination unit for determining abnormality of the capacitance type pressure sensor based on an electric signal from the capacitance type pressure sensor, and the capacitance. Equipment whose gas pressure is detected by a pressure sensor, a flow rate detecting means for detecting a gas flow rate of the gas equipment, and an abnormality of the gas equipment by an electric signal from the capacitance type pressure sensor and the flow rate detecting means. A gas abnormality monitoring apparatus comprising: a determination unit that determines whether the gas is abnormal and an operation unit that operates according to a signal from the determination unit.
【請求項16】請求項11記載の静電容量式圧力センサ
と、前記静電容量式圧力センサからの電気信号で前記静
電容量式圧力センサの異常を判定する判定手段と、前記
静電容量式圧力センサによってガス圧が検出されるガス
設備と、前記ガス設備のガス流量を検出する流量検出手
段と、前記静電容量式圧力センサと前記流量検出手段か
らの電気信号で前記ガス設備の異常を判定する判定手段
と、前記判定手段からの信号により動作する動作手段と
を備えたガス異常監視装置。
16. A capacitance type pressure sensor according to claim 11, a determination means for determining abnormality of the capacitance type pressure sensor based on an electric signal from the capacitance type pressure sensor, and the capacitance. Equipment whose gas pressure is detected by a pressure sensor, a flow rate detecting means for detecting a gas flow rate of the gas equipment, and an abnormality of the gas equipment by an electric signal from the capacitance type pressure sensor and the flow rate detecting means. A gas abnormality monitoring apparatus comprising: a determination unit that determines whether the gas is abnormal and an operation unit that operates according to a signal from the determination unit.
JP8125196A 1996-04-03 1996-04-03 Electro-static pressure sensor and gas abnormality monitor using the same Pending JPH09273970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8125196A JPH09273970A (en) 1996-04-03 1996-04-03 Electro-static pressure sensor and gas abnormality monitor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8125196A JPH09273970A (en) 1996-04-03 1996-04-03 Electro-static pressure sensor and gas abnormality monitor using the same

Publications (1)

Publication Number Publication Date
JPH09273970A true JPH09273970A (en) 1997-10-21

Family

ID=13741180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8125196A Pending JPH09273970A (en) 1996-04-03 1996-04-03 Electro-static pressure sensor and gas abnormality monitor using the same

Country Status (1)

Country Link
JP (1) JPH09273970A (en)

Similar Documents

Publication Publication Date Title
JP3182807B2 (en) Multifunctional fluid measurement transmission device and fluid volume measurement control system using the same
RU2400719C2 (en) Pressure sensor using collapsible sensor housing
KR100278052B1 (en) Gravity directing diaphragm Deflection type pressure measuring device
US8069729B2 (en) Pressure gauge
EP2203738B1 (en) Improved structure for capacitive balancing of integrated relative humidity sensor and manufacturing method
JP2920868B2 (en) Seismic level judgment method and gas meter
JP3645529B2 (en) Water container for testing moisture permeability of membrane
US6696296B2 (en) Leak detector for sealed optical devices
JPH09273970A (en) Electro-static pressure sensor and gas abnormality monitor using the same
CN115060414B (en) Device and method for providing high-precision pressure standard
JPH09159561A (en) Pressure sensor and gas abnormality monitor device using the pressure sensor
US20230280233A1 (en) Leak detection method and system
JPH09257617A (en) Pressure sensor and gas abnormality monitor using the same
CN112114009B (en) Humidity sensor chip with self-diagnosis function and self-diagnosis method of humidity sensor chip
JP3627302B2 (en) Gas abnormality monitoring device
JP3440075B2 (en) Earthquake detection device
JP2822816B2 (en) Semiconductor sensor, transmitter and process status display device
RANGE Pressure Transducers
JPH06307962A (en) Differential pressure measuring equipment
JPH0944773A (en) Gas abnormality monitor device
JPH0783777A (en) Differential pressure measuring device
WO2020235423A1 (en) Gas safety device and gas safety system
JPH0943073A (en) Monitor for gas abnormality
JPH09304209A (en) Capacitance-type pressure sensor and gas abnormality monitor using the same
JP3189516B2 (en) Gas pressure detector