JPH09273829A - Integrated piping for refrigerating cycle - Google Patents

Integrated piping for refrigerating cycle

Info

Publication number
JPH09273829A
JPH09273829A JP8235396A JP8235396A JPH09273829A JP H09273829 A JPH09273829 A JP H09273829A JP 8235396 A JP8235396 A JP 8235396A JP 8235396 A JP8235396 A JP 8235396A JP H09273829 A JPH09273829 A JP H09273829A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
pipe
distributor
header
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8235396A
Other languages
Japanese (ja)
Inventor
Hiroshi Yasuda
弘 安田
Yoshio Haeda
芳夫 蝿田
Kensaku Kokuni
研作 小国
Masaru Kunikata
優 国方
Kingo Moriyama
金悟 森山
Minetoshi Izushi
峰敏 出石
Hideyuki Honoki
秀行 朴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8235396A priority Critical patent/JPH09273829A/en
Publication of JPH09273829A publication Critical patent/JPH09273829A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0278Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To simplify the piping construction around a heat exchanger of an air conditioner and reduce the power consumption by a method wherein a refrigerant distributor to distribute refrigerant in between two flat plate, a distribution pipe to lead the refrigerant from the refrigerant distributor to a heat exchanger, a part of a bend pipe of the heat exchanger and a header are integrally formed into one piece. SOLUTION: An end plate 4 of a heat exchanger is composed of two plates, and grooves to form distribution pipes 2-1, 2-2, 2-3 and 2-4, grooves to compose bend pipes 5-1, 5-2, 5-3, and 5-4, and an inlet of a refrigerant distributor 1 are formed on one side. Grooves to compose the refrigerant distributor 1, an opening for the end of a heat transfer tube and a groove to compose a header 7 are formed on the other side. The two plates are connected by such a mean as brazing with a brazing filler metal in a furnace, and cooling paths 1, 2-1, 2-2, 2-3 and 2-4 are form by the two plates.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は冷凍空調用冷凍サイ
クルに係り、特に、冷凍サイクルの冷媒配管の簡素化に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration cycle for refrigeration and air conditioning, and more particularly to simplification of a refrigerant pipe of the refrigeration cycle.

【0002】[0002]

【従来の技術】空調用冷凍サイクルの冷却用熱交換器周
辺の配管系の一例を図12に示す。図12で1は冷媒分
配器、2−1,2−2,2−3,2−4は分配管、3は
熱交換器、4は熱交換器の端板、5−1,5−2,5−
3,5−4は熱交換器のベンド管、6−1−1,6−2
−1,6−3−1,6−4−1,6−1−4,6−2−
4,6−3−4,6−4−4は熱交換器の伝熱管、7は
ヘッダ、8は膨張弁、9は膨張弁入口管、10は冷媒分
配器への流入管、11はヘッダからの流出管、12は熱
交換器に流入する空気の流れを示す。膨張弁入口管9か
ら膨張弁8に流入する液状態の冷媒は減圧され気液二相
流状態となって、冷媒分配器への流入管10から冷媒分
配器1に流入する。冷媒の流れは冷媒分配器1を通過す
ることによって気液の割合が等しい四つの流れに分流さ
れ、それぞれ、分配管2−1,2−2,2−3,2−4
を流れて熱交換器の伝熱管6−1−1,6−2−1,6
−3−1,6−4−1から熱交換器3に流入する。熱交
換機の性能を十分に発揮させるために分配管の抵抗は熱
交換機に流入する空気流12の風速分布,伝熱管の配置
などに応じて異なるように設計される。冷媒は熱交換器
で伝熱管に直交する空気の流れ12から熱を与えられる
ことによって蒸発し、液冷媒が完全に気化した状態、ま
たは大部分の液冷媒が気化した状態となって、伝熱管6
−1−4,6−2−4,6−3−4,6−4−4から流
出し、ヘッダ7で集合して流出管11からでる。このよ
うな従来技術は、冷媒分配器への流入管10からヘッダ
7までの配管は3次元空間内に配置された冷媒配管形状
であるため、配管設計に時間を要するとともに、ロー付
け等の接合技術による組み立て作業は熟練者に頼らざる
を得ない状況であった。このため機械による自動組み立
てが困難で生産合理化によるコスト低減が難しいという
問題があった。また空調機の運転時では、3次元空間内
に配置された冷媒配管が振動により破壊する恐れがある
などの信頼性の問題があり、これらに対処するために多
大の時間を要していた。
2. Description of the Related Art An example of a piping system around a cooling heat exchanger of an air conditioning refrigeration cycle is shown in FIG. In FIG. 12, 1 is a refrigerant distributor, 2-1, 2-2, 2-3, 2-4 are distribution pipes, 3 is a heat exchanger, 4 is an end plate of the heat exchanger, 5-1 and 5-2. , 5-
3, 5-4 are bend tubes of heat exchangers, 6-1-1 and 6-2
-1, 6-3-1, 6-4-1, 6-1-4, 6-2-
4, 6-3-4, 6-4-4 are heat transfer tubes of a heat exchanger, 7 is a header, 8 is an expansion valve, 9 is an expansion valve inlet tube, 10 is an inlet tube to the refrigerant distributor, and 11 is a header. Outflow pipe, 12 denotes the flow of air entering the heat exchanger. The liquid-state refrigerant flowing from the expansion valve inlet pipe 9 into the expansion valve 8 is decompressed into a gas-liquid two-phase flow state and flows into the refrigerant distributor 1 from the inflow pipe 10 to the refrigerant distributor. The flow of the refrigerant is divided into four flows having the same gas-liquid ratio by passing through the refrigerant distributor 1, and the distribution pipes 2-1, 2-2, 2-3, 2-4 are respectively divided.
Flow through the heat transfer tubes 6-1-1, 6-2-1, 6 of the heat exchanger
It flows into the heat exchanger 3 from 3-1 and 6-4-1. In order to fully exhibit the performance of the heat exchanger, the distribution pipe resistance is designed to be different depending on the wind velocity distribution of the air flow 12 flowing into the heat exchanger, the arrangement of the heat transfer tubes, and the like. The refrigerant evaporates when heat is applied from the air flow 12 orthogonal to the heat transfer tubes in the heat exchanger, and the liquid refrigerant is completely vaporized, or most of the liquid refrigerant is vaporized. 6
It flows out from 1-4, 6-2-4, 6-3-4, 6-4-4, gathers at the header 7, and goes out from the outflow pipe 11. In such a conventional technique, since the pipe from the inflow pipe 10 to the refrigerant distributor to the header 7 has a refrigerant pipe shape arranged in a three-dimensional space, it takes time to design the pipe and joins such as brazing. The assembling work by technology had to rely on a skilled person. Therefore, there is a problem that automatic assembly by a machine is difficult and cost reduction is difficult by rationalizing production. Further, during operation of the air conditioner, there is a problem of reliability such that the refrigerant pipes arranged in the three-dimensional space may be broken by vibration, and it takes a lot of time to deal with them.

【0003】このような点を考慮した従来技術の一つと
して図13に示すような冷凍用熱交換器に関する公知例
がある(実開昭50−142570号公報)。図13で9は冷媒
流入管、8は減圧機構の一つであるキャピラリチュー
ブ、2は分配器、5−1−1,5−2−1,5−1−
2,5−2−2はベンド管、7はヘッダ、11は流出
管、3は熱交換器、12は熱交換器3に流入する空気の
流れ、4は熱交換器の端板を示している。キャピラリチ
ューブ8,分配器2,ベンド管5−1−1,5−2−
1,5−1−2,5−2−2,ヘッダ7は、2枚の平板
4a,4bを接合した端板4内に成形されている。この
ような構成とすることによって、従来技術の問題点であ
る3次元空間内に配置された冷媒配管形状は簡素化され
ている。しかし、本従来例ではキャピラリチューブ8に
よって減圧された冷媒は分配器2で二つの通路に分配さ
れ、空気流12に対して上流側に位置する冷媒通路はベ
ンド管5−1−1,5−2−1を通ってヘッダ7に、空
気流12に対して下流側に位置する冷媒通路はベンド管
5−1−2,5−2−2を通ってヘッダ7に集合し、流
入管11から流出する。このような従来例では、空気流
12の風速分布,伝熱管の配置などに対して複数の通路
への冷媒分流を適正化する手段がないため熱交換器を有
効に利用することができないという欠点があった。
As one of the prior arts in consideration of such a point, there is a known example of a heat exchanger for refrigeration as shown in FIG. 13 (Japanese Utility Model Publication No. 50-142570). In FIG. 13, 9 is a refrigerant inflow pipe, 8 is a capillary tube which is one of pressure reducing mechanisms, 2 is a distributor, 5-1-1, 5-2-1, 5-1
2, 5-2-2 is a bend pipe, 7 is a header, 11 is an outlet pipe, 3 is a heat exchanger, 12 is a flow of air flowing into the heat exchanger 3, and 4 is an end plate of the heat exchanger. There is. Capillary tube 8, distributor 2, bend tube 5-1-1, 5-2
1, 5-1-2, 5-2-2, and the header 7 are formed in the end plate 4 in which two flat plates 4a and 4b are joined. With such a configuration, the shape of the refrigerant pipe arranged in the three-dimensional space, which is a problem of the conventional technique, is simplified. However, in this conventional example, the refrigerant decompressed by the capillary tube 8 is distributed to the two passages by the distributor 2, and the refrigerant passages located upstream of the air flow 12 are bent pipes 5-1-1, 5-. The coolant passage located downstream of the air flow 12 through the 2-1 and the header 7 passes through the bend pipes 5-1-2 and 5-2-2, and then flows into the header 7 through the inflow pipe 11. leak. In such a conventional example, the heat exchanger cannot be effectively used because there is no means for optimizing the refrigerant flow distribution to the plurality of passages with respect to the wind velocity distribution of the air flow 12, the arrangement of the heat transfer tubes, and the like. was there.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記のような
問題点を解決するために、空調機の熱交換器周辺の配管
構造の簡素化を図って、コスト低減を可能にするととも
に熱交換器の性能を十分に引き出して消費電力の低減を
図る。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention simplifies the piping structure around the heat exchanger of an air conditioner to enable cost reduction and heat exchange. We will make full use of the performance of the container to reduce power consumption.

【0005】[0005]

【課題を解決するための手段】空調機の熱交換器周辺の
配管を2枚の平板内部に形成して、生産合理化のために
配管構成を簡素化するとともに、この平板内部に形成し
た冷媒分配管の通路抵抗を調整可能にすることによって
熱交換器の性能向上を図る。
[Means for Solving the Problems] Piping around a heat exchanger of an air conditioner is formed inside two flat plates to simplify the piping structure for the purpose of rationalizing production and to divide the refrigerant formed inside the flat plates. The heat exchanger performance is improved by making the passage resistance of the pipe adjustable.

【0006】[0006]

【発明の実施の形態】本発明の実施例を図1,図2,図
3に示す。図1は図11と同様に空調用冷凍サイクルの
冷却用熱交換器周辺の配管系の一例を示している。熱交
換器の端板4は図3に示すように4aと4bの2枚の板
から構成され、4aの片面には分配管2−1,2−2,
2−3,2−4を形成するための溝、熱交換器のベンド
管5−1,5−2,5−3,5−4を構成するための
溝、ヘッダ7を構成するための溝7aおよび冷媒分配器
1の入口1aが形成されている(これらの溝は図3の紙
面から手前方向に膨らんだ溝を示している)。また、4
bには冷媒分配器1を構成する溝,伝熱管の端部が開口
するための孔およびヘッダ7を構成するための溝7bが
形成されている(これらの溝は図3の紙面から奥の方向
に膨らんだ溝を示している)。これらの板は図1のA−
A断面を図2に示すようにロー材13によって炉中ロー
付けなどの手段で結合されており、これらの2枚の板に
よって冷媒通路1,2−1,2−2,2−3,2−4が
成形されている。2枚の板の材質は銅,鉄,ステンレ
ス,アルミニウム等の多様な材料が考えられる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention is shown in FIGS. Similar to FIG. 11, FIG. 1 shows an example of a piping system around a cooling heat exchanger of an air conditioning refrigeration cycle. The end plate 4 of the heat exchanger is composed of two plates 4a and 4b as shown in FIG. 3, and one side of 4a has distribution pipes 2-1 and 2-2.
Grooves for forming 2-3, 2-4, grooves for forming bend pipes 5-1, 5-2, 5-3, 5-4 of the heat exchanger, grooves for forming the header 7 7a and the inlet 1a of the refrigerant distributor 1 are formed (these grooves indicate grooves that bulge in the front direction from the paper surface of FIG. 3). Also, 4
In b, a groove forming the refrigerant distributor 1, a hole for opening the end of the heat transfer tube, and a groove 7b forming the header 7 are formed (these grooves are deeper than the paper surface of FIG. 3). Shows a groove that bulges in the direction). These plates are shown in FIG.
As shown in FIG. 2, the section A is connected by a brazing material 13 by means such as brazing in a furnace, and these two plates are connected to the refrigerant passages 1,2-1,2-2,2-3,2. -4 is molded. Various materials such as copper, iron, stainless steel, aluminum, etc. can be considered as materials for the two plates.

【0007】これら集積配管における冷媒の流れを以下
に示す。入口管9から膨張弁8に流入する液状態の冷媒
は減圧され気液二相流状態となって、冷媒分配器への流
入管10から冷媒分配器1に流入し、冷媒分配器1で気
液の割合が等しい四つの流れに分流され、分配管2−
1,2−2,2−3,2−4に沿って熱交換器の複数の
冷媒通路に導かれる。図1の実施例に示す熱交換器の場
合には冷媒通路は図の上部から四つ通路に別れており、
分配管2−1は伝熱管6−1−1,6−1−2,6−1
−3,6−1−4から構成される図3の熱交換器の最上
段の通路に冷媒を導く。すなわち、分配管2−1を出た
冷媒は伝熱管6−1−1を流れ、伝熱管端部のベンド管
(図示せず)でUターンし、次の伝熱管6−1−2を流
れる。ベンド管5−1で再びUターンし、伝熱管6−1
−3、伝熱管端部のベンド管(図示せず)、6−1−4
を流れ、ヘッダ端部7−1からヘッダ7に流入し流出管
11から流出する。このような通路構成を持つ熱交換器
で、一般に熱交換器に流入する空気流12は熱交換器前
面で不均一であり、送風機特性,空気流路抵抗の影響な
どで、例えば図4に矢印で示すように上下方向に流速分
布を持っている場合が多い。このような場合に分配管2
−1,2−2,2−3,2−4の流路抵抗が同一である
と図4の熱交換器の上側の通路では多い空気流量で十分
な熱交換が行われ、冷媒が過熱したガス状態となって熱
交換器を流出するが、熱交換器下部の通路を流れる冷媒
は少ない空気量で不十分な熱交換状態となるため未蒸発
の液冷媒が流出するというアンバランスな状態が生じ、
適正に流量配分が行われた場合に比べて熱交換器の性能
を発揮することができない。このような課題に対処する
ためには分配管の抵抗を適正に設定出来ることが必要で
ある。
The flow of the refrigerant in these integrated pipes is shown below. The liquid-state refrigerant flowing from the inlet pipe 9 into the expansion valve 8 is decompressed into a gas-liquid two-phase flow state, flows into the refrigerant distributor 1 from the inlet pipe 10 to the refrigerant distributor, and is cooled by the refrigerant distributor 1. The liquid is divided into four streams with the same proportion, and the distribution pipe 2-
It is guided to a plurality of refrigerant passages of a heat exchanger along 1,2-2,2-3,2-4. In the case of the heat exchanger shown in the embodiment of FIG. 1, the refrigerant passages are divided into four passages from the top of the drawing,
The distribution pipe 2-1 is a heat transfer pipe 6-1-1, 6-1-2, 6-1.
The refrigerant is introduced into the uppermost passage of the heat exchanger of FIG. That is, the refrigerant exiting the distribution pipe 2-1 flows through the heat transfer pipe 6-1-1, makes a U-turn at a bend pipe (not shown) at the end of the heat transfer pipe, and then flows through the next heat transfer pipe 6-1-2. . The bend pipe 5-1 makes a U-turn again, and the heat transfer pipe 6-1.
-3, bend tube (not shown) at end of heat transfer tube, 6-1-4
Through the header end 7-1 into the header 7 and out from the outflow pipe 11. In a heat exchanger having such a passage configuration, generally, the air flow 12 flowing into the heat exchanger is non-uniform on the front surface of the heat exchanger, and due to the influence of the blower characteristics and the air flow path resistance, for example, an arrow in FIG. In many cases, there is a vertical velocity distribution as shown in. In such a case, the distribution pipe 2
If the flow path resistances of -1, 2, 2, 2, 3 and 2-4 are the same, sufficient heat exchange is performed with a large air flow rate in the upper passage of the heat exchanger of FIG. 4, and the refrigerant is overheated. The gas flows out of the heat exchanger, but the refrigerant flowing through the passages in the lower part of the heat exchanger is in an insufficient heat exchange state with a small amount of air, so the unevaporated liquid refrigerant flows out in an unbalanced state. Occurs,
The performance of the heat exchanger cannot be exhibited as compared with the case where the flow rate is properly distributed. In order to deal with such a problem, it is necessary to properly set the resistance of the distribution pipe.

【0008】図5はこのような場合を考慮した一実施例
を示す。分配管を加工する板4aの上で分配管2−1,
2−2,2−3,2−4の断面積2−1−S,2−2−
S,2−3−S,2−4−Sを全長に渡って、2:2:
1.5:1 と異なるように設定したものである。分配管
の流路抵抗を変えるためには、もちろん分配管の長さを
異なるように設定しても良い。流路抵抗は分配器管の長
さの1乗に比例し、分配管の断面積を等価な直径を持つ
円と考える場合の直径の5乗に反比例するので、断面形
状を変化させる方が長さ変えるよりも流路抵抗を大きく
変化させる上では有効である。
FIG. 5 shows an embodiment in consideration of such a case. Distribution pipe 2-1 on the plate 4a for processing the distribution pipe
2-2, 2-3, 2-4 cross-sectional area 2-1-S, 2-2-
S: 2-3-S, 2-4-S over the entire length 2: 2:
The setting is different from 1.5: 1. In order to change the flow path resistance of the distribution pipe, the length of the distribution pipe may of course be set differently. The flow path resistance is proportional to the first power of the length of the distributor pipe, and inversely proportional to the fifth power of the diameter when considering the cross-sectional area of the distribution pipe as a circle having an equivalent diameter, so changing the cross-sectional shape is longer. It is more effective to change the flow path resistance than to change it.

【0009】図6は分配管の抵抗を設定するための他の
実施例を示している。記号は図5と同内容を示してい
る。図5との違いは分配管2−3,2−4の一部の通路
断面を狭くして流路抵抗を大きく設定した通路2−3−
1,2−4−1を有することである。この場合にも図5
と同様に熱交換器の複数の通路を流れる冷媒流量を制御
する効果がある。
FIG. 6 shows another embodiment for setting the resistance of the distribution pipe. The symbols indicate the same contents as in FIG. The difference from FIG. 5 is that a passage 2-3 is formed by narrowing the cross section of a part of the distribution pipes 2-3 and 2-4 to increase the flow resistance.
1, 4-4-1. Also in this case, FIG.
The effect of controlling the flow rate of the refrigerant flowing through the plurality of passages of the heat exchanger is also provided.

【0010】図7は同一の断面形状に加工された分配管
の一部に抵抗体2−3−2,2−4−2を挿入して分配
管の流路抵抗を変化させた実施例である。図では分配管
2−3,2−4の一部を破って表示してあるように冷媒
通路の途中にオリフィス2−3−2,2−4−2を挿入
してある。オリフィスの代わりにキャピラリチューブな
どの細径管を挿入する方法も考えられる。この場合にも
図5,図6と同様に熱交換器の複数の通路を流れる冷媒
流量を制御する効果がある。
FIG. 7 shows an embodiment in which the resistors 2-3-2 and 2-4-2 are inserted into a part of the distribution pipe processed to have the same sectional shape to change the flow path resistance of the distribution pipe. is there. In the figure, the orifices 2-3-2 and 2-4-2 are inserted in the middle of the refrigerant passage as shown by breaking some of the distribution pipes 2-3 and 2-4. A method of inserting a small-diameter tube such as a capillary tube instead of the orifice may be considered. Also in this case, as in FIGS. 5 and 6, the effect of controlling the flow rate of the refrigerant flowing through the plurality of passages of the heat exchanger is obtained.

【0011】図8,図9は図1で伝熱管の配置が異なる
熱交換器への適用を考慮した本発明の他の実施例を示
す。図8でベンド管5−1,5−2,5−3,5−4は
図1の実施例と異なり、図9に示すように板4aとは一
体に成形されておらず、別部品となっている。板4aに
は伝熱管6−1−2,6−1−3が貫通する孔5−1−
1,5−1−2が設けられている。他の通路についても
同様に伝熱管6−2−2,6−2−3,6−3−2,6
−3−3,6−4−2,6−4−3が貫通する孔5−2
−1,5−2−2,5−3−1,5−3−2,5−4−
1,5−4−2が設けられている。ベンド管5−1,5
−2,5−3,5−4は従来技術のベンド管と同様であ
り、2枚の板で集積配管を形成してから後でロー付けす
る。このような構成とすることによって冷媒通路の構成
が異なる熱交換器を構成する場合にも片側の板4bは変
更する必要がなく、他方の板4aのみを変更すれば良
く、集積配管を適用するにあたってコスト低減が図れる
というメリットがある。例えば図10には同一の熱交換
器を用いて二つの冷媒通路を構成する場合の実施例を示
す。図10で記号は図9,図10と同一の内容を示す。
図9との違いは板4aには2−1,2−2の2本の分配
管が加工されている点およびヘッダ7aの加工形状が異
なる点である。他方の板4bは図9の場合と同一であ
る。すなわち量産にあたって、図9の4通路の熱交換器
用集積配管を構成する場合と図10の2通路熱交換器用
集積配管を構成する場合とで同一の部材4bが使用でき
るのでプレスの型台が節約できるという利点がある。
FIGS. 8 and 9 show another embodiment of the present invention in consideration of application to a heat exchanger in which the arrangement of heat transfer tubes is different from that in FIG. Unlike the embodiment shown in FIG. 1, the bend pipes 5-1, 5-2, 5-3, 5-4 in FIG. 8 are not integrally molded with the plate 4a as shown in FIG. Has become. Holes 5-1 through which the heat transfer tubes 6-1-2 and 6-1-3 pass through the plate 4a.
1, 5-1-2 are provided. Similarly for other passages, heat transfer tubes 6-2-2, 6-2-3, 6-3-2, 6
Holes 5-2 through which 3-3-3, 6-4-2, 6-4-3 penetrate
-1,5-2-2,5-3-1,5-3-2,5-4-
1, 5-4-2 are provided. Bend pipes 5-1 and 5
-2, 5-3 and 5-4 are similar to the bend pipe of the prior art, and an integrated pipe is formed by two plates and then brazed later. With such a configuration, even when a heat exchanger having different refrigerant passage configurations is configured, it is not necessary to change the plate 4b on one side, only the other plate 4a needs to be changed, and integrated piping is applied. This has the advantage of cost reduction. For example, FIG. 10 shows an embodiment in which two refrigerant passages are formed using the same heat exchanger. In FIG. 10, symbols indicate the same contents as those in FIGS. 9 and 10.
The difference from FIG. 9 is that two distribution pipes 2-1 and 2-2 are processed on the plate 4a and the processing shape of the header 7a is different. The other plate 4b is the same as in the case of FIG. That is, in mass production, the same member 4b can be used in the case of configuring the four-passage heat exchanger integrated pipe in FIG. 9 and in the case of configuring the two-passage heat exchanger integrated pipe in FIG. There is an advantage that you can.

【0012】図11は以上の実施例で分配管の端部の面
積を大きくして、分配器,伝熱管との接合部の位置合わ
せに余裕度を持つ構成にした点に特徴がある。図11で
分配館2−1,2−2,2−3,2−4はそれぞれ分配
管の通路幅より大きい直径の円形の端部2−1A,2−
B,2−1A,2−2B,2−3A,2−3B,2−4
A,2−4Bを持っている。このような形状とすること
によって、2枚の板4aと4bを接合して集積配管を構
成する際、例えば分配管2−1は分配器1の端部1−1
および伝熱管端部6−1−1との位置合わせが容易にな
り、ばらつきの少ない集積配管の生産が可能となる。
FIG. 11 is characterized in that the area of the end portion of the distribution pipe is increased in the above-described embodiment so that there is a margin in the alignment of the joint between the distributor and the heat transfer tube. In FIG. 11, distribution halls 2-1, 2-2, 2-3, 2-4 are circular end portions 2-1A, 2-having diameters larger than the passage widths of the distribution pipes, respectively.
B, 2-1A, 2-2B, 2-3A, 2-3B, 2-4
I have A, 2-4B. With such a shape, when the two plates 4a and 4b are joined to form an integrated pipe, for example, the distribution pipe 2-1 is the end portion 1-1 of the distributor 1.
Also, the alignment with the end portion 6-1-1 of the heat transfer tube becomes easy, and it is possible to produce integrated piping with little variation.

【0013】[0013]

【発明の効果】従来3次元的形状であった熱交換器周辺
の冷媒通路を2次元的平板内に集積した配管形状とした
ので機械による自動組み立てが容易となり、生産合理化
によるコスト低減が可能になる。また、集積配管のうち
複数の冷媒分配器管の流路抵抗をそれぞれ異なるように
設定できるようにしたので熱交換器の性能を最大限に引
き出すことができ、省電力化に寄与する効果がある。ま
た、集積配管を構成する2枚の板のうち、1枚の板は熱
交換器の伝熱管通路形状が変っても共用化できるように
したので生産合理化によるコスト低減が更に容易にな
る。さらに、集積配管の冷媒通路の結合状態の安定化が
図れるようにしたので集積配管成形の信頼性が増し、コ
スト低減の効果がさらに期待できる。
EFFECTS OF THE INVENTION Since the refrigerant passages around the heat exchanger, which have been three-dimensionally shaped in the past, are integrated into a two-dimensional flat plate, automatic assembly by a machine is facilitated, and cost can be reduced by rationalizing production. Become. In addition, since the flow path resistances of a plurality of refrigerant distributor tubes in the integrated piping can be set differently, the performance of the heat exchanger can be maximized and there is an effect of contributing to power saving. . Further, of the two plates constituting the integrated pipe, one plate can be shared even if the shape of the heat transfer tube passage of the heat exchanger is changed, so that the cost can be further reduced by rationalizing the production. Further, since the connection state of the refrigerant passages of the integrated pipe can be stabilized, the reliability of the integrated pipe molding is increased and the cost reduction effect can be further expected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の斜視図。FIG. 1 is a perspective view of a first embodiment of the present invention.

【図2】図1のA−A断面図。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】図1の実施例の分解斜視図。FIG. 3 is an exploded perspective view of the embodiment shown in FIG.

【図4】熱交換器に流入する空気の流速分布図。FIG. 4 is a flow velocity distribution diagram of air flowing into the heat exchanger.

【図5】図1の分配器管の斜視図。5 is a perspective view of the distributor tube of FIG. 1. FIG.

【図6】分配器管の第2の実施例の斜視図。FIG. 6 is a perspective view of a second embodiment of the distributor tube.

【図7】分配器管の第3の実施例の斜視図。FIG. 7 is a perspective view of a third embodiment of the distributor tube.

【図8】本発明の第2の実施例の斜視図。FIG. 8 is a perspective view of a second embodiment of the present invention.

【図9】図8の実施例の分解図。9 is an exploded view of the embodiment of FIG.

【図10】図9の実施例の他の分解図。FIG. 10 is another exploded view of the embodiment of FIG.

【図11】以上の実施例に共通して適用可能な分配管の
実施例の分解図。
FIG. 11 is an exploded view of an embodiment of a distribution pipe that can be commonly applied to the above embodiments.

【図12】従来技術の斜視図。FIG. 12 is a perspective view of a conventional technique.

【図13】従来技術の斜視図。FIG. 13 is a perspective view of a conventional technique.

【符号の説明】[Explanation of symbols]

1…冷媒分配器、2−1,2−2,2−3,2−4…分
配管、3…熱交換器、4…熱交換器の端板、5−1,5
−2,5−3,5−4…熱交換器のベンド管、7…ヘッ
ダ、7−1,7−2,7−3,7−4…ヘッダ端部、8
…膨張弁、9…膨張弁入口管、10…冷媒分配器への流
入管、11…ヘッダからの流出管、12…熱交換器に流
入する空気の流れ。
DESCRIPTION OF SYMBOLS 1 ... Refrigerant distributor, 2-1, 2-2, 2-3, 2-4 ... Distribution pipe, 3 ... Heat exchanger, 4 ... End plate of heat exchanger, 5-1 and 5
-2, 5-3, 5-4 ... Bend tube of heat exchanger, 7 ... Header, 7-1, 7-2, 7-3, 7-4 ... Header end portion, 8
... expansion valve, 9 ... expansion valve inlet pipe, 10 ... inflow pipe to refrigerant distributor, 11 ... outflow pipe from header, 12 ... flow of air flowing into heat exchanger.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 国方 優 静岡県清水市村松390番地 株式会社日立 製作所空調システム事業部内 (72)発明者 森山 金悟 東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所内 (72)発明者 出石 峰敏 静岡県清水市村松390番地 株式会社日立 製作所空調システム事業部内 (72)発明者 朴木 秀行 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所生産技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yu Kunikata 390 Muramatsu, Shimizu-shi, Shizuoka Prefecture Air conditioning system division, Hitachi, Ltd. (72) Inventor Kingo Moriyama 4-6, Kanda Surugadai, Chiyoda-ku, Tokyo Hitachi (72) Inventor Minetoshi Izushi 390 Muramatsu, Shimizu-shi, Shizuoka Hitachi Air Conditioning Systems Division (72) Inventor Hideyuki Parki 292 Yoshida-cho, Totsuka-ku, Yokohama, Kanagawa Co., Ltd. In-house

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】プレス成形して貼りあわせた2枚の平板内
に熱交換器に流入する冷媒を分配する冷媒分配器,前記
冷媒分配器から前記熱交換器へ冷媒を導く分配管,前記
熱交換器のベンド管の一部およびヘッダを一体に成形し
たことを特徴とする冷凍サイクルの集積配管。
1. A refrigerant distributor for distributing a refrigerant flowing into a heat exchanger into two flat plates which are press-formed and bonded together, a distribution pipe for guiding the refrigerant from the refrigerant distributor to the heat exchanger, and the heat. An integrated pipe for a refrigeration cycle, characterized in that a part of the bend pipe of the exchanger and the header are integrally molded.
JP8235396A 1996-04-04 1996-04-04 Integrated piping for refrigerating cycle Pending JPH09273829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8235396A JPH09273829A (en) 1996-04-04 1996-04-04 Integrated piping for refrigerating cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8235396A JPH09273829A (en) 1996-04-04 1996-04-04 Integrated piping for refrigerating cycle

Publications (1)

Publication Number Publication Date
JPH09273829A true JPH09273829A (en) 1997-10-21

Family

ID=13772217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8235396A Pending JPH09273829A (en) 1996-04-04 1996-04-04 Integrated piping for refrigerating cycle

Country Status (1)

Country Link
JP (1) JPH09273829A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185757A (en) * 2012-03-08 2013-09-19 Mitsubishi Electric Corp Refrigerant distributor, and heat pump device
WO2015049727A1 (en) * 2013-10-01 2015-04-09 三菱電機株式会社 Laminated header, heat exchanger, and air-conditioner
CN105164489A (en) * 2013-05-15 2015-12-16 三菱电机株式会社 Laminated header, heat exchanger, and air conditioner
EP2998683A4 (en) * 2013-05-15 2017-03-22 Mitsubishi Electric Corporation Laminated header, heat exchanger, and air conditioner
CN110940204A (en) * 2018-09-21 2020-03-31 日立江森自控空调有限公司 Heat exchanger and air conditioner provided with same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185757A (en) * 2012-03-08 2013-09-19 Mitsubishi Electric Corp Refrigerant distributor, and heat pump device
CN105164489A (en) * 2013-05-15 2015-12-16 三菱电机株式会社 Laminated header, heat exchanger, and air conditioner
EP2998683A4 (en) * 2013-05-15 2017-03-22 Mitsubishi Electric Corporation Laminated header, heat exchanger, and air conditioner
WO2015049727A1 (en) * 2013-10-01 2015-04-09 三菱電機株式会社 Laminated header, heat exchanger, and air-conditioner
CN105593630A (en) * 2013-10-01 2016-05-18 三菱电机株式会社 Laminated header, heat exchanger, and air-conditioner
JPWO2015049727A1 (en) * 2013-10-01 2017-03-09 三菱電機株式会社 Laminated header, heat exchanger, and air conditioner
CN105593630B (en) * 2013-10-01 2018-04-27 三菱电机株式会社 Cascade type collector, heat exchanger and air-conditioning device
US10222141B2 (en) 2013-10-01 2019-03-05 Mitsubishi Electric Corporation Stacking type header, heat exchanger and air-conditioning apparatus
CN110940204A (en) * 2018-09-21 2020-03-31 日立江森自控空调有限公司 Heat exchanger and air conditioner provided with same
CN110940204B (en) * 2018-09-21 2021-05-04 日立江森自控空调有限公司 Heat exchanger and air conditioner provided with same

Similar Documents

Publication Publication Date Title
US5086835A (en) Heat exchanger
US8302673B2 (en) Parallel flow evaporator with spiral inlet manifold
EP1809958A2 (en) Parallel flow evaporator with variable channel insertion depth
CN101443621A (en) Parallel flow heat exchanger with crimped channel entrance
KR20110110722A (en) Improved heat exchanger having an inlet distributor and outlet collector
WO2008060270A1 (en) Minichannel heat exchanger header insert for distribution
JP2005512013A (en) Split fin for heat exchanger
US5176200A (en) Method of generating heat exchange
JP3007839B2 (en) Shunt
JP2001324244A (en) Heat exchanger
JPH0886591A (en) Heat exchanger and refrigerant evaporator
JPH04295599A (en) Heat exchanger
JP2006029697A (en) Refrigerant evaporator
JPH09189490A (en) Heat exchanger and its manufacture
JP2000320929A (en) Refrigerant distributor
JP2002139295A (en) Heat exchanger for air conditioning
JPH09273829A (en) Integrated piping for refrigerating cycle
JP3576329B2 (en) Stacked heat exchanger
JPH03140795A (en) Lamination type heat exchanger
JP4264997B2 (en) Refrigerant evaporator
JP7247717B2 (en) Heat exchanger
JP2684831B2 (en) Shunt and manufacturing method thereof
JPS6321494A (en) Lamination type heat exchanger
JP2002013840A (en) Parallel flow type heat exchanger for air-conditioning
JP3533709B2 (en) Refrigerant evaporator