JPH0927329A - Molten carbonate fuel cell - Google Patents

Molten carbonate fuel cell

Info

Publication number
JPH0927329A
JPH0927329A JP7173820A JP17382095A JPH0927329A JP H0927329 A JPH0927329 A JP H0927329A JP 7173820 A JP7173820 A JP 7173820A JP 17382095 A JP17382095 A JP 17382095A JP H0927329 A JPH0927329 A JP H0927329A
Authority
JP
Japan
Prior art keywords
gas
cooling
battery
molten carbonate
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7173820A
Other languages
Japanese (ja)
Other versions
JP2865025B2 (en
Inventor
Shoji Ito
昌治 伊藤
Hidekazu Fujimura
秀和 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOYU TANSANENGATA NENRYO DENCH
YOYU TANSANENGATA NENRYO DENCHI HATSUDEN SYST GIJUTSU KENKYU KUMIAI
Original Assignee
YOYU TANSANENGATA NENRYO DENCH
YOYU TANSANENGATA NENRYO DENCHI HATSUDEN SYST GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOYU TANSANENGATA NENRYO DENCH, YOYU TANSANENGATA NENRYO DENCHI HATSUDEN SYST GIJUTSU KENKYU KUMIAI filed Critical YOYU TANSANENGATA NENRYO DENCH
Priority to JP7173820A priority Critical patent/JP2865025B2/en
Publication of JPH0927329A publication Critical patent/JPH0927329A/en
Application granted granted Critical
Publication of JP2865025B2 publication Critical patent/JP2865025B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a molten carbonate fuel cell with simple cooling structure, small in size, high in cooling effect, with excellent power generating performance by using an oxidizing agent gas in common as a cooling gas. SOLUTION: A stacked cell 1 is constituted by stacking a plurality of unit cells each comprising an electrolyte plate 12, an anode and a cathode arranged on each side of the electrolyte plate 12, and a separator 13 for forming a gas flow path for each of a fuel gas 6 and an oxidizing gas 3 on the outside of each electrode. The fuel gas 6 which is supplied from a supply pipe 7 through a lower header 2, passed through a fuel gas flow path within the unit cell, then exhausted from an exhaust pipe 8, and the oxidizing gas 3 which is supplied from a supply pipe 4 through an upper header 21, passed through a cooling gas flow path 11 formed by passing through the electrolyte plate 12, both electrodes, and the separator 13, then exhausted from an exhaust pipe 5 through an oxidizing gas flow path within the unit cell are electrochemically reacted to generate electric power.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、積層形燃料電池に係
り、特に、単位電池を複数個積層してなる溶融炭酸塩型
燃料電池の冷却構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated fuel cell, and more particularly to a cooling structure for a molten carbonate fuel cell in which a plurality of unit cells are laminated.

【0002】[0002]

【従来の技術】従来技術の積層形燃料電池の冷却構造と
しては、例えば、実開平2−27503号公報に開示されたも
のがある。これに記載されたリン酸形燃料電池の冷却構
造は、積層電池内に冷却板をスタックと同様に積層し、
その冷却板に冷却媒体用の配管を外部から取り付け、冷
却媒体の供給と排出を行う構造のものである。
2. Description of the Related Art As a conventional cooling structure for a laminated fuel cell, for example, there is one disclosed in Japanese Utility Model Publication No. 27503/1990. The cooling structure of the phosphoric acid fuel cell described in this is such that a cooling plate is laminated in the laminated cell in the same manner as the stack,
A cooling medium pipe is externally attached to the cooling plate to supply and discharge the cooling medium.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術では、溶
融炭酸塩型のようにリン酸形に比べて作動温度が高く、
積層電池全体を冷却する必要のある燃料電池に対し、冷
却板の数を増やさなければならず、それにより積層高さ
が高くなり電池全体が大きくなるという問題がある。ま
た、冷却媒体用の配管を外部から取り付けるため、積層
電池の構造として配管系が多くなり、冷却板の数が増え
ると更に配管系が複雑になるという問題がある。その上
に、このような複雑な配管系は、温度による配管系の熱
膨張や熱による積層電池の膨張あるいは面圧荷重による
収縮等により、積層高さが変化するという問題があり、
これに対する解決方法については、前述の開示技術に記
載されておらず、仮に上記影響を取り除く構造とすれ
ば、更に積層電池の構造が複雑になるという問題点があ
る。
In the above prior art, the operating temperature is higher than that of the phosphoric acid type such as the molten carbonate type,
There is a problem in that the number of cooling plates must be increased for a fuel cell that needs to cool the entire stacked cell, which increases the stack height and increases the size of the entire cell. Further, since the piping for the cooling medium is attached from the outside, there is a problem that the piping system is increased in the structure of the laminated battery and the piping system becomes more complicated when the number of cooling plates is increased. In addition, such a complicated piping system has a problem that the stack height changes due to thermal expansion of the piping system due to temperature or expansion of the laminated battery due to heat or contraction due to surface pressure load.
A solution to this is not described in the above-mentioned disclosed technique, and if a structure that eliminates the above influence is provided, the structure of the laminated battery becomes more complicated.

【0004】従って、本発明の目的は、冷却構造が簡単
で小形になり、冷却効果が高く発電性能の優れた溶融炭
酸塩型燃料電池を提供することにある。
Therefore, an object of the present invention is to provide a molten carbonate fuel cell which has a simple and compact cooling structure, has a high cooling effect and is excellent in power generation performance.

【0005】[0005]

【課題を解決するための手段】上記目的は、溶融炭酸塩
を保持する電解質板と、該電解質板を両側から挾むアノ
ード電極およびカソード電極と、該アノード電極および
カソード電極の外側に燃料ガスならびに酸化剤ガスを通
流するそれぞれのガス流路を形成するセパレータとから
構成される単位電池を複数個積層してなる溶融炭酸塩型
燃料電池において、前記電解質板と前記アノード電極お
よびカソード電極と前記セパレータとを貫通し、前記単
位電池を冷却する冷却用ガスを通流する冷却用ガス流路
を設け、前記冷却用ガス流路と前記酸化剤ガス流路とを
接続し、前記酸化剤ガスを冷却用ガス流路から前記酸化
剤ガス流路へ通流させることにより達成される。
The above object is to provide an electrolyte plate for holding a molten carbonate, an anode electrode and a cathode electrode sandwiching the electrolyte plate from both sides, a fuel gas and an anode electrode outside the anode electrode and the cathode electrode. In a molten carbonate fuel cell in which a plurality of unit cells each composed of a separator forming each gas flow path for flowing an oxidant gas are stacked, the electrolyte plate, the anode electrode, the cathode electrode, and the Penetrating the separator, providing a cooling gas passage for flowing a cooling gas for cooling the unit battery, connecting the cooling gas passage and the oxidizing gas passage, the oxidizing gas It is achieved by flowing the cooling gas flow path to the oxidant gas flow path.

【0006】[0006]

【作用】上記構成とすれば、酸化剤ガスを、積層電池内
の積層高さ方向に貫通して設けられた冷却用ガス流路を
通流する冷却用ガスと兼用させるので、別個に冷却用ガ
スを給排する手段を設けることなく、積層電池内の温度
分布を一様にすることができ、電池構造のコンパクト化
と電池性能の向上の両方が図られる。また、積層電池内
の最高温度部に冷却用ガス流路を設け、優先的に最高温
度部を冷却するので、最高と最低の温度差が小さくなり
特に最高温度が低くなり、発電性能の向上だけでなく、
電池構成材の熱劣化が防止され信頼性が向上する。そし
て、単位電池の酸化剤ガス流路同志を背中合わせに隣接
させ、かつ酸化剤ガスの流れ方向を対向流とするので、
反応熱で上昇した単位電池同志の温度相互作用により電
池全体として温度分布がより均一化し、さらに電池構造
のコンパクト化と電池性能の向上に繋がる。
With the above structure, the oxidant gas is also used as the cooling gas flowing through the cooling gas passage provided in the laminated battery so as to penetrate in the stack height direction. The temperature distribution in the laminated battery can be made uniform without providing a means for supplying and discharging gas, and both the compact battery structure and the improved battery performance can be achieved. In addition, since the cooling gas flow path is provided in the highest temperature part in the laminated battery and the highest temperature part is preferentially cooled, the difference in temperature between the highest and lowest is small and especially the highest temperature is low, improving only the power generation performance. Not
The thermal deterioration of the battery constituent materials is prevented and the reliability is improved. Then, since the oxidant gas flow paths of the unit cells are adjacent to each other back to back and the flow directions of the oxidant gas are opposite flows,
Due to the temperature interaction between the unit cells increased by the reaction heat, the temperature distribution in the entire battery becomes more uniform, which leads to a more compact battery structure and improved battery performance.

【0007】[0007]

【実施例】以下、本発明による実施例について図面を参
照し説明する。図1は、本発明による一実施例の溶融炭
酸塩型燃料電池の積層構造を示す図である。図に示され
ているように積層電池1の下端に、外部から積層電池1
へあるいは積層電池1から外部へ、ガスを給排気するた
めのプレナムを有する下部ヘッダ2がある。この下部ヘ
ッダ2に、酸化剤ガス3の給気管4および排気管5と、
燃料ガス6の給気管7および排気管8と、冷却用ガス9
の排気管10とが取り付けられている。そして、下部ヘ
ッダ2の上部方向に、冷却用ガス9の冷却用ガス流路1
1を有する電解質板12と、セパレータ13と、図に記
載されていないアノード電極およびカソード電極とが積
層され、電解質板12と両電極とセパレータ13とを貫
通し下部ヘッダ2を介して排気管10へ冷却用ガス9を
通流させる冷却用ガス流路11が形成されて、溶融炭酸
塩型燃料電池が構成されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a laminated structure of a molten carbonate fuel cell according to one embodiment of the present invention. As shown in the figure, the laminated battery 1 is externally attached to the lower end of the laminated battery 1.
There is a lower header 2 having a plenum for supplying and exhausting gas to and from the laminated battery 1. In the lower header 2, an air supply pipe 4 and an exhaust pipe 5 for the oxidant gas 3,
Air supply pipe 7 and exhaust pipe 8 for fuel gas 6 and cooling gas 9
And the exhaust pipe 10 are attached. The cooling gas flow path 1 for the cooling gas 9 is provided in the upper direction of the lower header 2.
1, an electrolyte plate 12, a separator 13, and an anode electrode and a cathode electrode (not shown) are stacked, and the exhaust pipe 10 penetrates through the electrolyte plate 12, both electrodes and the separator 13 and the lower header 2. A cooling gas flow passage 11 for allowing the cooling gas 9 to flow therethrough is formed to form a molten carbonate fuel cell.

【0008】このような構成の溶融炭酸塩型燃料電池に
おいて、通常、発電時における運転温度は650℃位で
あり、燃料ガス6と酸化剤ガス3もそれに近い温度で流
入する。そして、電池内で電気化学反応が起こり発電す
るものである。この時の反応熱により電池内部の温度が
上昇する。その温度上昇はガス流れに左右されて一様で
なく、電池内の温度分布は不均一なものとなる。電池内
の温度分布が不均一で最高温度と最低温度の温度差が大
きくなると、特に最高温度が高くなると、発電性能の低
下ばかりでなく電池構成材の熱劣化に繋がり、信頼性の
点から大きな問題となる。そこで、電池内の温度差等を
低減するため、最高温度部に冷却用ガス流路11を設
け、そこに冷却用ガス9を流し、最高温度部を冷却する
ことで電池内の温度分布を均一化するものである。この
冷却用ガス流路11の寸法と配置は、予め模擬試験や机
上解析によりその最適値を求め、適宜決定されるもので
ある。
In the molten carbonate fuel cell having such a structure, the operating temperature during power generation is usually about 650 ° C., and the fuel gas 6 and the oxidant gas 3 also flow in at a temperature close thereto. Then, an electrochemical reaction occurs in the battery to generate power. The reaction heat at this time raises the temperature inside the battery. The temperature rise is not uniform depending on the gas flow, and the temperature distribution in the battery becomes non-uniform. If the temperature distribution inside the battery is not uniform and the temperature difference between the maximum temperature and the minimum temperature becomes large, especially if the maximum temperature becomes high, not only the power generation performance will decrease, but also the thermal deterioration of the battery components will lead to a significant increase in reliability. It becomes a problem. Therefore, in order to reduce the temperature difference and the like in the battery, a cooling gas flow path 11 is provided in the highest temperature part, and the cooling gas 9 is caused to flow therethrough to cool the highest temperature part so that the temperature distribution in the battery is made uniform. It will be transformed. The dimensions and arrangement of the cooling gas flow channel 11 are determined as appropriate by previously obtaining an optimum value by a simulation test or desk analysis.

【0009】電池内のガス流れについて説明する。電池
外部から供給された燃料ガス6は、給気管7から下部ヘ
ッダ2内へ流入し、下部ヘッダ2から燃料ガス用の内部
供給用マニホールド14を介して単位電池へ分配され
る。そして、単位電池内で電気化学反応が行われ、反応
で残存した燃料ガス6等が、燃料ガス用の内部排出用マ
ニホールド18を経て下部ヘッダ2に戻り排気管8から
電池外部へ排出される。また、酸化剤ガス3は、給気管
4から下部ヘッダ2内へ流入し、酸化剤ガス用の内部供
給用マニホールド15を介して単位電池へ分配され、反
応で残存した酸化剤ガス3が、酸化剤ガス用の内部排出
用マニホールド19を経て、下部ヘッダ2に戻り排気管
5から電池外部へ排出される。また、冷却用ガス9は、
図1に記載されていない上部ヘッダからそれぞれの単位
電池に設けられた冷却用ガス流路11を通流し、下部ヘ
ッダ2へ流入した後、排気管10から電池外部へ排出さ
れる。
The gas flow in the battery will be described. The fuel gas 6 supplied from the outside of the cell flows into the lower header 2 from the air supply pipe 7, and is distributed from the lower header 2 to the unit cells through the fuel gas internal supply manifold 14. Then, an electrochemical reaction is performed in the unit cell, and the fuel gas 6 and the like remaining in the reaction is returned to the lower header 2 through the internal discharge manifold 18 for the fuel gas and is discharged from the exhaust pipe 8 to the outside of the cell. Further, the oxidant gas 3 flows into the lower header 2 from the air supply pipe 4, and is distributed to the unit cells via the internal supply manifold 15 for the oxidant gas, and the oxidant gas 3 remaining in the reaction is oxidized. After passing through the internal discharge manifold 19 for the agent gas, it returns to the lower header 2 and is discharged from the exhaust pipe 5 to the outside of the battery. Further, the cooling gas 9 is
A cooling gas passage 11 provided in each unit battery flows from an upper header not shown in FIG. 1, flows into the lower header 2, and then is discharged from the exhaust pipe 10 to the outside of the battery.

【0010】ここで冷却用ガス流路11の配置について
説明する。図7に従来例の溶融炭酸塩型燃料電池におけ
る電池内の温度分布を示す。このような温度分布は、模
擬電池による発電試験結果や、机上解析による計算結果
から予め検討することが可能である。そして、冷却用ガ
ス流路11は、冷却効果の面から例えば図7に示した温
度分布の最高温度部となる位置に、即ち図1に示したよ
うに単位電池の最高温度部に設けるものである。これに
より電池内部の最高温度部が優先的に集中的に冷却さ
れ、さらに電池各部も冷却され、最高温度の低下と温度
分布の均一化が達成される。
Here, the arrangement of the cooling gas passage 11 will be described. FIG. 7 shows the temperature distribution in the cell of the conventional molten carbonate fuel cell. Such temperature distribution can be examined in advance based on the power generation test result of the simulated battery and the calculation result of the desktop analysis. The cooling gas flow path 11 is provided at a position which is the highest temperature part of the temperature distribution shown in FIG. 7, for example, in the highest temperature part of the unit battery as shown in FIG. is there. As a result, the highest temperature part inside the battery is preferentially and intensively cooled, and each part of the battery is also cooled, so that the maximum temperature is reduced and the temperature distribution is made uniform.

【0011】以上のように、本実施例によれば、積層電
池の最高温度部の温度を下げ、電池内の温度分布を改善
し、電池性能の向上と信頼性の向上を図ることができ
る。更にまた、反応熱により積層電池が積層高さ方向に
熱変位した場合でも、本実施例の冷却用ガス流路11は
積層電池と一体的に熱変位する構造であるので、熱影響
を受け難く、この点における信頼性が向上すると言え
る。
As described above, according to this embodiment, the temperature of the highest temperature part of the laminated battery can be lowered, the temperature distribution in the battery can be improved, and the battery performance and the reliability can be improved. Furthermore, even if the laminated battery is thermally displaced in the stacking height direction due to reaction heat, the cooling gas flow channel 11 of the present embodiment is thermally displaced integrally with the laminated battery, and thus is not easily affected by heat. It can be said that the reliability in this respect is improved.

【0012】図2は、他の実施例の溶融炭酸塩型燃料電
池の積層構造を示す図である。電解質板12と両電極と
セパレータ13とを貫通し、単位電池を冷却するための
冷却用ガス流路11を設け、冷却用ガス流路11と酸化
剤ガス流路とを接続し、酸化剤ガス3を冷却用ガス流路
11から酸化剤ガス流路へ通流させて、電気化学反応に
使用する酸化剤ガス3を冷却用ガス9と兼用する場合の
構成である。図に示すように、給気管4から上部ヘッダ
21に供給された酸化剤ガス3は、電池内の冷却用ガス
流路11を通流し最高温度部を冷却した後に、下部ヘッ
ダ2の酸化剤ガス用プレナムに流入する。そして、酸化
剤ガス用の内部供給用マニホールド15を経て、各単位
電池内に本来の反応ガスである酸化剤ガス3として供給
され、電気化学反応に使用された酸化剤ガス3は、内部
排出用マニホールド19を介して、再び下部ヘッダ2に
戻り排気管5から電池外部へ排出される。
FIG. 2 is a view showing a laminated structure of a molten carbonate fuel cell of another embodiment. A cooling gas passage 11 for cooling the unit battery is provided by penetrating the electrolyte plate 12, both electrodes and the separator 13, and the cooling gas passage 11 and the oxidizing gas passage are connected to each other to form an oxidizing gas. 3 is a configuration in which the cooling gas passage 11 is made to flow to the oxidizing gas passage so that the oxidizing gas 3 used for the electrochemical reaction is also used as the cooling gas 9. As shown in the figure, the oxidant gas 3 supplied from the air supply pipe 4 to the upper header 21 flows through the cooling gas flow passage 11 in the battery to cool the highest temperature part, and then the oxidant gas 3 of the lower header 2 is cooled. Flows into the plenum. Then, via the internal supply manifold 15 for the oxidant gas, the oxidant gas 3 that is supplied as the original reaction gas, that is, the oxidant gas 3 and is used in the electrochemical reaction into each unit cell is used for internal discharge. It returns to the lower header 2 again via the manifold 19, and is discharged from the exhaust pipe 5 to the outside of the battery.

【0013】本実施例の構成は、冷却用ガス9を別個に
給排し最高温度部を冷却する構成に比べ、冷却ガス用の
給排手段が不用となるので、電池構造が簡単になると言
う効果がある。特に、電池に供給される酸化剤ガス3が
冷却用ガス流路11を通る間に加熱されるため、別個に
酸化剤ガス加熱手段を有する従来構造よりも簡単になる
という効果もある。
Compared with the structure in which the cooling gas 9 is separately supplied and discharged to cool the highest temperature portion, the structure of this embodiment does not require the supply and discharge means for the cooling gas, so that the battery structure is simplified. effective. In particular, since the oxidant gas 3 supplied to the battery is heated while passing through the cooling gas flow path 11, there is also an effect that it is simpler than the conventional structure having the oxidant gas heating means separately.

【0014】図3は、もう1つ別の実施例の溶融炭酸塩
型燃料電池の部分構造を示す図である。図に示すよう
に、冷却用ガス流路11内に伝熱フィン31を設けた構
造である。電池内の最高温度部の熱は伝熱フィン31に
伝達され、冷却用ガス9が伝熱フィン31に触れること
により、冷却用ガス9との熱伝達が良好となり最高温度
部の冷却効果が大きくなる。これにより、少ない冷却用
ガス9の流量で冷却することができ電池全体のコンパク
ト化と電池コストの低減に結び付くものである。
FIG. 3 is a diagram showing a partial structure of a molten carbonate fuel cell of another embodiment. As shown in the figure, the heat transfer fins 31 are provided in the cooling gas passage 11. The heat of the highest temperature part in the battery is transferred to the heat transfer fins 31, and the cooling gas 9 touches the heat transfer fins 31, so that the heat transfer with the cooling gas 9 is good and the cooling effect of the highest temperature part is large. Become. As a result, cooling can be performed with a small flow rate of the cooling gas 9, which leads to downsizing of the entire battery and reduction of the battery cost.

【0015】図4は、更に別の実施例の溶融炭酸塩型燃
料電池の部分構造を示す図である。本実施例の積層構造
は、背中合わせに隣接する一方の酸化剤ガス流路と他方
の酸化剤ガス流路とを流れる酸化剤ガス3の流れ方向
が、互いに対向するよう酸化剤ガス流路を対向配置にし
た構成である。即ち、図に示すように、一方のガス流れ
方向は、酸化剤ガス3aが給気管4aから下部ヘッダ2
内へ流入し、電池内部を経て下部ヘッダ2に戻り、排気
管5aから排出され、他方のガス流れ方向は、酸化剤ガ
ス3bが給気管4bから下部ヘッダ2内へ流入し、排気
管5bから排出される方向である。次図を用いてさらに
説明する。
FIG. 4 is a diagram showing a partial structure of a molten carbonate fuel cell of still another embodiment. In the laminated structure of the present embodiment, the oxidant gas flow paths face each other so that the flow directions of the oxidant gas 3 flowing through one oxidant gas flow path and the other oxidant gas flow path adjacent to each other back to back face each other. It is a configuration arranged. That is, as shown in the figure, in one gas flow direction, the oxidant gas 3a flows from the air supply pipe 4a to the lower header 2
Flowing in, returning to the lower header 2 through the inside of the battery, and being discharged from the exhaust pipe 5a, in the other gas flow direction, the oxidant gas 3b flows from the air supply pipe 4b into the lower header 2 and then from the exhaust pipe 5b. It is the direction of discharge. Further explanation will be given with reference to the following figure.

【0016】図5は、図4のセパレータ13内を対向流
で流れる酸化剤ガス3のガス流れを示した図である。図
5(a)は、カソードA電極面側のセパレータ13上の
ガス流れを示した図であり、図5(b)は、カソードB
電極面側のセパレータ13上のガス流れを示した図であ
る。カソードA電極面側とカソードB電極面側とは背中
合わせに隣接した構成である。尚、セパレータ13等の
中央に冷却用ガス流路11が設けられている。
FIG. 5 is a diagram showing a gas flow of the oxidant gas 3 flowing in the separator 13 of FIG. 4 in a counter flow. FIG. 5A is a diagram showing a gas flow on the separator 13 on the cathode A electrode surface side, and FIG.
It is the figure which showed the gas flow on the separator 13 by the side of an electrode. The cathode A electrode surface side and the cathode B electrode surface side are adjacent to each other back to back. A cooling gas passage 11 is provided in the center of the separator 13 and the like.

【0017】酸化剤ガス3のガス流れは、例えば、図5
(a)のカソードA電極面側では、酸化剤ガス3aは、
セパレータ13の外周部位にある一方の内部供給用マニ
ホールド15aから電池内に流出し、図中の矢印で示す
ようなガス流れ41となり、外周部位にある一方の内部
排出用マニホールド19aへと流れる。
The gas flow of the oxidant gas 3 is, for example, as shown in FIG.
On the cathode A electrode surface side of (a), the oxidant gas 3a is
The gas flows from the one internal supply manifold 15a at the outer peripheral portion of the separator 13 into the battery, becomes a gas flow 41 as indicated by an arrow in the figure, and flows to the one internal exhaust manifold 19a at the outer peripheral portion.

【0018】そして、図5(b)のカソードB電極面側
では、酸化剤ガス3bは、他方の内部供給用マニホール
ド15bから、図中の矢印で示す方向に、他方の内部排
出用マニホールド19bへと流れる。即ち、A電極面側
とB電極面側とのガス流れはセパレータ13を背にして
逆方向の流れ関係にあり、換言すれば、A電極面側とB
電極面側の酸化剤ガス流路は対向流となる配置となって
いる。このように、酸化剤ガス用の内部供給用マニホー
ルド15と内部排出用マニホールド19とを、酸化剤ガ
ス3のガス流れ方向が積層電池の内部で対向流となるよ
う配置することにより、従来技術の一方向流に比べ、最
高温度と最低温度の温度差を低減することができる。こ
れについて次図を参照し説明する。
On the cathode B electrode surface side in FIG. 5B, the oxidant gas 3b flows from the other internal supply manifold 15b to the other internal discharge manifold 19b in the direction indicated by the arrow in the figure. Flows. That is, the gas flow between the A electrode surface side and the B electrode surface side has a reverse flow relationship with the separator 13 as the back, in other words, the A electrode surface side and the B electrode surface side.
The oxidant gas flow paths on the electrode surface side are arranged so as to be a counter flow. As described above, by disposing the internal supply manifold 15 and the internal discharge manifold 19 for the oxidant gas so that the gas flow directions of the oxidant gas 3 are opposite to each other inside the laminated battery, The temperature difference between the maximum temperature and the minimum temperature can be reduced as compared with the unidirectional flow. This will be described with reference to the following figure.

【0019】図6は、図5のカソード電極面における温
度分布の一例を示す図である。内部供給用マニホールド
15の入口部からの距離とカソード電極面の温度の関係
を示したものである。図中に実線で示した曲線は、本実
施例の対向流の場合の関係を図中に一点鎖線で示した曲
線は、従来例の一方向流の場合の関係を示すものであ
る。また、図中に破線で示した(a)曲線は、カソード
A電極面についての温度分布であり、(b)曲線は、カ
ソードB電極面のものである。但し、これらの曲線は、
冷却用ガス流路11が設けられてない場合のものであ
る。
FIG. 6 is a diagram showing an example of temperature distribution on the cathode electrode surface of FIG. The relationship between the distance from the inlet of the internal supply manifold 15 and the temperature of the cathode electrode surface is shown. The curve shown by the solid line in the figure shows the relationship in the case of the counter flow of the present embodiment, and the curve shown by the alternate long and short dash line in the figure shows the relationship in the case of the conventional one-way flow. The curve (a) shown by the broken line in the figure is the temperature distribution on the cathode A electrode surface, and the curve (b) is that on the cathode B electrode surface. However, these curves are
This is a case where the cooling gas passage 11 is not provided.

【0020】カソードA電極面の(a)曲線のように、
入口部で 550℃であった温度が出口部で 720℃付近であ
るという温度変化を示している。そして、隣接するカソ
ードB電極面では、ガス流れが逆方向であるので、
(a)曲線とは逆の(b)曲線のような温度変化を示し
ている。従って、電池全体では両方の温度が相互作用し
合って、実線で示した対向流曲線の温度となっていて、
入口部で 620℃、出口部で720℃位である。この場合の
最高温度と最低温度の温度差は、約100℃である。
As shown in the curve (a) of the cathode A electrode surface,
The temperature change was 550 ° C at the inlet and around 720 ° C at the outlet. Since the gas flow is in the opposite direction on the adjacent cathode B electrode surface,
The curve (b), which is the opposite of the curve (a), shows the temperature change. Therefore, in the entire battery, both temperatures interact with each other, resulting in the temperature of the countercurrent curve shown by the solid line,
It is 620 ℃ at the inlet and 720 ℃ at the outlet. In this case, the temperature difference between the maximum temperature and the minimum temperature is about 100 ° C.

【0021】一方、図中に一点鎖線で示した一方向流曲
線は、(a)曲線と同じである。従って入口部 550℃、
出口部 720℃であり、温度差は、約170℃である。これ
により、本実施例の対向流は、従来例の一方向流に比べ
約40% 温度差を低減することができる。しかしなが
ら、確かに酸化剤ガス3の流れを対向流としただけで
も、一方向流に比べ温度分布は改善できるが、未だ最高
温度と最低温度の温度差は約100℃近くあり、さらに温
度分布の均一化を図る必要があると言える。
On the other hand, the one-way flow curve shown by the alternate long and short dash line in the figure is the same as the curve (a). Therefore the inlet part 550 ℃,
The outlet is 720 ° C, and the temperature difference is about 170 ° C. As a result, the counterflow of this embodiment can reduce the temperature difference by about 40% as compared with the unidirectional flow of the conventional example. However, even if the flow of the oxidant gas 3 is only counter flow, the temperature distribution can be improved as compared with the one-way flow, but the temperature difference between the maximum temperature and the minimum temperature is still about 100 ° C, and the temperature distribution It can be said that it is necessary to make it uniform.

【0022】そこで、前述の図4の実施例では、対向流
の構成に加えて、図6に示すように最高温度部となる電
池中央部に冷却用ガス流路11を設け、さらに温度分布
の均一化を図ったものが図示されている。従って、酸化
剤ガス3を対向流とした場合は、一方向流に比べて前述
のように温度差が小さいので、対向流の構成と冷却用ガ
ス流路11の設置とを合わせて採用すれば、より少ない
冷却用ガス9の流量で電池全体の温度分布を均一化する
ことができ、更に電池全体のコンパクト化と電池コスト
の低減において優れていると言える。以上のように、本
実施例によれば、積層電池全体の温度分布の一様化が容
易に可能となり、性能、寿命、信頼性の優れた燃料電池
を得ることができる。
Therefore, in the embodiment of FIG. 4 described above, in addition to the structure of the counter flow, as shown in FIG. 6, a cooling gas passage 11 is provided in the central portion of the battery, which is the highest temperature portion, and the temperature distribution The thing which aimed at homogenization is shown. Therefore, when the oxidant gas 3 is the counter flow, the temperature difference is smaller than that in the one-way flow as described above. Therefore, if the configuration of the counter flow and the installation of the cooling gas passage 11 are adopted together. It can be said that the temperature distribution of the entire battery can be made uniform with a smaller flow rate of the cooling gas 9, and the battery is more compact and the battery cost can be reduced. As described above, according to this example, it is possible to easily make the temperature distribution of the entire laminated cell uniform, and to obtain a fuel cell having excellent performance, life, and reliability.

【0023】[0023]

【発明の効果】本発明によれば、酸化剤ガスを冷却用ガ
スと兼用し酸化剤ガスで積層電池を冷却し、電池内の温
度分布の改善を図るので、電池構造のコンパクト化と電
池性能の向上の両方が達成されると言う効果がある。特
に電池に供給される酸化剤ガスが冷却用ガス流路を通る
間に加熱されるため、別個に酸化剤ガス加熱手段を有す
る従来構造よりも簡単になるという効果もある。
According to the present invention, the oxidizing gas is also used as the cooling gas and the laminated battery is cooled by the oxidizing gas to improve the temperature distribution in the battery, so that the battery structure is made compact and the battery performance is improved. There is an effect that both the improvement of is achieved. In particular, since the oxidant gas supplied to the battery is heated while passing through the cooling gas flow path, there is an effect that the structure becomes simpler than the conventional structure having the oxidant gas heating means separately.

【0024】また、電池の最高温度部を集中的に冷却す
ることにより、または冷却用ガス流路に伝熱フィンを設
けることにより、または酸化剤ガスの流れを対向流とす
ることにより、電池構成材の熱劣化の防止と、電池全体
のコンパクト化や電池コストの低減が図られる効果があ
る。
Further, by concentratingly cooling the highest temperature portion of the battery, or by providing heat transfer fins in the cooling gas passage, or by making the flow of the oxidant gas countercurrent, This has the effects of preventing heat deterioration of the material, making the entire battery compact, and reducing the battery cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による一実施例の溶融炭酸塩型燃料電池
の積層構造を示す図である。
FIG. 1 is a diagram showing a laminated structure of a molten carbonate fuel cell according to an embodiment of the present invention.

【図2】本発明による他の実施例の溶融炭酸塩型燃料電
池の積層構造を示す図である。
FIG. 2 is a view showing a laminated structure of a molten carbonate fuel cell of another embodiment according to the present invention.

【図3】もう1つ別の実施例の溶融炭酸塩型燃料電池の
部分構造を示す図である。
FIG. 3 is a view showing a partial structure of a molten carbonate fuel cell of another embodiment.

【図4】さらに別の実施例の溶融炭酸塩型燃料電池の積
層構造を示す図である。
FIG. 4 is a view showing a laminated structure of a molten carbonate fuel cell of still another embodiment.

【図5】図4のセパレータ13内を対向流で流れる酸化
剤ガス3のガス流れを示した図である。
5 is a diagram showing a gas flow of an oxidant gas 3 flowing in a counter flow in the separator 13 of FIG.

【図6】図5のカソード電極面における温度分布の一例
を示す図である。
6 is a diagram showing an example of temperature distribution on the cathode electrode surface of FIG.

【図7】従来例の溶融炭酸塩型燃料電池における電池内
の温度分布を示した図である。
FIG. 7 is a diagram showing a temperature distribution in a cell in a molten carbonate fuel cell of a conventional example.

【符号の説明】[Explanation of symbols]

1:積層電池、2:下部ヘッダ、3:酸化剤ガス、4,
7:給気管、5,8,10:排気管、6:燃料ガス、
9:冷却用ガス、11:冷却用ガス流路、12:電解質
板、13:セパレータ、21:上部ヘッダ。
1: laminated battery, 2: lower header, 3: oxidant gas, 4,
7: air supply pipe, 5, 8, 10: exhaust pipe, 6: fuel gas,
9: cooling gas, 11: cooling gas flow path, 12: electrolyte plate, 13: separator, 21: upper header.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】溶融炭酸塩を保持する電解質板と、該電解
質板を両側から挾むアノード電極およびカソード電極
と、該アノード電極およびカソード電極の外側に燃料ガ
スならびに酸化剤ガスを通流するそれぞれのガス流路を
形成するセパレータとから構成される単位電池を複数個
積層してなる溶融炭酸塩型燃料電池において、 前記電解質板と前記アノード電極およびカソード電極と
前記セパレータとを貫通し、前記単位電池を冷却する冷
却用ガスを通流する冷却用ガス流路を設け、 前記冷却用ガス流路と前記酸化剤ガス流路とを接続し、
前記酸化剤ガスを冷却用ガス流路から前記酸化剤ガス流
路へ通流させることを特徴とする溶融炭酸塩型燃料電
池。
1. An electrolyte plate for holding a molten carbonate, an anode electrode and a cathode electrode sandwiching the electrolyte plate from both sides, and a fuel gas and an oxidant gas which flow outside the anode electrode and the cathode electrode, respectively. In a molten carbonate fuel cell in which a plurality of unit cells each of which is composed of a separator forming a gas flow path are laminated, the unit penetrates through the electrolyte plate, the anode electrode, the cathode electrode, and the separator. Providing a cooling gas passage for flowing a cooling gas for cooling the battery, connecting the cooling gas passage and the oxidant gas passage,
A molten carbonate fuel cell, wherein the oxidant gas is caused to flow from a cooling gas channel to the oxidant gas channel.
【請求項2】請求項1において、冷却用ガス流路は、前
記単位電池の最高温度部に設けたことを特徴とする溶融
炭酸塩型燃料電池。
2. The molten carbonate fuel cell according to claim 1, wherein the cooling gas passage is provided at the highest temperature portion of the unit cell.
【請求項3】請求項1において、前記冷却用ガス流路内
に、伝熱フィンを設けたことを特徴とする溶融炭酸塩型
燃料電池。
3. The molten carbonate fuel cell according to claim 1, wherein heat transfer fins are provided in the cooling gas passage.
【請求項4】請求項1または請求項2において、背中合
わせに隣接する一方の前記酸化剤ガス流路と他方の前記
酸化剤ガス流路とを流れる前記酸化剤ガスの流れ方向
が、互いに対向するよう前記酸化剤ガス流路を対向配置
にしたことを特徴とする溶融炭酸塩型燃料電池。
4. The flow direction of the oxidant gas flowing through one of the oxidant gas flow passages and the other of the oxidant gas flow passages that are adjacent to each other in a back-to-back manner according to claim 1 or 2. The molten carbonate fuel cell is characterized in that the oxidant gas flow paths are arranged opposite to each other.
JP7173820A 1995-07-11 1995-07-11 Molten carbonate fuel cell Expired - Fee Related JP2865025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7173820A JP2865025B2 (en) 1995-07-11 1995-07-11 Molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7173820A JP2865025B2 (en) 1995-07-11 1995-07-11 Molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPH0927329A true JPH0927329A (en) 1997-01-28
JP2865025B2 JP2865025B2 (en) 1999-03-08

Family

ID=15967765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7173820A Expired - Fee Related JP2865025B2 (en) 1995-07-11 1995-07-11 Molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JP2865025B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012145689A (en) * 2011-01-11 2012-08-02 Jvc Kenwood Corp Projection type display device
CN102993043A (en) * 2012-12-04 2013-03-27 天津大学 Method for preparing high-purity tetracycline hydrochloride

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012145689A (en) * 2011-01-11 2012-08-02 Jvc Kenwood Corp Projection type display device
CN102993043A (en) * 2012-12-04 2013-03-27 天津大学 Method for preparing high-purity tetracycline hydrochloride

Also Published As

Publication number Publication date
JP2865025B2 (en) 1999-03-08

Similar Documents

Publication Publication Date Title
JP3530054B2 (en) Fuel cell
JP2569550B2 (en) Fuel cell temperature distribution improvement method
US9876237B2 (en) Fuel cell separator and fuel cell stack and reactant gas control method thereof
US6756144B2 (en) Integrated recuperation loop in fuel cell stack
JPH06251790A (en) Fuel cell
JP3839978B2 (en) Polymer electrolyte fuel cell system
JPH08111230A (en) Operating method for solid high polymer type fuel cell
JP4821222B2 (en) Fuel cell system
JPS63248073A (en) Stacked fuel cell
JP2865025B2 (en) Molten carbonate fuel cell
JPH1167258A (en) Fuel cell
JP2610255B2 (en) Molten carbonate fuel cell
JP3355861B2 (en) Fuel cell
US20060263663A1 (en) Temperature management of an end cell in a fuel cell stack
JP3342243B2 (en) Solid oxide fuel cell
JPS6280972A (en) Improvement of temperature distribution of fuel cell
JPH01279575A (en) Fuel cell
JPH0750614B2 (en) Fuel cell
JPH07118330B2 (en) Gas header for fuel cell and fuel cell using the same
JP2000149962A (en) Cooling plate for fuel cell
JPH01246767A (en) Fuel cell
JPS63232271A (en) Manufacture of cooling plate for fuel cell of fused carbonate
JPH06105625B2 (en) Molten carbonate fuel cell
JPS61198571A (en) Fuel cell
JP2947549B2 (en) Fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees