JPH09270269A - Sodium sulfur battery module and battery system using it - Google Patents

Sodium sulfur battery module and battery system using it

Info

Publication number
JPH09270269A
JPH09270269A JP9018188A JP1818897A JPH09270269A JP H09270269 A JPH09270269 A JP H09270269A JP 9018188 A JP9018188 A JP 9018188A JP 1818897 A JP1818897 A JP 1818897A JP H09270269 A JPH09270269 A JP H09270269A
Authority
JP
Japan
Prior art keywords
alloy
sodium
container
battery module
electrode terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9018188A
Other languages
Japanese (ja)
Inventor
Tadahiko Mitsuyoshi
忠彦 三吉
Hisamitsu Hatou
久光 波東
Koji Kusakabe
康次 日下部
Manabu Madokoro
間所  学
Tetsuo Koyama
哲雄 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9018188A priority Critical patent/JPH09270269A/en
Publication of JPH09270269A publication Critical patent/JPH09270269A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a battery system with high reliability by using a Cr- containing alloy as a material constituting a positive electrode container, and using a joint member of the Cr-containing alloy and Al or an Al alloy as an electrode terminal connecting to the positive container. SOLUTION: A bag pipe made of a lithium doped β-alumina sintered body is used as a solid electrolyte pipe 11. An α-alumina ring is used as an insulation member 17, and joined with the pipe 11, then the member 17, a negative electrode container 12, and a flange 16 are joined with an Al-Si-Mg base alloy foil. The negative electrode 12 is made of SUS 329J material, and filled with sodium 18 and SUS wick, then sealed. A positive container 14 is made of SUS 310S and the flange 16 is made of SUS 329J, and they are welded to unite them. An electrode terminals 4, 5 are made of the clad material of SUS 430 or SUS 304 and aluminum, SUS parts 41, 51 are welded to the containers 12, 14 respectively, aluminum parts 42, 52 and an aluminum bus bar 6 are spot- welded. A battery obtained is put in a heat insulating container to form a module.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電力貯蔵装置,電
気自動車,非常用電源,無停電電源,電力系統のピーク
カット装置,周波数・電圧安定化装置などの電池システ
ムに用いるに好適なナトリウム硫黄電池モジュール、及
び、それを用いた電池システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to sodium sulfur suitable for use in battery systems such as power storage devices, electric vehicles, emergency power supplies, uninterruptible power supplies, power system peak cut devices, frequency / voltage stabilizers, and the like. The present invention relates to a battery module and a battery system using the same.

【0002】[0002]

【従来の技術】負極にナトリウム、正極に硫黄などを用
いたナトリウム硫黄電池は、その効率やエネルギ密度が
大きいことから注目され、電力貯蔵装置や電気自動車な
どへの利用が期待されている。しかしながら、複数個の
電池を接続した電池モジュールを構成する場合、電極端
子間の接続や電極端子とブスバとの接続、及び、電極端
子と接続される電池容器材料には信頼性上の問題が残さ
れていた。すなわち、複数個の電池を接続する方法とし
ては、特開平4−284351 号公報に見られる様に、電気抵
抗の低いAl合金などの電極端子をインタコネクタにね
じ止めしたり、特開平3−59961号公報や同平5−114417
号公報に見られる様に、ブレージング材を介してAl合
金などの電極端子を鉄系材料から成る電池容器と熱圧接
したり、特開平4−282556 号公報に見られる様に、Al
合金から成る電極端子をスポット溶接法で接合する例な
どが提案されている。しかしながら、ねじ止めの方法に
は、電池動作温度である350℃程度の温度ではAlや
Al合金が塑性変形し、昇降温の繰り返しによりねじ止
め部がゆるみ易い問題があり、鉄系電池容器とAl系電
極端子とを熱圧接する方法には、地震などによって電池
が振動した際に接合部に大きな荷重が加わって、もろい
金属間化合物のできやすいAlまたはAl合金との異材
接合部が破損する危険性があり、Al合金同士のスポッ
ト溶接の方法には、正極容器や負極容器の材料がAl合
金以外の場合には、電極端子と正極容器や負極容器との
接合部に金属間化合物の出来やすい異材接合部が生じ
て、やはり信頼性を損なうこと、正極容器としてAlや
Al合金を用いた場合には、昇降温時に正極モールドか
らの応力により容器が変形すること、Alは硫黄と反応
して絶縁性の硫化物を形成するため、正極容器の内面に
はCr,Ti,Cなどを主成分とする耐食層をコーティ
ングする必要があり、コーティングの剥離や欠陥を生じ
易いこと、耐食層の剥離部や欠陥部でAlと硫黄が反応
して電池特性を損なうことなどの問題があった。このよ
うに、複数の電池を接続した従来のナトリウム硫黄電池
モジュールには信頼性上の問題が残されていた。なお、
特開平3− 127465号公報には、正極容器又は負極容
器の一部としてAlとFeなどとのクラッド材を用いる
例が報告されているが、電池間の接続の問題については
考慮されていない。
2. Description of the Related Art A sodium-sulfur battery using sodium for a negative electrode and sulfur for a positive electrode has been attracting attention because of its high efficiency and energy density, and is expected to be used for a power storage device, an electric vehicle and the like. However, when constructing a battery module in which a plurality of batteries are connected, there remains a reliability problem in connection between electrode terminals, connection between electrode terminals and busbars, and battery container material connected to electrode terminals. It had been. That is, as a method of connecting a plurality of batteries, as shown in Japanese Patent Application Laid-Open No. 4-284351, electrode terminals such as an Al alloy having a low electric resistance are screwed to an interconnector, or Japanese Patent Application Laid-Open No. 3-59961. Gazette and the same 5-114417
As disclosed in Japanese Unexamined Patent Publication No. 282556, an Al alloy or other electrode terminal is heat-pressed to a battery container made of an iron-based material through a brazing material.
An example in which electrode terminals made of an alloy are joined by spot welding has been proposed. However, the screwing method has a problem that Al or Al alloy plastically deforms at a temperature of about 350 ° C., which is a battery operating temperature, and the screwing portion is likely to loosen due to repeated temperature rising and falling. With the method of heat-pressure contact with the system electrode terminals, there is a risk that a large load will be applied to the joint when the battery vibrates due to an earthquake, etc., and the dissimilar material joint with Al or Al alloy, which easily forms brittle intermetallic compounds, will be damaged In the method of spot welding Al alloys with each other, if the material of the positive electrode container or the negative electrode container is other than the Al alloy, an intermetallic compound is easily formed at the joint between the electrode terminal and the positive electrode container or the negative electrode container. When dissimilar material joints occur, reliability is also impaired. When Al or Al alloy is used for the positive electrode container, the container is deformed by the stress from the positive electrode mold during temperature rising and falling. Since it reacts with sulfur to form an insulative sulfide, it is necessary to coat the inner surface of the positive electrode container with a corrosion-resistant layer containing Cr, Ti, C, etc. as the main component, which may easily cause peeling or defects of the coating. However, there is a problem in that Al and sulfur react with each other in the peeled portion or the defective portion of the corrosion resistant layer to impair the battery characteristics. As described above, the conventional sodium-sulfur battery module in which a plurality of batteries are connected has a problem in reliability. In addition,
Japanese Unexamined Patent Publication (Kokai) No. 3-127465 reports an example of using a clad material such as Al and Fe as a part of the positive electrode container or the negative electrode container, but does not consider the problem of connection between batteries.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、信頼
性の高い電力貯蔵装置,電気自動車,非常用電源,無停
電電源,電力系統のピークカット装置,周波数・電圧安
定化装置などの電池システムを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide batteries for highly reliable power storage devices, electric vehicles, emergency power supplies, uninterruptible power supplies, power system peak cut devices, frequency / voltage stabilizers, and the like. To provide a system.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するた
め、本発明のナトリウム硫黄電池モジュールは、ナトリ
ウムを収納した負極容器と、硫黄または多硫化ナトリウ
ムから成る正極モールドを収納した正極容器と、前記負
極,正極間を分離したナトリウムイオン導電性固体電解
質、及び、前記固体電解質に接続され、前記負極容器,
正極容器とに接合された絶縁部材、とからなるナトリウ
ム硫黄電池の複数個を、電極端子を介して接続し、高温
に保持した断熱容器内へ収納したナトリウム硫黄電池モ
ジュールにおいて、前記正極容器を構成する材料として
Cr含有合金を用いると共に、前記正極容器と接続する
前記電極端子としてCr含有合金とAlまたはAl合金
との接合部材を用い、前記電極端子のCr含有合金部と
前記正極容器とを接合し、前記電極端子のAlまたはA
l合金部を介して複数の電池間を接合したことを特徴と
している。また、前記負極容器を構成する材料としてC
r含有合金を用いると共に、前記負極容器と接合する前
記電極端子としてCr含有合金とAlまたはAl合金と
の接合部材を用い、前記電極端子のCr含有合金部と前
記負極容器とを接合し、前記電極端子のAlまたはAl
合金部を介して複数の電池間を接合すること、あるい
は、前記負極容器を構成する材料および前記負極容器と
接合する前記電極端子を構成する材料として、Alまた
はAl含有合金を用いて両者を接合することもできる。
In order to achieve the above object, the sodium-sulfur battery module of the present invention comprises a negative electrode container containing sodium, a positive electrode container containing a positive electrode mold made of sulfur or sodium polysulfide, and A sodium ion conductive solid electrolyte separated between the negative electrode and the positive electrode, and the negative electrode container connected to the solid electrolyte,
In a sodium-sulfur battery module in which a plurality of sodium-sulfur batteries consisting of an insulating member joined to a positive-electrode container, and connected via electrode terminals and housed in a heat-insulating container kept at high temperature, the positive-electrode container is configured. A Cr-containing alloy is used as a material, and a Cr-containing alloy and Al or an Al alloy is used as the electrode terminal connected to the positive electrode container, and the Cr-containing alloy portion of the electrode terminal is bonded to the positive electrode container. The Al or A of the electrode terminal
It is characterized in that a plurality of batteries are joined to each other through the l alloy part. Further, C is used as a material for the negative electrode container.
While using an r-containing alloy, a Cr-containing alloy and Al or an Al alloy is used as the electrode terminal to be joined to the negative electrode container, and the Cr-containing alloy portion of the electrode terminal is joined to the negative electrode container. Al of electrode terminal or Al
Joining a plurality of batteries via an alloy part, or joining both by using Al or an Al-containing alloy as a material forming the negative electrode container and a material forming the electrode terminal joined to the negative electrode container You can also do it.

【0005】ここで、前記電極端子のCr含有合金とA
l又はAl合金との前記接合部は、前記電極端子の低剛
性部に設けることが望ましい。また、Cr含有合金で構
成された前記正極容器の外表面、同じく前記負極容器の
外表面又は/およびそれらと接続した前記電極端子の外
表面には溶射などの方法でアルミニウム膜を形成するこ
とが特に望ましい。
Here, the Cr-containing alloy of the electrode terminal and A
It is desirable that the joint portion with 1 or Al alloy is provided in the low rigidity portion of the electrode terminal. Further, an aluminum film may be formed on the outer surface of the positive electrode container made of a Cr-containing alloy, the outer surface of the negative electrode container and / or the outer surface of the electrode terminal connected thereto by a method such as thermal spraying. Especially desirable.

【0006】さらに、本発明のナトリウム硫黄電池モジ
ュールにおいては、前記電極端子のAlまたはAl合金
部同士をAlまたはAl合金から成るブスバを介して接
合しても良い。
Further, in the sodium-sulfur battery module of the present invention, the Al or Al alloy portions of the electrode terminals may be joined together via a bus bar made of Al or Al alloy.

【0007】また、前記電極端子のCr含有合金と前記
電極端子のAlまたはAl合金部とは摩擦圧接法または
圧延法などの機械的方法で接合されていること、前記電
極端子のCr含有合金部と前記正極容器または負極容器
との接合、及び、前記電極端子のAlまたはAl合金部
同士の接合、または、前記電極端子のAlまたはAl合
金部と前記ブスバとの接合は、溶接法で接合されている
ことが望ましい。
Further, the Cr-containing alloy of the electrode terminal and the Al or Al alloy portion of the electrode terminal are joined by a mechanical method such as friction welding or rolling, and the Cr-containing alloy portion of the electrode terminal. And the positive electrode container or the negative electrode container, and the Al or Al alloy parts of the electrode terminal, or the Al or Al alloy part of the electrode terminal and the bus bar are joined by a welding method. Is desirable.

【0008】さらに、本発明の電池システムは、本発明
のナトリウム硫黄電池モジュールを用いた電力貯蔵装
置,電気自動車,非常用電源,無停電電源,電力系統の
ピークカット装置または周波数・電圧安定化装置である
ことを特徴としている。
Further, the battery system of the present invention is a power storage device using the sodium-sulfur battery module of the present invention, an electric vehicle, an emergency power supply, an uninterruptible power supply, a power system peak cut device or a frequency / voltage stabilizing device. It is characterized by being.

【0009】以下に本発明の内容を図面を用いて説明す
る。図1は本発明のナトリウム硫黄電池モジュール構造
の一例を示す。図において、1は断熱容器であり、断熱
性能が優れている理由から普通真空断熱容器が用いられ
る。なお、断熱容器内部は図示されていないヒータによ
って、加熱,保温される。2は断熱容器の蓋であり、断
熱容器の上部に設けることも可能である。3は断熱容器
内に収納された複数個のナトリウム硫黄電池であり、絶
縁部材17により負極容器31と正極容器32とに分離
されている。この例では、負極容器はAl合金で、正極
容器はCr含有合金で構成されている。また、4,5は
ナトリウム硫黄電池3と接合された電極端子であり、4
はAl合金で、5はCr含有合金部51とAlまたはA
l合金部52との接合部材から構成されており、電極端
子4が負極容器31と、電極端子5のCr含有合金部5
1が正極容器32と接合されている。さらに、6はAl
またはAl合金から成るブスバであり、電極端子4およ
び電極端子5のAlまたはAl合金部52と接合されて
いる。なお、7は電池3を固定する固定板である。図2
は本発明のナトリウム硫黄電池モジュールの他の例の部
分構造を示しており、図1と同じ番号のものは同じ内容
を示す。図において11はイオン導電性の固体電解質管
であり、普通β″アルミナセラミックスが用いられる。
12は固体電解質管11と共に負極室13を構成する負
極容器であり、14は正極容器で、フランジ16,固体
電解質管11と共に正極室15を構成している。なお、
この例では負極容器12,正極容器14,フランジ16
共にCr含有合金で構成されている。17は負極容器1
2と正極容器14とを絶縁し、かつ、これらと接合され
た絶縁部材であり、絶縁部材17と固体電解質管11の
開口部とはガラス半田などによって接続されるのが一般
的である。18は負極室13に収納されたナトリウム、
19は硫黄や多硫化ナトリウムから成る正極モールド
で、普通、これらを炭素繊維などに含浸して正極室15
内に収納されている。なお、負極容器12とナトリウム
18とは図示されていない金属板で電気的に接続されて
いる。また、4,5はCr含有合金とAl合金とを圧延
して得られたクラッド材から成る電極端子であり、それ
ぞれCr含有合金部41,51、AlまたはAl合金部
42,52から構成され、Cr含有合金部41は負極容
器12と、51は正極容器14と接合されている。さら
に、6はブスバであり、AlまたはAl合金部42,5
2と接合され、これらは図示されていない断熱容器へ収
納されている。
The contents of the present invention will be described below with reference to the drawings. FIG. 1 shows an example of the sodium-sulfur battery module structure of the present invention. In the figure, reference numeral 1 is a heat insulating container, and a vacuum heat insulating container is usually used because of its excellent heat insulating performance. The inside of the heat insulating container is heated and kept warm by a heater (not shown). Reference numeral 2 denotes a lid of the heat insulating container, which may be provided on the upper portion of the heat insulating container. Reference numeral 3 denotes a plurality of sodium-sulfur batteries housed in a heat insulating container, which are separated by an insulating member 17 into a negative electrode container 31 and a positive electrode container 32. In this example, the negative electrode container is made of Al alloy and the positive electrode container is made of Cr-containing alloy. Also, 4 and 5 are electrode terminals joined to the sodium-sulfur battery 3,
Is an Al alloy, 5 is a Cr-containing alloy portion 51 and Al or A
It is composed of a joining member with the l alloy part 52, and the electrode terminal 4 has the negative electrode container 31 and the Cr-containing alloy part 5 of the electrode terminal 5.
1 is joined to the positive electrode container 32. Furthermore, 6 is Al
Alternatively, the bus bar is made of an Al alloy and is joined to the Al or Al alloy portion 52 of the electrode terminal 4 and the electrode terminal 5. Incidentally, 7 is a fixing plate for fixing the battery 3. FIG.
Shows a partial structure of another example of the sodium-sulfur battery module of the present invention, and those having the same numbers as in FIG. 1 have the same contents. In the figure, numeral 11 is an ion conductive solid electrolyte tube, which is normally made of β ″ alumina ceramics.
Reference numeral 12 is a negative electrode container that constitutes the negative electrode chamber 13 together with the solid electrolyte tube 11, and 14 is a positive electrode container, which constitutes the positive electrode chamber 15 together with the flange 16 and the solid electrolyte tube 11. In addition,
In this example, the negative electrode container 12, the positive electrode container 14, the flange 16
Both are made of a Cr-containing alloy. 17 is the negative electrode container 1
2 is an insulating member that insulates the positive electrode container 14 from each other and is joined to them, and the insulating member 17 and the opening of the solid electrolyte tube 11 are generally connected by glass solder or the like. 18 is sodium stored in the negative electrode chamber 13,
Reference numeral 19 is a positive electrode mold made of sulfur or sodium polysulfide, which is usually impregnated with carbon fiber or the like to form a positive electrode chamber 15
Is housed inside. The negative electrode container 12 and the sodium 18 are electrically connected by a metal plate (not shown). Further, 4 and 5 are electrode terminals made of a clad material obtained by rolling a Cr-containing alloy and an Al alloy, each of which is composed of a Cr-containing alloy portion 41, 51, Al or an Al alloy portion 42, 52, The Cr-containing alloy part 41 is joined to the negative electrode container 12, and 51 is joined to the positive electrode container 14. Further, 6 is a bus bar, which is made of Al or Al alloy parts 42, 5
It is joined to 2, and these are housed in a heat insulating container (not shown).

【0010】図3は本発明のナトリウム硫黄電池モジュ
ールの他の例の部分構造を示しており、図1,図2と同
じ符号のものは同じ内容を示す。図において、20は負
極内に設置したナトリウム容器で、ナトリウム18はナ
トリウム容器の底に設けた底孔21を通って、固体電解
質管11の内面へ供給され、負極容器12とナトリウム
18とはナトリウム容器20によって電気的に接続され
ている。また、この例においても負極容器12,正極容
器14共にCr含有合金で構成されており、Cr含有合
金41,51とAlまたはAl合金42,52とのクラ
ッド材から成る電極端子4,5を介してAlまたはAl
合金製ブスバ6と接合され、これらは図示されていない
隣接電池の電極端子と接合されている。さらに、60は
負極容器12,正極容器14,電極端子4,5の外表面
に形成されたアルミニウム層である。
FIG. 3 shows a partial structure of another example of the sodium-sulfur battery module of the present invention, and the same reference numerals as those in FIGS. 1 and 2 show the same contents. In the figure, 20 is a sodium container installed in the negative electrode, and sodium 18 is supplied to the inner surface of the solid electrolyte tube 11 through a bottom hole 21 provided at the bottom of the sodium container, and the negative electrode container 12 and the sodium 18 are sodium. It is electrically connected by the container 20. Also in this example, both the negative electrode container 12 and the positive electrode container 14 are made of a Cr-containing alloy, and the electrode terminals 4, 5 made of a clad material of the Cr-containing alloys 41, 51 and Al or Al alloys 42, 52 are interposed. Al or Al
It is joined to the alloy bus bar 6, which is joined to an electrode terminal of an adjacent battery (not shown). Further, 60 is an aluminum layer formed on the outer surfaces of the negative electrode container 12, the positive electrode container 14, and the electrode terminals 4 and 5.

【0011】これらの構造においては、電極端子のCr
含有合金とAlまたはAl合金との異材接合部は電極端
子の内部に設けられており、この部分の剛性は一般に電
池容器との接合部やブスバとの接合部の剛性よりも小さ
いため、地震などの影響で電池が振動してもAlやAl
化合物と異材との接合部に加わる応力は小さく、接合の
信頼性を高く保つことができる。また、正極容器として
Cr含有合金のバルク材が用いられており、合金自身の
耐食性が優れていて内部に耐食性コーティング層を設け
る必要がないため、耐食性コーティング層の剥離や欠陥
の問題がないこと、硫黄と反応して生成する硫化クロム
の電気抵抗が低いことの理由で、硫黄や多硫化ナトリウ
ムによる正極容器の腐食に基づく電池特性劣化の恐れも
ない。これらの結果、複数の電池を接続した、信頼性の
高いナトリウム硫黄電池モジュールが実現される。
In these structures, the Cr of the electrode terminals is
The dissimilar material joint of the containing alloy and Al or Al alloy is provided inside the electrode terminal, and the rigidity of this portion is generally smaller than the rigidity of the joint with the battery container and the joint with the bus bar. Even if the battery vibrates under the influence of Al or Al
The stress applied to the joint between the compound and the dissimilar material is small, and the joint reliability can be kept high. Further, since a bulk material of a Cr-containing alloy is used as the positive electrode container, the alloy itself has excellent corrosion resistance, and there is no need to provide a corrosion-resistant coating layer inside, so there is no problem of peeling or defects of the corrosion-resistant coating layer, Because of the low electrical resistance of chromium sulfide generated by reaction with sulfur, there is no fear of deterioration of battery characteristics due to corrosion of the positive electrode container by sulfur or sodium polysulfide. As a result, a highly reliable sodium-sulfur battery module in which a plurality of batteries are connected is realized.

【0012】電極端子を形成するためのCr含有合金と
AlまたはAl合金との接合方法としては、量産性が高
いこと、もろい金属間化合物層が出来にくいことの理由
から、摩擦圧接法を用いるのが望ましく、この方法によ
り、容易に信頼性の高い接合部材を得ることができる。
また、圧延法によりCr含有合金とAlまたはAl合金
とのクラッド材を形成し、これを電極端子として用いて
もよい。クラッド材を用いるとAl部分の抵抗が低いた
め、電極端子の電気抵抗が低くできる利点がある。この
場合、クラッド材のCr含有合金部で正極容器または負
極容器と接合され、クラッド材のAlまたはAl合金部
で他の電池あるいはブスバと接合される。さらに、Cr
含有合金同士、および、AlまたはAl合金同士の接合
には、生産性,信頼性の点で溶接法を用いるのが望まし
い。
As a method of joining the Cr-containing alloy and Al or Al alloy for forming the electrode terminal, the friction welding method is used because of its high mass productivity and the difficulty of forming a brittle intermetallic compound layer. However, this method makes it possible to easily obtain a highly reliable joining member.
Alternatively, a clad material of Cr-containing alloy and Al or Al alloy may be formed by a rolling method and used as an electrode terminal. The use of the clad material has the advantage that the electric resistance of the electrode terminals can be reduced because the resistance of the Al portion is low. In this case, the Cr-containing alloy portion of the clad material is joined to the positive electrode container or the negative electrode container, and the Al or Al alloy portion of the clad material is joined to another battery or bus bar. In addition, Cr
It is desirable to use a welding method for joining the contained alloys and for joining Al or Al alloys from the viewpoint of productivity and reliability.

【0013】また、図3に示したように、Cr含有合金
からなる正極容器,負極容器や電極端子の外表面にアル
ミニウム層を設ければ、容器や電極端子の電気抵抗が下
がるため、通電時の局部的な抵抗発熱の恐れが無く、電
池および電池モジュールの信頼性が一層向上する。この
アルミニウム層を形成する方法としては、AlやAl合
金の溶射法,溶融アルミニウム中へのディップ法などが
考えられるが、信頼性の点からは、正極容器,負極容器
へ電極端子を接合した後、この上からAlまたはAl合
金を溶射する方法が最も好ましい。この方法によれば電
極端子内の異材接合部の温度上昇を比較的小さく押さえ
てアルミニウム層が形成でき、異材接合部の信頼性が高
く保たれる。なお、正極容器,負極容器や電極端子へ形
成したアルミニウム層の目的は電気抵抗を下げることに
あり、使用時に特に機械的接着強度は要求されないため
にアルミニウム層の剥離は問題になりにくいこと、ピン
ホールなどの欠陥や微小の剥離があっても電気抵抗には
さほど影響しないことから、アルミニウム層を形成した
ことによる信頼性低下の恐れはない。
Further, as shown in FIG. 3, when an aluminum layer is provided on the outer surfaces of the positive electrode container, the negative electrode container and the electrode terminal made of a Cr-containing alloy, the electric resistance of the container and the electrode terminal is lowered, so that when energized. There is no fear of local resistance heating, and the reliability of the battery and battery module is further improved. As a method of forming this aluminum layer, a thermal spraying method of Al or an Al alloy, a dipping method in molten aluminum, etc. can be considered, but from the viewpoint of reliability, after joining the electrode terminals to the positive electrode container and the negative electrode container, The method of spraying Al or Al alloy from above is most preferable. According to this method, the aluminum layer can be formed by suppressing the temperature rise of the dissimilar material joint portion in the electrode terminal relatively small, and the reliability of the dissimilar material joint portion can be kept high. The purpose of the aluminum layer formed on the positive electrode container, the negative electrode container, and the electrode terminals is to reduce the electrical resistance, and peeling of the aluminum layer is unlikely to be a problem because no particular mechanical adhesive strength is required during use. Even if there is a defect such as a hole or a minute peeling off, the electric resistance is not significantly affected, so that there is no fear that the reliability is lowered due to the formation of the aluminum layer.

【0014】なお、電極端子を構成するCr含有合金と
してはAlまたはAl合金との接合の信頼性が高いこと
とともに、加工性,溶接性に優れていることが望まし
く、Cr含有量13−26重量%の鉄基合金,Ni基合
金,Co基合金などを用いることができる。Crの量が
この範囲より少なくなるとAlまたはAl合金との接合
部の信頼性が損なわれ易く、多過ぎると電極端子への加
工や正極容器・負極容器への溶接が困難となる。具体的
にはSUS304(Cr18−20%,Ni8−10.5%)やSU
S430(Cr16−18%,C0.1%)などを用いると良
い。一方、電極端子を構成するAlまたはAl合金とし
ては、純Al,Al−Mn合金,Al−Mg合金,Al
−Cu合金,Al−Si合金などを用いることができ
る。これらの材料を用い、上述の摩擦圧接法や圧延法で
接合して電極端子を形成すれば、電極端子内の異材接合
界面に形成される金属間化合物層の厚さが薄く保たれ、
その後の電極端子の溶接や350℃近傍の電池動作温度
での長期使用に対しても異材接合界面が安定で、接合部
の信頼性を高く保つことができる。
It is desirable that the Cr-containing alloy forming the electrode terminal has high reliability in joining with Al or an Al alloy and has excellent workability and weldability. % Iron-based alloy, Ni-based alloy, Co-based alloy, etc. can be used. If the amount of Cr is less than this range, the reliability of the joint with Al or Al alloy is likely to be impaired, and if it is too large, processing into electrode terminals and welding to the positive electrode container / negative electrode container becomes difficult. Specifically, SUS304 (Cr18-20%, Ni8-10.5%) and SU
S430 (Cr16-18%, C0.1%) or the like is preferably used. On the other hand, as Al or Al alloy forming the electrode terminal, pure Al, Al-Mn alloy, Al-Mg alloy, Al
-Cu alloy, Al-Si alloy, etc. can be used. By using these materials to form electrode terminals by joining them by the friction welding method or rolling method described above, the thickness of the intermetallic compound layer formed at the dissimilar material joining interface in the electrode terminals is kept thin,
Even if the electrode terminals are subsequently welded or used for a long time at a battery operating temperature near 350 ° C., the dissimilar material bonding interface is stable, and the reliability of the bonding portion can be kept high.

【0015】また、負極容器の構成材料としてもCr含
有合金を用いることができ、この場合にも電極端子の場
合と同様にCr含有量13−26%程度の鉄基合金,N
i基合金,Co基合金を用いることができる。なお、負
極容器としてAlまたはAl合金を用いることも可能で
あり、その時は電極端子にも同様にAlまたはAl合金
を用いれば良い。
Also, a Cr-containing alloy can be used as a constituent material of the negative electrode container, and in this case as well as in the case of the electrode terminal, an iron-based alloy having a Cr content of about 13 to 26%, N.
An i-based alloy or a Co-based alloy can be used. It is also possible to use Al or Al alloy for the negative electrode container, and in that case, Al or Al alloy may be used for the electrode terminals as well.

【0016】さらに、正極容器を構成する材料として
は、硫黄や多硫化ナトリウムに対する耐食性が優れてい
ると共に、加工性,溶接性に優れていることが要求さ
れ、Co含有量30重量%以上,Cr含有量18〜32
重量%,C含有量0.2 重量%以下のCo基合金,Ni
含有量40重量%以上,Cr含有量18〜32重量%,
C含有量0.2 重量%以下のNi基合金、または、Fe
を主成分とし、Cr含有量22〜32重量%,C含有量
0.2 重量%以下の鉄基合金を用いることが望ましい。
具体的には、SUS310S(Cr24〜28重量%,Ni19
〜22重量%,Fe残り)やSUS329J1(Cr23〜28
重量%,Ni3〜6重量%,Mo3重量%,Fe残
り),SUS447J1(Cr28.5〜32重量%,Mo2重量
%,Fe残り)などを用いると良い。Cr量がこの範囲
より少なくなると耐食性が低下し、逆に多くなると正極
容器への加工や溶接が困難となる。C量がこれより多く
なると、正極容器への加工が困難となるばかりでなく、
溶接時にクロム炭化物が多量に析出して溶接部の残留歪
が増加し、溶接部の耐食性が損なわれる。また、これら
の合金に3〜15重量%のWまたは1〜10重量%のM
o、あるいは、0.2 〜4重量%のAlが含まれている
と、耐食性が一層向上して特に望ましい。W,Moおよ
びAlがこの範囲よりも少ないと添加効果が十分でな
く、多いと正極容器への加工が困難となる。
Further, the material for the positive electrode container is required to have excellent corrosion resistance to sulfur and sodium polysulfide, as well as excellent workability and weldability. Co content of 30% by weight or more, Cr Content 18-32
% Co, 0.2% by weight or less Co-based alloy, Ni
Content 40% by weight or more, Cr content 18-32% by weight,
Ni-based alloy with a C content of 0.2% by weight or less, or Fe
It is desirable to use an iron-based alloy containing, as a main component, a Cr content of 22 to 32% by weight and a C content of 0.2% by weight or less.
Specifically, SUS310S (24 to 28 wt% Cr, Ni19
~ 22 wt%, Fe balance) and SUS329J1 (Cr23 ~ 28)
%, Ni 3 to 6% by weight, Mo 3% by weight, Fe remaining), SUS447J1 (Cr 28.5 to 32% by weight, Mo 2% by weight, Fe remaining) and the like are preferably used. If the amount of Cr is less than this range, the corrosion resistance is lowered, and conversely, if it is increased, it becomes difficult to process or weld it to the positive electrode container. When the amount of C is larger than this, not only is it difficult to process the positive electrode container,
During welding, a large amount of chromium carbide precipitates, the residual strain in the weld increases, and the corrosion resistance of the weld deteriorates. In addition, these alloys contain 3 to 15% by weight of W or 1 to 10% by weight of M.
It is particularly desirable that O or 0.2 to 4% by weight of Al is contained because the corrosion resistance is further improved. If the amount of W, Mo and Al is less than this range, the effect of addition is not sufficient, and if it is more than this range, processing into a positive electrode container becomes difficult.

【0017】さらに、本発明のナトリウム硫黄電池モジ
ュールを用いることにより、電池システムの信頼性が向
上し、高信頼性の電力貯蔵装置,電気自動車,非常用電
源,無停電電源,電力系統のピークカット装置,周波数
・電圧安定化装置などが実現出来る。
Furthermore, by using the sodium-sulfur battery module of the present invention, the reliability of the battery system is improved, and a highly reliable power storage device, electric vehicle, emergency power supply, uninterruptible power supply, peak cut of the power system. Devices, frequency / voltage stabilizers, etc. can be realized.

【0018】[0018]

【発明の実施の形態】以下、本発明を実施例に従って説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments.

【0019】具体例として、図2に示すように、固体電
解質管としてリチュウムドープのβ″アルミナ焼結体か
らなる袋管を用いた。次に、絶縁部材17としてαアル
ミナリングを用い、固体電解質管とガラス接合すると共
に、アルミニウム−シリコン−マグネシウム系の合金箔
を用いて、絶縁部材17と負極容器12およびフランジ
16とを熱圧接法によって接合した。なお、負極容器1
2の材料にはSUS329J 材を用い、内部にはナトリウム1
8とSUSウイック(図示せず)を充填して封止した。
一方、正極容器14にはSUS310S,フランジ16にはSUS
329Jを用い、これらをTIG溶接、または電子ビーム溶
接して一体化した。なお、正極容器の内部には硫黄と炭
素繊維マットからなる正極モールド19を充填した。
As a specific example, as shown in FIG. 2, a bag tube made of a lithium-doped β ″ -alumina sintered body was used as the solid electrolyte tube. Next, an α-alumina ring was used as the insulating member 17, and the solid electrolyte tube was used. The insulating member 17 and the negative electrode container 12 and the flange 16 were bonded to each other by the hot pressing method using the aluminum-silicon-magnesium alloy foil while bonding the glass to the tube.
SUS329J material is used for the material of 2 and sodium is used inside
8 and SUS wick (not shown) were filled and sealed.
On the other hand, SUS310S is used for the positive electrode container 14 and SUS is used for the flange 16.
Using 329J, these were integrated by TIG welding or electron beam welding. The inside of the positive electrode container was filled with a positive electrode mold 19 made of sulfur and carbon fiber mat.

【0020】また、電極端子4,5にはSUS430又はSUS3
04とAlとのクラッド材を用い、SUS部41,51と
負極容器12及び正極容器14とはTIG溶接し、Al
部42,52とAlブスバ6とはスポット溶接した。こ
れらの電池を図1に示したと同様の断熱容器にいれてモ
ジュールを形成した。このモジュールを350℃で充放
電を繰り返した際の電極端子部の抵抗は電池1本当り約
0.4mΩ で、電池の内部抵抗の約1/10程度と小さ
かった。また、このモジュールを1500Ah/cm2 以上
充放電したり、室温から350℃の範囲で30回以上昇
降温を繰り返したり、地震を想定した振動を加えたりし
ても、電池の特性、及び、電極端子の抵抗や電極端子の
接続部の抵抗には変化はほとんど認められなかった。
The electrode terminals 4 and 5 are made of SUS430 or SUS3.
Using a clad material of 04 and Al, the SUS parts 41 and 51, the negative electrode container 12 and the positive electrode container 14 are TIG-welded to form Al.
The parts 42 and 52 and the Al bus bar 6 were spot-welded. These batteries were put into a heat insulating container similar to that shown in FIG. 1 to form a module. When this module was repeatedly charged and discharged at 350 ° C., the resistance of the electrode terminal portion was about 0.4 mΩ per battery, which was about 1/10 of the internal resistance of the battery. In addition, even if this module is charged and discharged at 1500 Ah / cm 2 or more, or if the temperature is raised or lowered 30 times or more in the range of room temperature to 350 ° C., or if vibration is applied assuming an earthquake, the battery characteristics and electrode Almost no change was observed in the resistance of the terminal or the resistance of the connection part of the electrode terminal.

【0021】同様な方法により、正極容器材料としてC
o含有量30重量%以上,Cr含有量18〜32重量
%,C含有量0.2 重量%以下のCo基合金,Ni含有
量40重量%以上,Cr含有量18〜32重量%,C含
有量0.2 重量%以下のNi基合金、または、Feを主
成分とし、Cr含有量22〜32重量%,C含有量0.2
重量%以下の鉄基合金等を用い、電極端子としてSUS430
とAl合金とを摩擦圧接したものや、圧延してクラッド
材としたものを用いた例を他の例と共に表1に示す。
By the same method, as a positive electrode container material, C was used.
o Co content 30 wt% or more, Cr content 18-32 wt%, C content 0.2 wt% or less Co-based alloy, Ni content 40 wt% or more, Cr content 18-32 wt%, C content Ni-based alloy in an amount of 0.2 wt% or less, or Fe as a main component, Cr content 22 to 32 wt%, C content 0.2
SUS430 is used as an electrode terminal by using iron-based alloy etc. of less than wt%
Table 1 together with other examples shows an example in which a material obtained by friction-welding an aluminum alloy with an aluminum alloy or a material obtained by rolling a clad material is used.

【0022】[0022]

【表1】 [Table 1]

【0023】表1において、効率及び容量の変化率は、
電流密度200mA/cm2 で500A/cm2 充放電する
と共に、室温から350℃の範囲で30回昇降温を繰り
返した前後の効率及び容量の変化率を示している。この
ように、本発明の望ましい材料組成範囲において、信頼
性の特に高いナトリウム硫黄電池モジュールの得られる
ことが判明した。また、電極端子としてCr含有量13
−26重量%の鉄基合金,Ni基合金またはCo基合金
とAl合金とを摩擦圧接したものを用いた場合にも、同
様な結果が得られた。
In Table 1, the change rates of efficiency and capacity are
At a current density of 200 mA / cm 2 while 500A / cm 2 charging and discharging, shows the rate of change of the efficiency and capacity before and after repeated 30 times decreasing the temperature in the range of 350 ° C. from room temperature. As described above, it was found that a highly reliable sodium-sulfur battery module can be obtained in the desirable material composition range of the present invention. Further, as the electrode terminal, the Cr content is 13
Similar results were obtained when a friction-welded alloy of -26 wt% iron-based alloy, Ni-based alloy or Co-based alloy and Al alloy was used.

【0024】また、上記実施例と同様な方法で図3に示
す構造の電池を作成した。ここで、容器および電極端子
の外表面に厚さ200μmのアルミニウム層60を溶射
した。この電池を上記例と同様に通電した時の電極端子
の抵抗は0.2mΩ で、上記例の1/2に低下した。ま
た、通電の繰り返しに対する電池特性や電極端子抵抗の
変化も認められなかった。
A battery having the structure shown in FIG. 3 was prepared in the same manner as in the above embodiment. Here, an aluminum layer 60 having a thickness of 200 μm was sprayed on the outer surfaces of the container and the electrode terminals. The resistance of the electrode terminal when the battery was energized in the same manner as in the above example was 0.2 mΩ, which was reduced to 1/2 of that in the above example. In addition, changes in battery characteristics and electrode terminal resistance due to repeated energization were not observed.

【0025】さらに、モジュールの特性が安定で信頼性
が高いため、本発明のナトリウム硫黄電池モジュールを
用いた電池システムの信頼性が高く、この電池システム
を用いて、高信頼性の電力貯蔵装置,電気自動車,非常
用電源,無停電電源,電力系統のピークカット装置,周
波数・電圧安定化装置などが実現できることが判明し
た。
Furthermore, since the characteristics of the module are stable and highly reliable, the battery system using the sodium-sulfur battery module of the present invention is highly reliable. By using this battery system, a highly reliable power storage device, It became clear that electric vehicles, emergency power supplies, uninterruptible power supplies, power system peak cut devices, frequency / voltage stabilizers, etc. could be realized.

【0026】[0026]

【発明の効果】本発明によれば、振動や昇降温,高温保
持に対する接続部の信頼性、及び、硫黄や多硫化ナトリ
ウムの腐食に対する正極容器の信頼性を高くでき、複数
個の電池を接続した、高信頼性のナトリウム硫黄電池モ
ジュールが実現される。
EFFECTS OF THE INVENTION According to the present invention, the reliability of the connection portion against vibration, temperature rise / fall, and high temperature retention and the reliability of the positive electrode container against corrosion of sulfur and sodium polysulfide can be increased, and a plurality of batteries can be connected. And a highly reliable sodium-sulfur battery module is realized.

【0027】さらに、本発明のナトリウム硫黄電池モジ
ュールを用いることにより、電池システムの信頼性が高
くでき、高信頼性の電力貯蔵装置,電気自動車,非常用
電源,無停電電源,電力系統のピークカット装置,周波
数・電圧安定化装置などが実現される。
Furthermore, by using the sodium-sulfur battery module of the present invention, the reliability of the battery system can be made high, and a highly reliable power storage device, electric vehicle, emergency power supply, uninterruptible power supply, peak cut of the power system. Devices, frequency / voltage stabilizers, etc. are realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電池モジュールの例を示す説明図。FIG. 1 is an explanatory diagram showing an example of a battery module of the present invention.

【図2】本発明の電池モジュールの例を示す説明図。FIG. 2 is an explanatory diagram showing an example of a battery module of the present invention.

【図3】本発明の電池モジュールの例を示す説明図。FIG. 3 is an explanatory diagram showing an example of a battery module of the present invention.

【符号の説明】[Explanation of symbols]

1…断熱容器、3…ナトリウム硫黄電池、4,5…電極
端子、6…ブスバ、11…固体電解質管、12、31…
負極容器、14、32…正極容器、17…絶縁部材、1
8…ナトリウム、19…正極モールド、60…アルミニ
ウム層。
DESCRIPTION OF SYMBOLS 1 ... Insulation container, 3 ... Sodium sulfur battery, 4,5 ... Electrode terminal, 6 ... Bus bar, 11 ... Solid electrolyte tube, 12, 31 ...
Negative electrode container, 14, 32 ... Positive electrode container, 17 ... Insulating member, 1
8 ... Sodium, 19 ... Positive electrode mold, 60 ... Aluminum layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 間所 学 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 小山 哲雄 茨城県日立市弁天町三丁目10番2号 日立 協和エンジニアリング株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Manabu Makoto 3-1-1, Saiwaicho, Hitachi City, Ibaraki Hitachi Ltd. Hitachi factory (72) Inventor Tetsuo Koyama 3-Bentencho, Hitachi City, Ibaraki Prefecture No. 10 No. 2 within Hitachi Kyowa Engineering Co., Ltd.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】ナトリウムを収納した負極容器と、硫黄ま
たは多硫化ナトリウムから成る正極モールドを収納した
正極容器と、前記負極,正極間を分離したナトリウムイ
オン導電性固体電解質、及び、前記固体電解質に接続さ
れ、前記負極容器,正極容器とに接合された絶縁部材と
から成るナトリウム硫黄電池の複数個を、電極端子を介
して接続し、高温に保持した断熱容器内へ収納したナト
リウム硫黄電池モジュールにおいて、前記正極容器を構
成する材料としてCr含有合金を用いると共に、前記正
極容器と接続する前記電極端子としてCr含有合金とA
lまたはAl合金との接合部材を用い、前記電極端子の
Cr含有合金部と前記正極容器とを接合し、前記電極端
子のAlまたはAl合金部を介して複数の電池間を接合
したことを特徴とするナトリウム硫黄電池モジュール。
1. A negative electrode container containing sodium, a positive electrode container containing a positive electrode mold made of sulfur or sodium polysulfide, a sodium ion conductive solid electrolyte separating the negative electrode and the positive electrode, and the solid electrolyte. A sodium-sulfur battery module in which a plurality of sodium-sulfur batteries connected to each other and composed of an insulating member joined to the negative electrode container and the positive electrode container are connected via electrode terminals and housed in a heat-insulating container kept at high temperature. A Cr-containing alloy is used as a material forming the positive electrode container, and a Cr-containing alloy and A are used as the electrode terminals connected to the positive electrode container.
A Cr-containing alloy portion of the electrode terminal and the positive electrode container are joined by using a joining member of 1 or Al alloy, and a plurality of batteries are joined through the Al or Al alloy portion of the electrode terminal. And sodium-sulfur battery module.
【請求項2】請求項1に記載の前記電極端子の低剛性部
にCr含有合金とAl又はAl合金との前記接合部を設
けた電極端子を用いたナトリウム硫黄電池モジュール。
2. A sodium-sulfur battery module using an electrode terminal according to claim 1, wherein the low-rigidity portion of the electrode terminal is provided with the joint portion of a Cr-containing alloy and Al or an Al alloy.
【請求項3】請求項1または2に記載の前記正極容器の
外表面または/及び前記電極端子の外表面にアルミニウ
ム層を形成したナトリウム硫黄電池モジュール。
3. A sodium-sulfur battery module in which an aluminum layer is formed on the outer surface of the positive electrode container or / and the outer surface of the electrode terminal according to claim 1.
【請求項4】請求項1,2又は3のいずれかに記載の前
記負極容器を構成する材料としてCr含有合金を用いる
と共に、前記負極容器と接合する前記電極端子としてC
r含有合金とAlまたはAl合金との接合部材を用い、
前記電極端子のCr含有合金部と前記負極容器とを接合
し、前記電極端子のAlまたはAl合金部を介して複数
の電池間を接合したナトリウム硫黄電池モジュール。
4. A Cr-containing alloy is used as a material forming the negative electrode container according to claim 1, and C is used as the electrode terminal joined to the negative electrode container.
Using a joining member of r-containing alloy and Al or Al alloy,
A sodium-sulfur battery module in which a Cr-containing alloy portion of the electrode terminal is joined to the negative electrode container, and a plurality of batteries are joined via Al or an Al alloy portion of the electrode terminal.
【請求項5】請求項4のいずれかに記載の前記電極端子
の低剛性部にCr含有合金とAl又はAl合金との前記
接合部を設けた電極端子を用いたナトリウム硫黄電池モ
ジュール。
5. A sodium-sulfur battery module using an electrode terminal according to claim 4, wherein the low-rigidity portion of the electrode terminal is provided with the joint portion of a Cr-containing alloy and Al or an Al alloy.
【請求項6】請求項4または5のいずれかに記載の前記
負極容器の外表面または/及び前記電極端子の外表面に
アルミニウム層を形成したナトリウム硫黄電池モジュー
ル。
6. A sodium-sulfur battery module having an aluminum layer formed on the outer surface of the negative electrode container and / or the outer surface of the electrode terminal according to claim 4.
【請求項7】請求項3又は6のいずれかに記載の前記ア
ルミニウム層を溶射法で形成したナトリウム硫黄電池モ
ジュール。
7. A sodium-sulfur battery module in which the aluminum layer according to claim 3 or 6 is formed by a thermal spraying method.
【請求項8】請求項1,2又は3のいずれかに記載の前
記負極容器を構成する材料および前記負極容器と接合す
る前記電極端子を構成する材料として、AlまたはAl
含有合金を用いたナトリウム硫黄電池モジュール。
8. Al or Al as a material forming the negative electrode container according to any one of claims 1, 2, and 3 and a material forming the electrode terminal joined to the negative electrode container.
Sodium-sulfur battery module using alloy containing.
【請求項9】請求項1,2,3,4,5,6,7又は8
のいずれかに記載の前記電極端子同士がAlまたはAl
合金から成るブスバを介して接合されているナトリウム
硫黄電池モジュール。
9. Claims 1, 2, 3, 4, 5, 6, 7 or 8
The electrode terminals are either Al or Al
A sodium-sulfur battery module joined via busbars made of an alloy.
【請求項10】請求項1,2,4又は5のいずれかに記
載の前記電極端子のCr含有合金とAlまたはAl合金
部とが摩擦圧接法または圧延法などの機械的方法で接合
されているナトリウム硫黄電池モジュール。
10. The Cr-containing alloy of the electrode terminal according to claim 1, and Al or an Al alloy portion are joined by a mechanical method such as a friction welding method or a rolling method. Sodium-sulfur battery module.
【請求項11】請求項1,4,8又は9のいずれかに記
載の前記電極端子のCr含有合金部と前記正極容器また
は負極容器との接合、及び、前記電極端子のAlまたは
Al合金部同士、または、前記電極端子のAlまたはA
l合金部と前記ブスバとの接合が、溶接法で形成されて
いるナトリウム硫黄電池モジュール。
11. A joint between the Cr-containing alloy portion of the electrode terminal according to any one of claims 1, 4, 8 and 9 and the positive electrode container or the negative electrode container, and Al or Al alloy portion of the electrode terminal. Or Al or A of the electrode terminals
1. A sodium-sulfur battery module in which the alloy part and the bus bar are joined by a welding method.
【請求項12】請求項1,2,3,4,5,6,7,
8,9,10又は11のいずれかに記載の前記電極端子
を構成するCr含有合金としてCr含有量13−26重
量%の鉄基合金,Ni基合金、またはCo基合金を用
い、前記正極容器を構成する材料としてCo含有量30
重量%以上,Cr含有量18〜32重量%,C含有量
0.2重量%以下のCo基合金,Ni含有量40重量%
以上,Cr含有量18〜32重量%,C含有量0.2 重
量%以下のNi基合金、または、Feを主成分とし、C
r含有量22〜32重量%,C含有量0.2重量%以下
の鉄基合金を用いるナトリウム硫黄電池モジュール。
12. The method of claim 1, 2, 3, 4, 5, 6, 7,
The iron-based alloy, the Ni-based alloy, or the Co-based alloy having a Cr content of 13 to 26% by weight is used as the Cr-containing alloy forming the electrode terminal according to any one of 8, 9, 10 and 11, and the positive electrode container Content of Co as a material constituting
Co-based alloys with a weight percentage of 18% to 32 wt% and a C content of 0.2 wt% or less, a Ni content of 40 wt%
As described above, a Ni-based alloy having a Cr content of 18 to 32% by weight and a C content of 0.2% by weight or less, or Fe as a main component, and C
A sodium-sulfur battery module using an iron-based alloy having an r content of 22 to 32% by weight and a C content of 0.2% by weight or less.
【請求項13】請求項1,2,3,4,5,6,7,
8,9,10,11又は12のいずれかに記載の前記ナ
トリウム硫黄電池モジュールを用いた、電力貯蔵装置,
電気自動車,非常用電源,無停電電源,電力系統のピー
クカット装置,周波数・電圧安定化装置などの電池シス
テム。
13. The method of claim 1, 2, 3, 4, 5, 6, 7,
A power storage device using the sodium-sulfur battery module according to any one of 8, 9, 10, 11 or 12.
Battery systems for electric vehicles, emergency power supplies, uninterruptible power supplies, power system peak cut devices, frequency / voltage stabilizers, etc.
JP9018188A 1996-02-02 1997-01-31 Sodium sulfur battery module and battery system using it Pending JPH09270269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9018188A JPH09270269A (en) 1996-02-02 1997-01-31 Sodium sulfur battery module and battery system using it

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-17353 1996-02-02
JP1735396 1996-02-02
JP9018188A JPH09270269A (en) 1996-02-02 1997-01-31 Sodium sulfur battery module and battery system using it

Publications (1)

Publication Number Publication Date
JPH09270269A true JPH09270269A (en) 1997-10-14

Family

ID=26353851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9018188A Pending JPH09270269A (en) 1996-02-02 1997-01-31 Sodium sulfur battery module and battery system using it

Country Status (1)

Country Link
JP (1) JPH09270269A (en)

Similar Documents

Publication Publication Date Title
US6156452A (en) Non-aqueous electrolyte secondary cell
JP2005294270A (en) Flat battery with laminated outer package
JPH06503442A (en) bipolar battery
EP1553649A2 (en) Electrochemical cell
US20110274964A1 (en) Battery Tabs and Method of Making the Same
US5279625A (en) Method of closing one end of the case of sodium/sulphur cell and a sodium/sulphur cell produced by this method
JP2001087866A (en) Method for joining aluminum and copper
JP7288456B2 (en) secondary battery
US10062893B2 (en) Connection method in an accumulator and accumulator thus connected
JP2001006746A (en) Nonaqueous electrolyte battery
JPH09270269A (en) Sodium sulfur battery module and battery system using it
JPH08339943A (en) Structure and method for sealing electronic element
CN210182468U (en) Connecting structure of lithium ion battery
JPH1040951A (en) Sodium sulfur battery module
JP2006221890A (en) Battery
US20240055692A1 (en) Battery comprising a casing and an electrically insulating coating
JPH0723269B2 (en) Method of joining metal parts and ceramic parts in sodium-sulfur battery
JP2002208395A (en) Nonaqueous electrolyte solution battery
KR100502338B1 (en) Secondary battery
JP2003039195A (en) Brazing material for joining battery members
JPH11273637A (en) Manufacture of sealed battery
JPH1131524A (en) Sodium-sulfur battery
JPH01194274A (en) Structure of vessel bonding part of sodium-sulfur battery
JP3351186B2 (en) Sodium-sulfur battery
JP2002008713A (en) Sodium-sulfur battery