JPH09270004A - X-ray image digital processor - Google Patents

X-ray image digital processor

Info

Publication number
JPH09270004A
JPH09270004A JP8101887A JP10188796A JPH09270004A JP H09270004 A JPH09270004 A JP H09270004A JP 8101887 A JP8101887 A JP 8101887A JP 10188796 A JP10188796 A JP 10188796A JP H09270004 A JPH09270004 A JP H09270004A
Authority
JP
Japan
Prior art keywords
mean luminance
frequency component
low
image
influence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8101887A
Other languages
Japanese (ja)
Other versions
JP3721632B2 (en
Inventor
Takeshi Ozaki
毅 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP10188796A priority Critical patent/JP3721632B2/en
Publication of JPH09270004A publication Critical patent/JPH09270004A/en
Application granted granted Critical
Publication of JP3721632B2 publication Critical patent/JP3721632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To remove the influence of scattered rays by finding the mean luminance values of a small circumference of a noticed pixel and its peripheral part, and adjusting a low-frequency component according to the relation between the mean luminance of the small circumference and the mean luminance of the peripheral part and then subtracting it from a digitized image signal. SOLUTION: X Rays having been transmitted through a subject 10 are converted by an image intensifier 12 into an optical image, whose image signal is converted into digital image data by an A/D converter 15 and then sent to a digital image processor 16. Then a low-frequency component extracting circuit 21 extracts the low-frequency component of the image, a small- circumference mean luminance calculating circuit 22 finds the mean luminance of the small area at the periphery of the noticed pixel, and a circumferential part mean luminance calculating circuit 23 finds the mean luminance of the relatively wide area at its periphery. Further, a scattered-ray influence degree calculating circuit 24 calculates the degrees of scattered ray influence by pixels from the mean luminance values, and a multiplier 25 multiplies the low-frequency component by the degrees of influence and sends the results to a subtracter 26, which subtracts them from the original digital image data.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、医療などにおい
て用いられるX線画像信号をデジタル画像データに変換
して処理する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for converting an X-ray image signal used in medical treatment and the like into digital image data for processing.

【0002】[0002]

【従来の技術】X線TVシステムを用いて被写体(患者
の身体など)のX線透視像を電気的な画像信号として撮
像し、これをモニター装置に表示して観察することが広
く行なわれている。さらに、この画像信号をデジタル画
像データに変換して種々のデジタル画像処理を行なうこ
とも普及している。
2. Description of the Related Art It is widely used to take an X-ray fluoroscopic image of a subject (such as a patient's body) as an electric image signal using an X-ray TV system and display it on a monitor device for observation. I have. Further, it is also popular to convert this image signal into digital image data and perform various digital image processing.

【0003】ところで、X線は被写体中を透過するとき
にその物質内部で散乱するため、その散乱線の影響によ
り、X線透視像のコントラストが悪くなったり、あるい
はシャープさ(尖鋭度)が鈍くなったりするという、画
質低下が生じる。そのため、現状では、X線の線質を変
えて散乱しにくくしたり、あるいはX線コリメータの形
状を工夫して、コリメータでの散乱線を抑制することが
試みられている。
By the way, since X-rays are scattered inside the substance when passing through a subject, the contrast of the X-ray fluoroscopic image is deteriorated or the sharpness is sharp due to the influence of the scattered rays. The image quality deteriorates. Therefore, under the present circumstances, it has been attempted to change the quality of X-rays to make it difficult to scatter, or to devise the shape of the X-ray collimator to suppress scattered rays at the collimator.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
ようにX線の線質の調整やコリメータの工夫によって
も、被写体内の散乱線の影響による画質低下は本質的に
除去することは不可能である。
However, even by adjusting the quality of X-rays and devising a collimator as in the conventional art, it is essentially impossible to eliminate the deterioration of image quality due to the influence of scattered rays in the subject. is there.

【0005】この発明は、上記に鑑み、デジタル化され
たX線透視像を処理することにより、散乱線の影響を除
去するように改善した、X線画像デジタル処理装置を提
供することを目的とする。
In view of the above, it is an object of the present invention to provide an X-ray image digital processing apparatus which is improved so as to eliminate the influence of scattered rays by processing a digitized X-ray fluoroscopic image. To do.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、この発明によるX線画像デジタル処理装置において
は、入力されたアナログX線画像信号をA/D変換する
A/D変換手段と、デジタル化された画像信号から低周
波成分を抽出する手段と、デジタル化された画像信号か
ら、着目する画素の小近傍およびその周辺部における平
均輝度をそれぞれ求める手段と、該小近傍の平均輝度と
周辺部の平均輝度との関係を求める手段と、この関係に
応じて上記の低周波成分を調整した上で元のデジタル化
された画像信号から差し引く手段とを有することが特徴
となっている。
In order to achieve the above object, in an X-ray image digital processing apparatus according to the present invention, an A / D conversion means for A / D converting an input analog X-ray image signal, Means for extracting low frequency components from the digitized image signal, means for obtaining average luminance in the small neighborhood of the pixel of interest and its peripheral portion from the digitized image signal, and average luminance of the small neighborhood It is characterized in that it has means for obtaining a relationship with the average luminance of the peripheral portion and means for subtracting the low frequency component from the original digitized image signal after adjusting the low frequency component according to this relationship.

【0007】画像に対する散乱線の影響は、輝度の高い
部分から低い部分へとにじみだすようなものとなる。そ
こで、画像信号から低周波成分を抽出すれば、散乱線に
よる影響分を取り出すことができる。ところが、この低
周波成分には真の画像の低周波成分も含まれている。そ
こで、この取り出された低周波成分を、元の画像信号か
ら差し引くだけでは、散乱線の影響を除くことについて
は不十分である。上記のように、散乱線の影響は、画像
の輝度の高い部分から低い部分へとにじみだすようなも
のとなっているため、小領域の輝度が周辺に対して低い
ものであれば、その小領域に含まれる画素については散
乱線によって輝度が高くなり、逆に小領域の輝度が周辺
に対して高いものであれば、その小領域に含まれる画素
については散乱によって輝度が低くなるものと考えられ
る。そこで、この小領域の平均輝度と周辺部の平均輝度
との関係を求めて、これに応じて上記の低周波成分を調
整すれば、散乱線の影響をより正確に反映した信号を得
ることができ、これを元の画像信号から差し引くことに
より、散乱線の影響分を適切に除去することが可能とな
る。
The effect of scattered rays on an image is such that bleeding occurs from a high luminance portion to a low luminance portion. Therefore, if the low-frequency component is extracted from the image signal, the influence of scattered rays can be extracted. However, the low frequency component of the true image is also included in this low frequency component. Therefore, it is not sufficient to remove the influence of scattered rays by only subtracting the extracted low frequency component from the original image signal. As described above, the effect of scattered radiation is such that the high brightness area of the image bleeds to the low brightness area. It is considered that the pixels included in a region have high brightness due to scattered rays, and conversely, if the brightness of a small region is high relative to the surroundings, the brightness of pixels included in the small region will be low due to scattering. To be Therefore, if the relationship between the average brightness of the small area and the average brightness of the peripheral area is obtained and the low frequency component is adjusted accordingly, a signal that more accurately reflects the influence of scattered radiation can be obtained. This is possible, and by subtracting this from the original image signal, it is possible to appropriately remove the influence of scattered rays.

【0008】[0008]

【発明の実施の形態】つぎに、この発明の実施の形態に
ついて図面を参照しながら詳細に説明する。図1におい
て、X線管11から発射されたX線が被写体10を透過
してイメージインテンシファイア12に入射し、X線透
過像が光学像に変換される。イメージインテンシファイ
ア12には光学系13を介してTVカメラ14が結合さ
れており、イメージインテンシファイア12の出力光学
像の画像信号が得られる。この画像信号はA/D変換器
15によりデジタル画像データに変換された後、デジタ
ル画像処理装置16に送られて種々のデジタル画像処理
を受け、その後D/A変換器17でアナログの画像信号
に戻され、TVモニター装置18に送られる。
Next, embodiments of the present invention will be described in detail with reference to the drawings. In FIG. 1, X-rays emitted from an X-ray tube 11 penetrate a subject 10 and enter an image intensifier 12, and an X-ray transmission image is converted into an optical image. A TV camera 14 is connected to the image intensifier 12 via an optical system 13, and an image signal of an output optical image of the image intensifier 12 is obtained. This image signal is converted into digital image data by the A / D converter 15, then sent to the digital image processing device 16 to undergo various digital image processing, and then converted into an analog image signal by the D / A converter 17. It is returned and sent to the TV monitor device 18.

【0009】デジタル画像処理装置16は、低周波成分
抽出回路21と、小近傍平均輝度算出回路22と、周辺
部平均輝度算出回路23と、散乱線影響度算出回路24
と、乗算器25と、減算器26とからなる散乱線除去部
20と、他の画像処理を行う画像処理部27とから構成
されている。
The digital image processing apparatus 16 includes a low frequency component extraction circuit 21, a small neighborhood average luminance calculation circuit 22, a peripheral average luminance calculation circuit 23, and a scattered radiation influence degree calculation circuit 24.
And a scattered radiation removing unit 20 including a multiplier 25 and a subtractor 26, and an image processing unit 27 that performs other image processing.

【0010】デジタル画像データはまず低周波成分抽出
回路21に送られ、画像の低周波成分ISが抽出され
る。この低周波成分抽出回路21は、たとえば図2の
(a)で示すようなNF×NFのマトリクスのテンプレ
ートを用いて畳み込み演算を行なうローパス空間フィル
タにより構成される。また、デジタル画像データは小近
傍平均輝度算出回路22および周辺部平均輝度算出回路
23にも送られる。
The digital image data is first sent to the low frequency component extraction circuit 21 and the low frequency component IS of the image is extracted. The low frequency component extraction circuit 21 is composed of, for example, a low-pass spatial filter that performs a convolution operation using a template of an NF × NF matrix as shown in FIG. The digital image data is also sent to the small neighborhood average luminance calculation circuit 22 and the peripheral portion average luminance calculation circuit 23.

【0011】これら小近傍平均輝度算出回路22および
周辺部平均輝度算出回路23は、いずれもたとえばテン
プレートによる畳み込み演算で構成された空間フィルタ
である。小近傍平均輝度算出回路22は着目する画素の
周囲の小さい領域の平均輝度MSを求めるものであり、
周辺部平均輝度算出回路23はその周辺の比較的広い領
域での平均輝度MLを求めるものである。そのため、前
者で用いるテンプレートは図2の(b)に示すようにN
S×NSの小さいマトリクスで構成され、後者で用いる
テンプレートはそれを囲むような比較的大きなNL×N
Lで構成される。これらNS×NSおよびNL×NLの
テンプレートはすべて「1」の重みを正規化して用いて
いる。NS×NSのマトリクスは着目画素のごく近傍の
平均輝度を求めるため小さく設定し、NL×NLのマト
リクスは比較的広い範囲の平均輝度を求めるために大き
く設定することが望ましい。
Each of the small neighborhood average luminance calculation circuit 22 and the peripheral portion average luminance calculation circuit 23 is a spatial filter constituted by a convolution operation using a template, for example. The small neighborhood average brightness calculation circuit 22 calculates the average brightness MS of a small area around the pixel of interest.
The peripheral average brightness calculation circuit 23 determines the average brightness ML in a relatively wide area around the peripheral brightness calculation circuit 23. Therefore, the template used in the former is N as shown in FIG.
It is composed of a small matrix of S × NS, and the template used in the latter is a relatively large NL × N surrounding it.
It is composed of L. These NS × NS and NL × NL templates use normalized weights of “1”. It is desirable that the NS × NS matrix is set small to obtain the average luminance in the immediate vicinity of the pixel of interest, and the NL × NL matrix is set large to obtain the average luminance in a relatively wide range.

【0012】散乱線影響度算出回路24は、上記で求め
たMSとMLとから各画素ごとに散乱線影響度Kを算出
する。この例では、図3に示すようなグラフを用いてM
S−MLの値からKを求める。そして、乗算器25にお
いて低周波成分ISに対して影響度Kを乗じ(IS×
K)、これを補正値ICとして減算器26に送り、元の
デジタル画像データから補正値ICを減算する。これに
より散乱線の影響が除去された画像データは画像処理部
27で、ウインドウ変換、エッジ強調などの各種のデジ
タル画像処理を受けた後、D/A変換器17に送られ、
アナログの画像信号に戻されてTVモニター装置18に
送られて表示される。
The scattered ray influence degree calculation circuit 24 calculates the scattered ray influence degree K for each pixel from the MS and ML obtained above. In this example, the graph shown in FIG.
K is calculated from the value of S-ML. Then, the multiplier 25 multiplies the low-frequency component IS by the influence degree K (IS ×
K), which is sent as a correction value IC to the subtractor 26 to subtract the correction value IC from the original digital image data. The image data from which the influence of scattered radiation is removed is subjected to various digital image processes such as window conversion and edge enhancement by the image processing unit 27, and then sent to the D / A converter 17.
It is converted back into an analog image signal and sent to the TV monitor device 18 for display.

【0013】ここで、画像の1ライン上の真のデータプ
ロフィールが図4の(a)のようになる場合を想定す
る。輝度が急峻に落ち込んでいる狭い部分は、たとえば
血管造影の場合の血管部分に相当する。ところが散乱線
の影響があるということは、輝度の高い部分の周囲に輝
度の低い部分があると、その輝度の高い部分から低い部
分へとX線がにじみ出すようなものであるから、その輝
度の高い部分における輝度は低くなり、逆に輝度の低い
部分の輝度は高くなる。そこで、この散乱線の影響によ
り、実際に得られる画像データの1ライン分のプロフィ
ールは、図4の(b)のようになる。この画像データか
ら低周波成分ISを取り出すと図4の(c)のようにな
るが、これには真のデータの低周波成分と散乱の影響分
とが含まれている。
Here, it is assumed that the true data profile on one line of the image is as shown in FIG. The narrow portion where the brightness sharply drops corresponds to the blood vessel portion in the case of angiography, for example. However, the effect of scattered radiation is that if there is a low-luminance portion around a high-luminance portion, X-rays will bleed from the high-luminance portion to the low-luminance portion. The luminance is low in the high luminance portion, and conversely, the luminance is low in the low luminance portion. Therefore, due to the influence of the scattered rays, the profile of one line of the image data actually obtained becomes as shown in FIG. When the low frequency component IS is extracted from this image data, it becomes as shown in FIG. 4C, which contains the low frequency component of the true data and the influence of scattering.

【0014】一方、MS−MLの値が正であるというこ
とは、周辺部より小近傍の画素値が大きいということで
あり、そのような場合は散乱によって画素値が真の値よ
りも低くなっていると考えられる。逆にMS−MLの値
が負であるということは、周辺部より小近傍の画素値が
小さいということであり、そのような場合は散乱によっ
て画素値が真の値よりも高くなっていると考えられる。
そのため、MS−MLの値が正のときは、画素値に対し
て散乱の影響がマイナス側に働き、逆にMS−MLの値
が負のときは、画素値に対して散乱の影響がプラス側に
働く。そこで、図3に示すようなカーブ(たとえば太
線)によりMS−MLの値に応じてKを求め、これをI
Sに乗じた上で元の画像データから差し引けばよいこと
が分かる。この図3においてMS−MLの値が0付近で
K値が0としたのは、ノイズによる影響を避けるための
不感帯を設けるためである。この図3のカーブは、X線
条件(管電圧、管電流、イメージインテンシファイアの
種類・視野等)に応じて図3の細線や点線のように変え
ることもできる。最適なカーブは、実験やコンピュータ
シュミレーションなどで求める。また、ここでは、MS
とMLとの差を用いたが、MSとMLとの比を用いて同
様のカーブからKを求めるようにしてもよい。
On the other hand, the positive value of MS-ML means that the pixel value in the small neighborhood is larger than that in the peripheral portion, and in such a case, the pixel value becomes lower than the true value due to scattering. It is thought that On the contrary, the negative value of MS-ML means that the pixel value in the small neighborhood is smaller than that in the peripheral portion, and in such a case, the pixel value is higher than the true value due to scattering. Conceivable.
Therefore, when the value of MS-ML is positive, the influence of scattering acts on the pixel value on the negative side, and when the value of MS-ML is negative, the influence of scattering is positive on the pixel value. Work to the side. Therefore, K is determined according to the value of MS-ML using a curve (for example, a thick line) as shown in FIG.
It can be seen that it is sufficient to multiply by S and then subtract from the original image data. In FIG. 3, the K value is set to 0 near the value of MS-ML is to provide a dead zone for avoiding the influence of noise. The curve in FIG. 3 can be changed like the thin line or the dotted line in FIG. 3 according to the X-ray conditions (tube voltage, tube current, type of image intensifier, field of view, etc.). The optimum curve is obtained by experiments or computer simulation. In addition, here, MS
However, K may be obtained from a similar curve by using the ratio between MS and ML.

【0015】Kを低周波成分ISに乗じて得た補正値I
Cを図4の(d)に示すようになり、このICを元の画
像データから差し引くことにより、図4の(e)に示す
ような画像データを得ることができる。補正値ICは、
上記の通り、散乱による影響をより反映したものとなっ
ているので、散乱の影響を除いたデータを得ることが可
能となる。図4の(b)で示した元の画像データと図4
の(e)で示した補正後のデータとの比較からも分かる
通り、血管部などの急峻な細い落ち込み部のコントラス
ト・シャープさが再現され、血管部などがより見易くな
る。
A correction value I obtained by multiplying the low frequency component IS by K
C becomes as shown in FIG. 4D, and by subtracting this IC from the original image data, the image data as shown in FIG. 4E can be obtained. The correction value IC is
As described above, since the influence of scattering is more reflected, it is possible to obtain data excluding the influence of scattering. The original image data shown in FIG. 4B and FIG.
As can be seen from the comparison with the corrected data shown in (e), the contrast / sharpness of a steep thin drop portion such as a blood vessel portion is reproduced, and the blood vessel portion or the like becomes easier to see.

【0016】なお、上記では、画素単位でKを計算して
いるが、小領域ごとにKを算出し、補間によって各画素
ごとのKを求めるようにしてもよい。また、小近傍平均
輝度MSは、上記では低周波成分の抽出処理とは別個の
処理によって求めているが、小近傍平均輝度MSは一種
のローパスフィルタ出力であるから、低周波成分抽出回
路21で得た値ISを兼用してもよい。さらに、上記で
は、低周波成分抽出回路21、小近傍平均輝度算出回路
22、周辺部平均輝度算出回路23、散乱線影響度算出
回路24等をハードウェアで構成しているかのように説
明したが、ソフトウェアによる処理で求めることももち
ろん可能である。
Although K is calculated for each pixel in the above, K may be calculated for each small area and K for each pixel may be obtained by interpolation. Further, although the small neighborhood average brightness MS is obtained by a process separate from the extraction process of the low frequency components in the above, the small neighborhood average brightness MS is a kind of low-pass filter output, so the low frequency component extraction circuit 21 The obtained value IS may also be used. Furthermore, in the above description, the low frequency component extraction circuit 21, the small neighborhood average luminance calculation circuit 22, the peripheral portion average luminance calculation circuit 23, the scattered radiation influence degree calculation circuit 24, and the like are described as if they are configured by hardware. Of course, it is also possible to obtain by software processing.

【0017】[0017]

【発明の効果】以上説明したように、この発明のX線画
像デジタル処理装置によれば、散乱線の影響を適切に除
去して、元来の被写体のコントラスト・シャープさを再
現し、より見易い、優れた画質の画像を得ることができ
る。また、量子ノイズなどの高周波ノイズ成分が強調さ
れることなく、S/N比の改善が可能である。
As described above, according to the X-ray image digital processing apparatus of the present invention, the influence of scattered radiation is appropriately removed, the original contrast and sharpness of the object is reproduced, and it is easier to see. It is possible to obtain an image with excellent image quality. Further, the S / N ratio can be improved without enhancing high frequency noise components such as quantum noise.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施の形態を示すブロック図。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】テンプレートを示す模式図。FIG. 2 is a schematic diagram showing a template.

【図3】K値の算出カーブを示すグラフ。FIG. 3 is a graph showing a K value calculation curve.

【図4】各々のデータプロフィールを示す図。FIG. 4 is a diagram showing each data profile.

【符号の説明】[Explanation of symbols]

10 被写体 11 X線管 12 イメージインテンシファイア 13 光学系 14 TVカメラ 15 A/D変換器 16 デジタル画像処理装置 17 D/A変換器 18 TVモニター装置 20 散乱線除去部 21 低周波成分抽出回路 22 小近傍平均輝度算出回路 23 周辺部平均輝度算出回路 24 散乱線影響度算出回路 25 乗算器 26 減算器 27 画像処理部 DESCRIPTION OF SYMBOLS 10 Subject 11 X-ray tube 12 Image intensifier 13 Optical system 14 TV camera 15 A / D converter 16 Digital image processing device 17 D / A converter 18 TV monitor device 20 Scattered-ray removal part 21 Low-frequency component extraction circuit 22 Small neighborhood average luminance calculation circuit 23 Peripheral average luminance calculation circuit 24 Scattered ray influence degree calculation circuit 25 Multiplier 26 Subtractor 27 Image processing unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 入力されたアナログX線画像信号をA/
D変換するA/D変換手段と、デジタル化された画像信
号から低周波成分を抽出する手段と、デジタル化された
画像信号から、着目する画素の小近傍およびその周辺部
における平均輝度をそれぞれ求める手段と、該小近傍の
平均輝度と周辺部の平均輝度との関係を求める手段と、
この関係に応じて上記の低周波成分を調整した上で元の
デジタル化された画像信号から差し引く手段とを備える
ことを特徴とするX線画像デジタル処理装置。
1. An analog X-ray image signal input to
A / D conversion means for D conversion, means for extracting low-frequency components from the digitized image signal, and average luminance in the small neighborhood of the pixel of interest and its peripheral portion are obtained from the digitized image signal. Means and means for obtaining a relationship between the average luminance of the small neighborhood and the average luminance of the peripheral portion,
An X-ray image digital processing apparatus comprising: means for adjusting the low-frequency component according to this relationship and then subtracting it from the original digitized image signal.
JP10188796A 1996-03-31 1996-03-31 X-ray image digital processing device Expired - Fee Related JP3721632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10188796A JP3721632B2 (en) 1996-03-31 1996-03-31 X-ray image digital processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10188796A JP3721632B2 (en) 1996-03-31 1996-03-31 X-ray image digital processing device

Publications (2)

Publication Number Publication Date
JPH09270004A true JPH09270004A (en) 1997-10-14
JP3721632B2 JP3721632B2 (en) 2005-11-30

Family

ID=14312452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10188796A Expired - Fee Related JP3721632B2 (en) 1996-03-31 1996-03-31 X-ray image digital processing device

Country Status (1)

Country Link
JP (1) JP3721632B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005005981A (en) * 2003-06-11 2005-01-06 Shimadzu Corp Image processor
CN100411445C (en) * 2003-07-18 2008-08-13 佳能株式会社 Image processing method and apparatus for correcting image brightness distribution
CN105011955A (en) * 2014-04-30 2015-11-04 株式会社东芝 X-ray diagnostic apparatus and image processing apparatus
US9648212B2 (en) 2015-02-24 2017-05-09 Samsung Display Co., Ltd. Image processing device, image processing method, and computer program
US9866761B2 (en) 2015-02-24 2018-01-09 Samsung Display Co., Ltd. Image dynamic range compensation device and method
US10786219B2 (en) 2018-01-24 2020-09-29 Konica Minolta, Inc. Radiographic image processing apparatus, scattered radiation correction method, and computer readable storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105427355B (en) * 2015-11-26 2018-04-03 上海联影医疗科技有限公司 The method and device that case, the scattering composition of radioscopic image are calculated, rebuild

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005005981A (en) * 2003-06-11 2005-01-06 Shimadzu Corp Image processor
JP4595294B2 (en) * 2003-06-11 2010-12-08 株式会社島津製作所 Image processing device
CN100411445C (en) * 2003-07-18 2008-08-13 佳能株式会社 Image processing method and apparatus for correcting image brightness distribution
CN105011955A (en) * 2014-04-30 2015-11-04 株式会社东芝 X-ray diagnostic apparatus and image processing apparatus
CN105011955B (en) * 2014-04-30 2019-03-01 东芝医疗系统株式会社 Radiographic apparatus and image processing apparatus
US9648212B2 (en) 2015-02-24 2017-05-09 Samsung Display Co., Ltd. Image processing device, image processing method, and computer program
US9866761B2 (en) 2015-02-24 2018-01-09 Samsung Display Co., Ltd. Image dynamic range compensation device and method
US10786219B2 (en) 2018-01-24 2020-09-29 Konica Minolta, Inc. Radiographic image processing apparatus, scattered radiation correction method, and computer readable storage medium

Also Published As

Publication number Publication date
JP3721632B2 (en) 2005-11-30

Similar Documents

Publication Publication Date Title
JP3976337B2 (en) Image processing for noise reduction
EP0866607A2 (en) Noise filter for digital x-ray imaging system
JP3690882B2 (en) Image enhancement processing method and apparatus
US6760401B2 (en) Apparatus and method for processing of digital images
JP2003244542A (en) Motion artefact reduction algorithm for double-exposed double-energy x-ray radiography
US20120257809A1 (en) X-ray image processing apparatus, x-ray image processing method, and storage medium for computer program
US8374417B2 (en) Image processing method and radiographic apparatus using the same
JP4007775B2 (en) X-ray diagnostic equipment
JP3721632B2 (en) X-ray image digital processing device
US20130308841A1 (en) Method and apparatus for image processing
US20110305382A1 (en) Image processing method and radiographic apparatus using the same
JPS6340533A (en) X-ray diagnostic apparatus
JP2001283215A (en) Image processor
US6956977B2 (en) Methods for improving contrast based dynamic range management
JPH10105701A (en) Method and device for radio graph emphasis processing
JP2001178686A (en) Image display method and imaging instrument
JPH10229519A (en) X-ray image digital processor
JP3629875B2 (en) X-ray image digital processing device
JPH06337933A (en) Picture processor
JP2009054013A (en) Image processor
Cowen et al. The computer enhancement of digital grey-scale fluorographic images
JP3298445B2 (en) X-ray image digital processing device
JP4006083B2 (en) Image processing apparatus, method, and computer-readable storage medium
US11317885B2 (en) Radiographic image processing device, method of operating radiographic image processing device, and radiographic image processing program
JPH0991423A (en) Image processing method and processor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050124

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050331

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees