JP3721632B2 - X-ray image digital processing device - Google Patents

X-ray image digital processing device Download PDF

Info

Publication number
JP3721632B2
JP3721632B2 JP10188796A JP10188796A JP3721632B2 JP 3721632 B2 JP3721632 B2 JP 3721632B2 JP 10188796 A JP10188796 A JP 10188796A JP 10188796 A JP10188796 A JP 10188796A JP 3721632 B2 JP3721632 B2 JP 3721632B2
Authority
JP
Japan
Prior art keywords
image
influence
low
image signal
frequency component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10188796A
Other languages
Japanese (ja)
Other versions
JPH09270004A (en
Inventor
毅 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP10188796A priority Critical patent/JP3721632B2/en
Publication of JPH09270004A publication Critical patent/JPH09270004A/en
Application granted granted Critical
Publication of JP3721632B2 publication Critical patent/JP3721632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、医療などにおいて用いられるX線画像信号をデジタル画像データに変換して処理する装置に関する。
【0002】
【従来の技術】
X線TVシステムを用いて被写体(患者の身体など)のX線透視像を電気的な画像信号として撮像し、これをモニター装置に表示して観察することが広く行なわれている。さらに、この画像信号をデジタル画像データに変換して種々のデジタル画像処理を行なうことも普及している。
【0003】
ところで、X線は被写体中を透過するときにその物質内部で散乱するため、その散乱線の影響により、X線透視像のコントラストが悪くなったり、あるいはシャープさ(尖鋭度)が鈍くなったりするという、画質低下が生じる。そのため、現状では、X線の線質を変えて散乱しにくくしたり、あるいはX線コリメータの形状を工夫して、コリメータでの散乱線を抑制することが試みられている。
【0004】
【発明が解決しようとする課題】
しかしながら、従来のようにX線の線質の調整やコリメータの工夫によっても、被写体内の散乱線の影響による画質低下は本質的に除去することは不可能である。
【0005】
この発明は、上記に鑑み、デジタル化されたX線透視像を処理することにより、散乱線の影響を除去するように改善した、X線画像デジタル処理装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記の目的を達成するため、この発明によるX線画像デジタル処理装置においては、入力されたアナログX線画像信号をA/D変換するA/D変換手段と、デジタル化された画像信号から低周波成分を抽出する手段と、デジタル化された画像信号から、着目する画素の小近傍およびその周辺部における平均輝度をそれぞれ求める手段と、該小近傍の平均輝度と周辺部の平均輝度との関係を表わす、前者が後者より大きいときは正の値をとり前者が後者より小さいときは負の値をとる、係数を求める手段と、上記の低周波成分にこの係数を乗じた上で元のデジタル化された画像信号から差し引く手段とを有することが特徴となっている。
【0007】
画像に対する散乱線の影響は、輝度の高い部分から低い部分へとにじみだすようなものとなる。そこで、画像信号から低周波成分を抽出すれば、散乱線による影響分を取り出すことは一応可能である。ところが、この低周波成分には真の画像の低周波成分も含まれているので、この取り出された低周波成分を、元の画像信号から差し引くだけでは、散乱線の影響を除くことについては不十分である。上記のように、散乱線の影響は、画像の輝度の高い部分から低い部分へとにじみだすようなものとなっているため、小領域の輝度が周辺に対して低いものであれば、その小領域に含まれる画素については散乱線によって輝度が高くなり、逆に小領域の輝度が周辺に対して高いものであれば、その小領域に含まれる画素については散乱によって輝度が低くなるものと考えられる。つまり、前者のような画素については輝度を低くし、後者のような画素には輝度を高くするような補正が必要である。そこで、この小領域の平均輝度と周辺部の平均輝度との関係を表わす係数で、前者が後者より大きいときは正の値をとり前者が後者より小さいときは負の値をとる係数を求めた上で、この係数を上記の低周波成分に乗じれば、散乱線の影響をより正確に反映した正または負の信号を得ることができ、これを元の画像信号から差し引くことにより、輝度を高くする方向および低くする方向の両方に対応できて、散乱線の影響分を適切に除去することが可能となる。
【0008】
【発明の実施の形態】
つぎに、この発明の実施の形態について図面を参照しながら詳細に説明する。図1において、X線管11から発射されたX線が被写体10を透過してイメージインテンシファイア12に入射し、X線透過像が光学像に変換される。イメージインテンシファイア12には光学系13を介してTVカメラ14が結合されており、イメージインテンシファイア12の出力光学像の画像信号が得られる。この画像信号はA/D変換器15によりデジタル画像データに変換された後、デジタル画像処理装置16に送られて種々のデジタル画像処理を受け、その後D/A変換器17でアナログの画像信号に戻され、TVモニター装置18に送られる。
【0009】
デジタル画像処理装置16は、低周波成分抽出回路21と、小近傍平均輝度算出回路22と、周辺部平均輝度算出回路23と、散乱線影響度算出回路24と、乗算器25と、減算器26とからなる散乱線除去部20と、他の画像処理を行う画像処理部27とから構成されている。
【0010】
デジタル画像データはまず低周波成分抽出回路21に送られ、画像の低周波成分ISが抽出される。この低周波成分抽出回路21は、たとえば図2の(a)で示すようなNF×NFのマトリクスのテンプレートを用いて畳み込み演算を行なうローパス空間フィルタにより構成される。また、デジタル画像データは小近傍平均輝度算出回路22および周辺部平均輝度算出回路23にも送られる。
【0011】
これら小近傍平均輝度算出回路22および周辺部平均輝度算出回路23は、いずれもたとえばテンプレートによる畳み込み演算で構成された空間フィルタである。小近傍平均輝度算出回路22は着目する画素の周囲の小さい領域の平均輝度MSを求めるものであり、周辺部平均輝度算出回路23はその周辺の比較的広い領域での平均輝度MLを求めるものである。そのため、前者で用いるテンプレートは図2の(b)に示すようにNS×NSの小さいマトリクスで構成され、後者で用いるテンプレートはそれを囲むような比較的大きなNL×NLで構成される。これらNS×NSおよびNL×NLのテンプレートはすべて「1」の重みを正規化して用いている。NS×NSのマトリクスは着目画素のごく近傍の平均輝度を求めるため小さく設定し、NL×NLのマトリクスは比較的広い範囲の平均輝度を求めるために大きく設定することが望ましい。
【0012】
散乱線影響度算出回路24は、上記で求めたMSとMLとから各画素ごとに散乱線影響度Kを算出する。この例では、図3に示すようなグラフを用いてMS−MLの値からKを求める。そして、乗算器25において低周波成分ISに対して影響度Kを乗じ(IS×K)、これを補正値ICとして減算器26に送り、元のデジタル画像データから補正値ICを減算する。これにより散乱線の影響が除去された画像データは画像処理部27で、ウインドウ変換、エッジ強調などの各種のデジタル画像処理を受けた後、D/A変換器17に送られ、アナログの画像信号に戻されてTVモニター装置18に送られて表示される。
【0013】
ここで、画像の1ライン上の真のデータプロフィールが図4の(a)のようになる場合を想定する。輝度が急峻に落ち込んでいる狭い部分は、たとえば血管造影の場合の血管部分に相当する。ところが散乱線の影響があるということは、輝度の高い部分の周囲に輝度の低い部分があると、その輝度の高い部分から低い部分へとX線がにじみ出すようなものであるから、その輝度の高い部分における輝度は低くなり、逆に輝度の低い部分の輝度は高くなる。そこで、この散乱線の影響により、実際に得られる画像データの1ライン分のプロフィールは、図4の(b)のようになる。この画像データから低周波成分ISを取り出すと図4の(c)のようになるが、これには真のデータの低周波成分と散乱の影響分とが含まれている。
【0014】
一方、MS−MLの値が正であるということは、周辺部より小近傍の画素値が大きいということであり、そのような場合は散乱によって画素値が真の値よりも低くなっていると考えられる。逆にMS−MLの値が負であるということは、周辺部より小近傍の画素値が小さいということであり、そのような場合は散乱によって画素値が真の値よりも高くなっていると考えられる。そのため、MS−MLの値が正のときは、画素値に対して散乱の影響がマイナス側に働き、逆にMS−MLの値が負のときは、画素値に対して散乱の影響がプラス側に働く。そこで、図3に示すようなカーブ(たとえば太線)によりMS−MLの値に応じてKを求め、これをISに乗じた上で元の画像データから差し引けばよいことが分かる。この図3においてMS−MLの値が0付近でK値が0としたのは、ノイズによる影響を避けるための不感帯を設けるためである。この図3のカーブは、X線条件(管電圧、管電流、イメージインテンシファイアの種類・視野等)に応じて図3の細線や点線のように変えることもできる。最適なカーブは、実験やコンピュータシュミレーションなどで求める。また、ここでは、MSとMLとの差を用いたが、MSとMLとの比を用いて同様のカーブからKを求めるようにしてもよい。
【0015】
Kを低周波成分ISに乗じて得た補正値ICは図4の(d)に示すようになり、このICを元の画像データから差し引くことにより、図4の(e)に示すような画像データを得ることができる。補正値ICは、上記の通り、散乱による影響をより反映したものとなっているので、散乱の影響を除いたデータを得ることが可能となる。図4の(b)で示した元の画像データと図4の(e)で示した補正後のデータとの比較からも分かる通り、血管部などの急峻な細い落ち込み部のコントラスト・シャープさが再現され、血管部などがより見易くなる。
【0016】
なお、上記では、画素単位でKを計算しているが、小領域ごとにKを算出し、補間によって各画素ごとのKを求めるようにしてもよい。また、小近傍平均輝度MSは、上記では低周波成分の抽出処理とは別個の処理によって求めているが、小近傍平均輝度MSは一種のローパスフィルタ出力であるから、低周波成分抽出回路21で得た値ISを兼用してもよい。さらに、上記では、低周波成分抽出回路21、小近傍平均輝度算出回路22、周辺部平均輝度算出回路23、散乱線影響度算出回路24等をハードウェアで構成しているかのように説明したが、ソフトウェアによる処理で求めることももちろん可能である。
【0017】
【発明の効果】
以上説明したように、この発明のX線画像デジタル処理装置によれば、散乱線の影響を適切に除去して、元来の被写体のコントラスト・シャープさを再現し、より見易い、優れた画質の画像を得ることができる。また、量子ノイズなどの高周波ノイズ成分が強調されることなく、S/N比の改善が可能である。
【図面の簡単な説明】
【図1】この発明の実施の形態を示すブロック図。
【図2】テンプレートを示す模式図。
【図3】K値の算出カーブを示すグラフ。
【図4】各々のデータプロフィールを示す図。
【符号の説明】
10 被写体
11 X線管
12 イメージインテンシファイア
13 光学系
14 TVカメラ
15 A/D変換器
16 デジタル画像処理装置
17 D/A変換器
18 TVモニター装置
20 散乱線除去部
21 低周波成分抽出回路
22 小近傍平均輝度算出回路
23 周辺部平均輝度算出回路
24 散乱線影響度算出回路
25 乗算器
26 減算器
27 画像処理部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for converting an X-ray image signal used in medical treatment into digital image data and processing it.
[0002]
[Prior art]
It has been widely practiced to take an X-ray fluoroscopic image of a subject (such as a patient's body) as an electrical image signal using an X-ray TV system, and display the image on a monitor device for observation. Furthermore, it is also popular to perform various digital image processing by converting this image signal into digital image data.
[0003]
By the way, since X-rays are scattered inside the substance when passing through the subject, the contrast of the X-ray fluoroscopic image is deteriorated or the sharpness (sharpness) becomes dull due to the influence of the scattered rays. That is, the image quality deteriorates. Therefore, at present, attempts have been made to suppress the scattered radiation at the collimator by changing the X-ray quality to make it difficult to scatter, or by devising the shape of the X-ray collimator.
[0004]
[Problems to be solved by the invention]
However, even if the X-ray quality is adjusted or the collimator is devised as in the prior art, it is essentially impossible to remove the image quality degradation due to the influence of scattered rays in the subject.
[0005]
In view of the above, an object of the present invention is to provide an X-ray image digital processing apparatus that is improved so as to remove the influence of scattered radiation by processing a digitized X-ray fluoroscopic image.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, an X-ray image digital processing apparatus according to the present invention comprises an A / D conversion means for A / D converting an input analog X-ray image signal, and a low frequency from the digitized image signal. A means for extracting a component; a means for obtaining an average luminance in a small neighborhood of the pixel of interest and its peripheral portion from a digitized image signal; and a relationship between the average luminance in the small neighborhood and the average luminance in the peripheral portion. A means for obtaining a coefficient, which takes a positive value when the former is larger than the latter and a negative value when the former is smaller than the latter, and the above digitization after multiplying the low frequency component by this coefficient And a means for subtracting from the obtained image signal.
[0007]
The influence of the scattered radiation on the image is such that it oozes from a high luminance portion to a low luminance portion. Therefore, if a low-frequency component is extracted from the image signal, it is possible to extract the influence of the scattered radiation. However, since this low-frequency component also includes the low-frequency component of the true image, it is not safe to remove the influence of scattered radiation simply by subtracting this extracted low-frequency component from the original image signal. It is enough. As described above, the influence of scattered radiation oozes out from the high-luminance part of the image to the low-luminance part. For pixels included in a region, the brightness is increased by scattered radiation. Conversely, if the brightness of a small region is higher than the surroundings, the brightness of the pixels included in the small region is considered to be decreased by scattering. It is done. In other words, it is necessary to make a correction for lowering the brightness of the pixels like the former and increasing the brightness of the pixels like the latter. Therefore, a coefficient representing the relationship between the average luminance of the small area and the average luminance of the peripheral portion, and a coefficient that takes a positive value when the former is larger than the latter and takes a negative value when the former is smaller than the latter, was obtained. Above, if this coefficient is multiplied by the above low frequency component, a positive or negative signal that more accurately reflects the influence of scattered radiation can be obtained, and by subtracting this from the original image signal, the luminance can be reduced. It is possible to cope with both the direction of increasing and the direction of decreasing, and it is possible to appropriately remove the influence of scattered radiation.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings. In FIG. 1, X-rays emitted from an X-ray tube 11 pass through a subject 10 and enter an image intensifier 12, and an X-ray transmission image is converted into an optical image. A TV camera 14 is coupled to the image intensifier 12 via an optical system 13, and an image signal of an output optical image of the image intensifier 12 is obtained. This image signal is converted into digital image data by the A / D converter 15 and then sent to the digital image processing device 16 to undergo various digital image processing, and then converted into an analog image signal by the D / A converter 17. Returned to the TV monitor device 18.
[0009]
The digital image processing apparatus 16 includes a low-frequency component extraction circuit 21, a small neighborhood average luminance calculation circuit 22, a peripheral average luminance calculation circuit 23, a scattered radiation influence calculation circuit 24, a multiplier 25, and a subtractor 26. And the image processing unit 27 for performing other image processing.
[0010]
The digital image data is first sent to the low frequency component extraction circuit 21 to extract the low frequency component IS of the image. The low-frequency component extraction circuit 21 is constituted by a low-pass spatial filter that performs a convolution operation using, for example, a NF × NF matrix template as shown in FIG. The digital image data is also sent to the small neighborhood average luminance calculation circuit 22 and the peripheral average luminance calculation circuit 23.
[0011]
Each of the small neighborhood average luminance calculation circuit 22 and the peripheral average luminance calculation circuit 23 is a spatial filter configured by a convolution operation using a template, for example. The small neighborhood average luminance calculation circuit 22 calculates an average luminance MS of a small area around the pixel of interest, and the peripheral average luminance calculation circuit 23 calculates an average luminance ML in a relatively wide area around the pixel. is there. Therefore, the template used in the former is composed of a small NS × NS matrix as shown in FIG. 2B, and the template used in the latter is composed of a relatively large NL × NL surrounding the template. These NS × NS and NL × NL templates all use a normalized weight of “1”. It is desirable to set the NS × NS matrix small to obtain the average luminance in the vicinity of the target pixel, and to set the NL × NL matrix large to obtain the average luminance in a relatively wide range.
[0012]
The scattered radiation influence calculation circuit 24 calculates the scattered radiation influence K for each pixel from the MS and ML obtained above. In this example, K is obtained from the value of MS-ML using a graph as shown in FIG. Then, the multiplier 25 multiplies the low-frequency component IS by the influence degree K (IS × K), sends this as a correction value IC to the subtractor 26, and subtracts the correction value IC from the original digital image data. As a result, the image data from which the influence of the scattered radiation has been removed is subjected to various digital image processing such as window conversion and edge enhancement in the image processing unit 27, and then sent to the D / A converter 17, where it is an analog image signal. Is returned to the TV monitor device 18 for display.
[0013]
Here, it is assumed that the true data profile on one line of the image is as shown in FIG. The narrow portion where the brightness sharply falls corresponds to, for example, a blood vessel portion in the case of angiography. However, the influence of scattered radiation means that if there is a low-luminance part around a high-luminance part, X-rays ooze out from the high-luminance part to the low-luminance part. The luminance in the high-intensity portion is low, and conversely, the luminance in the low-luminance portion is high. Therefore, due to the influence of the scattered radiation, the profile of one line of the actually obtained image data is as shown in FIG. 4B. When the low-frequency component IS is extracted from this image data, it becomes as shown in FIG. 4C, which includes the low-frequency component of the true data and the influence of scattering.
[0014]
On the other hand, the positive value of MS-ML means that the pixel value in the small neighborhood is larger than the peripheral part. In such a case, the pixel value is lower than the true value due to scattering. Conceivable. Conversely, the negative value of MS-ML means that the pixel value in the small neighborhood is smaller than that in the peripheral part. In such a case, the pixel value is higher than the true value due to scattering. Conceivable. Therefore, when the MS-ML value is positive, the influence of scattering acts on the negative side with respect to the pixel value. Conversely, when the MS-ML value is negative, the influence of scattering is positive on the pixel value. Work to the side. Therefore, it can be understood that K is obtained according to the value of MS-ML by using a curve (for example, a thick line) as shown in FIG. 3, multiplied by IS, and then subtracted from the original image data. In FIG. 3, the reason that the MS-ML value is near 0 and the K value is 0 is to provide a dead zone to avoid the influence of noise. The curve shown in FIG. 3 can be changed like a thin line or a dotted line shown in FIG. 3 according to the X-ray conditions (tube voltage, tube current, image intensifier type / field of view, etc.). The optimal curve is obtained through experiments and computer simulations. Although the difference between MS and ML is used here, K may be obtained from a similar curve using the ratio between MS and ML.
[0015]
The correction value IC obtained by multiplying the low frequency component IS by K is as shown in FIG. 4D, and an image as shown in FIG. 4E is obtained by subtracting this IC from the original image data. Data can be obtained. As described above, since the correction value IC reflects the influence of scattering more, it is possible to obtain data excluding the influence of scattering. As can be seen from the comparison between the original image data shown in FIG. 4B and the corrected data shown in FIG. 4E, the contrast and sharpness of a steep and narrow depression such as a blood vessel is reduced. Reproduced, blood vessels and the like are easier to see.
[0016]
In the above description, K is calculated for each pixel. However, K may be calculated for each small area, and K may be obtained for each pixel by interpolation. Further, although the small neighborhood average luminance MS is obtained by a process separate from the low frequency component extraction processing in the above, the small neighborhood average luminance MS is a kind of low-pass filter output. The obtained value IS may also be used. Furthermore, in the above description, the low-frequency component extraction circuit 21, the small neighborhood average luminance calculation circuit 22, the peripheral average luminance calculation circuit 23, the scattered radiation influence calculation circuit 24, and the like have been described as being configured by hardware. Of course, it is possible to obtain it by processing by software.
[0017]
【The invention's effect】
As explained above, according to the X-ray image digital processing apparatus of the present invention, the influence of scattered radiation is appropriately removed, the contrast and sharpness of the original subject are reproduced, and it is easier to see and has excellent image quality. An image can be obtained. Further, the S / N ratio can be improved without enhancing high frequency noise components such as quantum noise.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of the present invention.
FIG. 2 is a schematic diagram showing a template.
FIG. 3 is a graph showing a K value calculation curve;
FIG. 4 shows each data profile.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Subject 11 X-ray tube 12 Image intensifier 13 Optical system 14 TV camera 15 A / D converter 16 Digital image processing device 17 D / A converter 18 TV monitor device 20 Scattered ray removal unit 21 Low frequency component extraction circuit 22 Small neighborhood average luminance calculation circuit 23 Peripheral average luminance calculation circuit 24 Scattered ray influence calculation circuit 25 Multiplier 26 Subtractor 27 Image processing unit

Claims (1)

入力されたアナログX線画像信号をA/D変換するA/D変換手段と、デジタル化された画像信号から低周波成分を抽出する手段と、デジタル化された画像信号から、着目する画素の小近傍およびその周辺部における平均輝度をそれぞれ求める手段と、該小近傍の平均輝度と周辺部の平均輝度との関係を表わす、前者が後者より大きいときは正の値をとり前者が後者より小さいときは負の値をとる、係数を求める手段と、上記の低周波成分にこの係数を乗じた上で元のデジタル化された画像信号から差し引く手段とを備えることを特徴とするX線画像デジタル処理装置。  A / D conversion means for A / D converting the input analog X-ray image signal, means for extracting a low frequency component from the digitized image signal, and a small pixel of interest from the digitized image signal Means for determining the average brightness in the vicinity and its surrounding area, and the relationship between the average brightness of the small neighborhood and the average brightness in the surrounding area. X-ray image digital processing comprising: means for obtaining a negative value, a means for obtaining a coefficient; and means for multiplying the low-frequency component by the coefficient and subtracting it from the original digitized image signal apparatus.
JP10188796A 1996-03-31 1996-03-31 X-ray image digital processing device Expired - Fee Related JP3721632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10188796A JP3721632B2 (en) 1996-03-31 1996-03-31 X-ray image digital processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10188796A JP3721632B2 (en) 1996-03-31 1996-03-31 X-ray image digital processing device

Publications (2)

Publication Number Publication Date
JPH09270004A JPH09270004A (en) 1997-10-14
JP3721632B2 true JP3721632B2 (en) 2005-11-30

Family

ID=14312452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10188796A Expired - Fee Related JP3721632B2 (en) 1996-03-31 1996-03-31 X-ray image digital processing device

Country Status (1)

Country Link
JP (1) JP3721632B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105427355A (en) * 2015-11-26 2016-03-23 上海联影医疗科技有限公司 Housing, method and apparatus for calculating scattering component of X-ray image, and method and apparatus for reconstructing X-ray image

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4595294B2 (en) * 2003-06-11 2010-12-08 株式会社島津製作所 Image processing device
JP4639037B2 (en) * 2003-07-18 2011-02-23 キヤノン株式会社 Image processing method and apparatus
JP6362914B2 (en) * 2014-04-30 2018-07-25 キヤノンメディカルシステムズ株式会社 X-ray diagnostic apparatus and image processing apparatus
JP6548907B2 (en) 2015-02-24 2019-07-24 三星ディスプレイ株式會社Samsung Display Co.,Ltd. IMAGE PROCESSING APPARATUS, IMAGE PROCESSING METHOD, AND PROGRAM
JP6548403B2 (en) 2015-02-24 2019-07-24 三星ディスプレイ株式會社Samsung Display Co.,Ltd. IMAGE PROCESSING APPARATUS, IMAGE PROCESSING METHOD, AND PROGRAM
JP6897585B2 (en) 2018-01-24 2021-06-30 コニカミノルタ株式会社 Radiation image processing equipment, scattered radiation correction method and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105427355A (en) * 2015-11-26 2016-03-23 上海联影医疗科技有限公司 Housing, method and apparatus for calculating scattering component of X-ray image, and method and apparatus for reconstructing X-ray image
CN105427355B (en) * 2015-11-26 2018-04-03 上海联影医疗科技有限公司 The method and device that case, the scattering composition of radioscopic image are calculated, rebuild

Also Published As

Publication number Publication date
JPH09270004A (en) 1997-10-14

Similar Documents

Publication Publication Date Title
JP3976337B2 (en) Image processing for noise reduction
US6766064B1 (en) Method and apparatus for performing a contrast based dynamic range management algorithm
US6760401B2 (en) Apparatus and method for processing of digital images
JP2003244542A (en) Motion artefact reduction algorithm for double-exposed double-energy x-ray radiography
EP1298590A1 (en) Method of processing images for digital subtraction angiography
JPH1063836A (en) Method and device for emphasizing image
JP3721632B2 (en) X-ray image digital processing device
US8374417B2 (en) Image processing method and radiographic apparatus using the same
KR20130128690A (en) Method for image processing and image processing apparatus thereof
JP2004054726A (en) Image processing device
CN111685782B (en) Radiation imaging apparatus, image processing method, and storage medium
US20110305382A1 (en) Image processing method and radiographic apparatus using the same
JP2001283215A (en) Image processor
US6278765B1 (en) Process for producing diagnostic quality x-ray images from a fluoroscopic sequence
US6956977B2 (en) Methods for improving contrast based dynamic range management
JP4032409B2 (en) Fluoroscopic image processing device
JPH10105701A (en) Method and device for radio graph emphasis processing
JP3629875B2 (en) X-ray image digital processing device
JPH10229519A (en) X-ray image digital processor
KR101970989B1 (en) Method and system for applying filters for dental CT imaging
JP2009054013A (en) Image processor
JP4006083B2 (en) Image processing apparatus, method, and computer-readable storage medium
JP3298445B2 (en) X-ray image digital processing device
JP3248238B2 (en) X-ray imaging device
Maher et al. Digital fluoroscopy: a new development in medical imaging

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050124

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050331

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees