JPH09269334A - Measuring apparatus for gentle wind speed - Google Patents

Measuring apparatus for gentle wind speed

Info

Publication number
JPH09269334A
JPH09269334A JP10612096A JP10612096A JPH09269334A JP H09269334 A JPH09269334 A JP H09269334A JP 10612096 A JP10612096 A JP 10612096A JP 10612096 A JP10612096 A JP 10612096A JP H09269334 A JPH09269334 A JP H09269334A
Authority
JP
Japan
Prior art keywords
flow
shaft
plate
gas
flow velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10612096A
Other languages
Japanese (ja)
Other versions
JP3457801B2 (en
Inventor
Takeshi Nonaka
剛 野中
Kimisuke Watabe
公介 渡部
Shigeru Nakamura
茂 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10612096A priority Critical patent/JP3457801B2/en
Publication of JPH09269334A publication Critical patent/JPH09269334A/en
Application granted granted Critical
Publication of JP3457801B2 publication Critical patent/JP3457801B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a measuring apparatus by which, when the flow velocity of a very small wind, a gas or the like flowing inside a conduit is measured, the flow velocity can be measured with good accuracy even under a very small flow velocity condition and which is excellent in portability and simplicity. SOLUTION: An upper column 2 is fixed to the upper part of a horizontal shaft 3 which is arranged at right angles to the flow direction of a gas, an upper-part plate 1 is attached to its end part in such a way that the thickness direction of the plate is directed to the flow of the gas, a lower column 4 is fixed to the lower part of the shaft 3, and a lower-part plate 5 whose thickness direction is directed at right angles to the flow of the gas is attached to its end part in such a way that the drag of the flow becomes maximum. Then, the weight of the lower-part plate 5 is constituted so as to be a little heavier than the weight of the upper-part plate 1, and the length of the upper-part column 2 is formed to be identical to that of the lower-part column 4. When the shaft 3 is turned, the angle od rotation of the shaft is detected by a potentiometer 7 which is installed at the end of the shaft, and a flow velocity is found according to the relationship between a precertified flow velocity and the angle of rotation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は管路内を流れる微小
な風、ガス等の気体の流速を測定する計測装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measuring device for measuring the flow velocity of a gas such as a minute wind or gas flowing in a pipe.

【0002】[0002]

【従来の技術】従来管路内を流れる気体の流速を測定す
る簡便な装置としては、主にピトー管や熱線風速計が利
用されている。また、超音波流速計やレーザ流速計も流
速測定に使用されている。(例えば一例として実開昭6
2−192260号公報参照のこと。)
2. Description of the Related Art Conventionally, a Pitot tube or a hot wire anemometer has been mainly used as a simple device for measuring the flow velocity of gas flowing in a pipe. Further, ultrasonic velocity meters and laser velocity meters are also used for velocity measurement. (For example, as an example,
See 2-192260. )

【0003】ピトー管を使用して気体の流速を測定する
原理は、流体の全圧と静圧の差から動圧を求め、これか
ら流速を求めるものであり、また熱線流速計の測定原理
は、通電したワイヤーに気体の流れが当ると、ワイヤー
が冷却され、電気抵抗が変化することを利用したもので
ある。
The principle of measuring the flow velocity of a gas using a Pitot tube is to obtain the dynamic pressure from the difference between the total pressure of the fluid and the static pressure, and then to obtain the flow velocity. When the flow of gas hits the energized wire, the wire is cooled and the electrical resistance changes.

【0004】さらに、超音波流速計やレーザ流速計は装
置が大がかりなものであり、可搬性や取扱いの簡便性に
難点があり、利用度は少ない。
Further, the ultrasonic velocimeter and the laser velocimeter are large-scaled devices, have a difficulty in portability and handling, and are less utilized.

【0005】[0005]

【発明が解決しようとする課題】ところで、前述のよう
な従来技術のうちピトー管を使用した気体の流速計測装
置では、0.1m/s以下の微小流速を測定する場合動
圧は非常に小さなものとなり、測定器の誤差以下の値と
なってしまいピトー管が使用できない不具合を生ずる。
By the way, in the gas flow velocity measuring device using the Pitot tube among the conventional techniques as described above, the dynamic pressure is very small when a minute flow velocity of 0.1 m / s or less is measured. However, the value becomes less than the error of the measuring instrument, which causes a problem that the Pitot tube cannot be used.

【0006】また熱線流速計を使用した計測装置の場合
も、微小流速のもとでは、流体がうばう熱の量が非常に
小さくなるため、電圧と流速の直線性が保てなくなり、
正確な流速の測定が困難となる不具合がある。
Also in the case of a measuring device using a hot-wire anemometer, the amount of heat dissipated by a fluid becomes extremely small under a very small flow rate, and therefore the linearity between the voltage and the flow rate cannot be maintained.
There is a problem that it is difficult to measure the flow velocity accurately.

【0007】本発明は、上記従来装置の各不具合点を解
消し、微小流速条件下においても流速の測定が可能で、
かつ可搬性、簡便性に優れた新たな流速測定装置を提供
することを目的としている。
The present invention solves each of the problems of the conventional device described above and enables measurement of the flow velocity even under a minute flow velocity condition.
Moreover, it is an object of the present invention to provide a new flow velocity measuring device which is excellent in portability and convenience.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
の構成として本発明の微風速計測装置は、気体の流れに
直交し、かつ水平に配置した軸の上下に、等しい長さの
上支柱及び下支柱をそれぞれ該軸に対し垂直方向に一体
的に立設し、前記上支柱の上端には、流れの抗力が最小
となるよう板の厚み方向を気体の流れに向け受風面積を
減少させた平板を取付け、また、前記下支柱の下端に
は、流れの抗力が最大となるよう板の厚み方向を気体の
流れに直角に向けた平板を取付け、該下支柱側の平板の
重さを前記上支柱側に取付けた平板の重さより、極く微
かに重く構成し、さらに前記水平に配置した軸の一端に
軸の回転角検知用のポテンショメータを具備したことを
特徴としている。
As a structure for achieving the above-mentioned object, a fine wind velocity measuring device of the present invention comprises upper struts of equal length above and below a shaft which is orthogonal to the flow of gas and arranged horizontally. And the lower stanchions are integrally erected vertically in the direction perpendicular to the axis. At the upper end of the upper stanchions, the wind direction is reduced by directing the plate thickness direction to the gas flow so that the drag force of the flow is minimized. Attached to the lower strut, and at the lower end of the lower strut, a flat plate whose thickness direction is oriented at right angles to the flow of gas so that the drag force of the flow is maximized is attached. Is configured to be slightly heavier than the weight of the flat plate attached to the upper column side, and a potentiometer for detecting a rotation angle of the shaft is further provided at one end of the horizontally arranged shaft.

【0009】[0009]

【発明の実施の形態】以下図面により本発明の最良と思
われる実施の形態について説明する。図1は本発明微風
速計測装置の一例の側面図、図2は同装置の正面図、図
3は同装置における各構成部材にかかるモーメントのつ
り合いを示す概念図、図4は本装置の全体斜視図であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a side view of an example of the slight air velocity measuring device of the present invention, FIG. 2 is a front view of the same device, FIG. 3 is a conceptual diagram showing the balance of moments applied to each component of the device, and FIG. 4 is the entire device. It is a perspective view.

【0010】これらの図において、1は上部板、2は上
支柱、3は水平軸で、図4に矢印で示す気体の流れ方向
に対して直交して配置された水平軸3の上方に垂直方向
に向けて上支柱2は立設固定されており、該上支柱2の
先端に取付けられた上部板1は、図4に示すように気体
の流れに対して板の厚み方向を向けて配設されている。
In these drawings, 1 is an upper plate, 2 is an upper column, 3 is a horizontal axis, which is perpendicular to the upper side of a horizontal axis 3 arranged orthogonally to the gas flow direction shown by the arrow in FIG. The upper strut 2 is vertically fixed in the direction, and the upper plate 1 attached to the tip of the upper strut 2 is arranged with the thickness direction of the plate oriented with respect to the gas flow as shown in FIG. It is set up.

【0011】そしてこれにより流れの抗力が最小となる
ようにしている。
Thus, the drag force of the flow is minimized.

【0012】4は水平軸3の下方に向けて垂直方向に立
設固定した下支柱で、その下端には、図4に示すように
流れの抗力が最大となるよう板の厚み方向を気体の流れ
に直角に向けた下部板5が取付けられている。
Reference numeral 4 denotes a lower column vertically erected and fixed toward the lower side of the horizontal shaft 3. At the lower end thereof, as shown in FIG. 4, the plate thickness direction is set so as to maximize the drag force of the flow. A lower plate 5 oriented perpendicular to the flow is attached.

【0013】そして軸3よりの上支柱2の長さLu3と、
軸3よりの下支柱4の長さLl3とは等しい長さに形成さ
れている。
Then, the length L u3 of the upper support 2 from the shaft 3
The length L 13 of the lower support column 4 from the shaft 3 is equal to the length.

【0014】なおd1 は下部板5の厚み、d2 は上部板
1の厚みを示し、またLu2は上部板1の横幅、Lu1は同
板の高さ、Ll2は下部板5の横幅、Ll1は同板の高さを
示している。
It should be noted that d 1 is the thickness of the lower plate 5, d 2 is the thickness of the upper plate 1, L u2 is the lateral width of the upper plate 1, L u1 is the height of the same plate, and L l2 is the lower plate 5. The width, L 11 indicates the height of the plate.

【0015】また下支柱4先端に取付けた下部板5の重
さは、上支柱2上部に取付けた上部板1の重さより極く
微かに重くなるよう構成する。
The weight of the lower plate 5 attached to the tip of the lower support column 4 is set to be slightly heavier than the weight of the upper plate 1 attached to the upper part of the upper support column 2.

【0016】6は水平軸3の両側付近に配設した支持材
で、該支持材6により水平軸3を軸支している。
Reference numeral 6 denotes a support member disposed near both sides of the horizontal shaft 3, and the support member 6 supports the horizontal shaft 3 axially.

【0017】7はポテンショメータで、水平に配置され
た軸3の一端に取付けられ、該ポテンショメータにより
軸の回転角は検知されるよう構成されている。
A potentiometer 7 is attached to one end of a horizontally arranged shaft 3, and the potentiometer detects the rotational angle of the shaft.

【0018】つぎに上記装置の作用について説明する。
管路内に風又はガスのような流れが存在する場合、上下
の平板1および5には、重力による力と流れの抗力とに
より、軸3回りのモーメントが発生する。
Next, the operation of the above device will be described.
When a flow such as wind or gas exists in the pipeline, moments about the axis 3 are generated on the upper and lower flat plates 1 and 5 due to the force of gravity and the drag force of the flow.

【0019】流れの抗力は、下部の平板5により強く作
用するので、抗力により軸3を回転させるモーメントが
生じる。
Since the flow drag acts more strongly on the lower flat plate 5, a moment for rotating the shaft 3 is generated by the drag.

【0020】一方、下部平板5の重さは上部平板1より
極く微かであるが重いので、下部平板5の方に強い重力
が働き軸3の回転を阻害するモーメントが生じる。
On the other hand, since the weight of the lower flat plate 5 is extremely slight but heavier than that of the upper flat plate 1, strong gravity acts on the lower flat plate 5 to generate a moment that hinders the rotation of the shaft 3.

【0021】従って上記2つのモーメントが釣り合うよ
うに軸3が回転するので、この回転角を軸端に設けたポ
テンショメータ7で導出し、予め検定しておいた流速と
回転角の関係に従って流速を求めるものである。
Therefore, since the shaft 3 rotates so that the above two moments are balanced, this rotation angle is derived by the potentiometer 7 provided at the shaft end, and the flow velocity is obtained in accordance with the relation between the flow velocity and the rotation angle which has been verified in advance. It is a thing.

【0022】図3は各部材にかかる軸回りのモーメント
のつり合いを示す説明図で、該図によりさらに本発明の
作用を詳しく説明する。
FIG. 3 is an explanatory view showing the balance of the moments about the axes applied to the respective members, and the operation of the present invention will be described in more detail with reference to the drawing.

【0023】図3において、Gl は、下部板5にかかる
重力、mGlはそのモーメント、Dlは、下部板5にかか
る流れの抗力、mDlはそのモーメント、Gu は上部板1
にかかる重力、mGuはそのモーメント、Du は上部板1
にかかる流れの抗力、mDuはそのモーメントである。
In FIG. 3, G l is the gravity applied to the lower plate 5, m Gl is its moment, D l is the flow drag force applied to the lower plate 5, m Dl is its moment, and G u is the upper plate 1.
Gravity, m Gu is the moment, D u is the upper plate 1
The flow drag force, m Du, is the moment.

【0024】時計回りのモーメントを正とすると、正と
負のモーメントは等しいので正のモーメント即ち(mGl
+mDu)と負のモーメント(mDl+mGu)は等しいか
ら、軸回りのモーメントはmGl−mDl−mGu+mDu=0
となる。
If the clockwise moment is positive, the positive and negative moments are equal, so the positive moment, that is, (m Gl
+ M Du ) and the negative moment (m Dl + m Gu ) are equal, the moment around the axis is m Gl −m Dl −m Gu + m Du = 0
Becomes

【0025】ここで、上部板1、下部板5の厚み、
2 ,d1 を他の寸法と比較して十分小さくすると、
Here, the thickness of the upper plate 1 and the lower plate 5,
If d 2 and d 1 are sufficiently small compared to other dimensions,

【0026】[0026]

【数1】 [Equation 1]

【0027】と仮定できる。It can be assumed that

【0028】従ってモーメントは(mGl−mGu)−mDl
=0となる。
Therefore, the moment is (m Gl −m Gu ) −m Dl
= 0.

【0029】ここで図1,図2に定義された各部材の寸
法を用いてモーメントを計算すると以下のようになる。
Here, the moment is calculated using the dimensions of each member defined in FIGS. 1 and 2 as follows.

【0030】[0030]

【数2】 [Equation 2]

【0031】[0031]

【数3】 (Equation 3)

【0032】[0032]

【数4】 (Equation 4)

【0033】ここで、P1 は下部材の密度、gは重力加
速度、P2 は上部材の密度、Pa は流体の密度、uは流
速、Cd は抵抗係数である。
Here, P 1 is the density of the lower member, g is the acceleration of gravity, P 2 is the density of the upper member, P a is the density of the fluid, u is the flow velocity, and C d is the resistance coefficient.

【0034】1例として、支柱2,4の長さを各々10
cm、下部板5、および上部板1の材質を杉を用いて
(密度=0.40g/cm3 )それぞれの寸法を、Ll1
=10.05cm(下部材を少し重くする)Ll2=Lu1
=Lu2=10cm、d1 =d2=0.1cmとすると、
風速0.1m/sの気流中では本計測器の傾きθは1
3.6°となる。
As an example, the lengths of the columns 2 and 4 are 10
cm, the lower plate 5 and the upper plate 1 were made of cedar (density = 0.40 g / cm 3 ) and their respective dimensions were L l1
= 10.05 cm (the lower member is made slightly heavier) L l2 = L u1
= L u2 = 10 cm and d 1 = d 2 = 0.1 cm,
The inclination θ of this measuring instrument is 1 in the air flow of 0.1 m / s
It becomes 3.6 °.

【0035】ただし、上記の計算では、上部板の抗力に
よるモーメントを無視しているため、傾きθは13.6
°よりも小さくなると考えられるが、上・下部材の風に
向かう方向の板厚は、0.1cmと10cmと100倍
異なっているので、上部材の風の抗力によるモーメント
は、十分小さく、本装置は、0.1m/sの微風速にお
いても十分その機能を発揮する。
However, since the moment due to the drag force of the upper plate is ignored in the above calculation, the inclination θ is 13.6.
It is considered that the upper and lower members are 100 times different in thickness in the direction toward the wind, so the moment due to the drag force of the upper member is sufficiently small. The device sufficiently performs its function even at a low wind speed of 0.1 m / s.

【0036】また、アルミを部材として使用した場合、
各部の寸法をLl1=10.02cm、Ll2=Lu1=Lu3
=10cm、d1 =d2 =0.05cmとすると、θは
10.2度となり、これも十分にその機能を発揮する。
When aluminum is used as a member,
The dimensions of the respective parts L l1 = 10.02cm, L l2 = L u1 = L u3
= 10 cm and d 1 = d 2 = 0.05 cm, θ becomes 10.2 degrees, and this also sufficiently exhibits its function.

【0037】[0037]

【発明の効果】以上説明したように本発明の微風速計測
装置によれば以下に示す効果を奏する。 (1)計測器の上下にセットされた平板にかかる流れの
抗力の差と上下平板の微小な重さの差を利用するので、
0.1m/s程度の微風速でもある程度精度よく計測で
きる。
As described above, the slight air velocity measuring device of the present invention has the following effects. (1) Since the difference in the drag force of the flow applied to the flat plates set above and below the measuring instrument and the minute difference in weight between the upper and lower flat plates are used,
It is possible to measure with a certain degree of accuracy even at a slight wind speed of about 0.1 m / s.

【0038】(2)装置が非常に単純な構造であるの
で、可搬性・簡便性にすぐれ、従来のようなレーザ流速
計や、超音波流速計では設置が難しい場所(例えば、発
電所現地の配管内等)においても、流れの計測が可能で
ある。
(2) Since the device has a very simple structure, it is excellent in portability and convenience, and it is difficult to install it with a conventional laser velocimeter or ultrasonic velocimeter (for example, in the field of a power plant). It is possible to measure the flow even in the pipe).

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の微風速計測装置の一例の側面図であ
る。
FIG. 1 is a side view of an example of a slight air velocity measuring device of the present invention.

【図2】同装置の正面図である。FIG. 2 is a front view of the same device.

【図3】同装置における各部材にかかるモーメントの釣
り合い状態を示す概念図である。
FIG. 3 is a conceptual diagram showing a state of balance of moments applied to each member in the same apparatus.

【図4】同装置の全体斜視図である。FIG. 4 is an overall perspective view of the same device.

【符号の説明】[Explanation of symbols]

1 上部板 2 上支柱 3 軸 4 下支柱 5 下部板 6 支持材 7 ポテンショメータ 1 Upper plate 2 Upper strut 3 Shaft 4 Lower strut 5 Lower plate 6 Supporting material 7 Potentiometer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 気体の流れに直交し、かつ水平に配置し
た軸の上下に、等しい長さの上支柱及び下支柱をそれぞ
れ該軸に対し垂直方向に一体的に立設し、前記上支柱の
上端には、流れの抗力が最小となるよう板の厚み方向を
気体の流れに向け受風面積を減少させた平板を取付け、
また、前記下支柱の下端には、流れの抗力が最大となる
よう板の厚み方向を気体の流れに直角に向けた平板を取
付け、該下支柱側の平板の重さを前記上支柱側に取付け
た平板の重さより、極く微かに重く構成し、さらに前記
水平に配置した軸の一端に軸の回転角検知用のポテンシ
ョメータを具備したことを特徴とする微風速計測装置。
1. An upper strut and a lower strut of equal length are vertically provided integrally with each other vertically above and below a shaft which is orthogonal to the flow of gas and is horizontally arranged. At the upper end of the plate, a flat plate with a reduced wind-receiving area with the thickness direction of the plate facing the gas flow is installed to minimize the flow drag force.
Further, a flat plate whose thickness direction is perpendicular to the gas flow is attached to the lower end of the lower strut to maximize the flow drag force, and the weight of the lower strut side flat plate is set to the upper strut side. A slight wind velocity measuring device characterized in that it is constructed to be slightly heavier than the weight of the attached flat plate, and further provided with a potentiometer for detecting the rotation angle of the shaft at one end of the horizontally arranged shaft.
JP10612096A 1996-04-01 1996-04-01 Micro wind speed measurement device Expired - Fee Related JP3457801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10612096A JP3457801B2 (en) 1996-04-01 1996-04-01 Micro wind speed measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10612096A JP3457801B2 (en) 1996-04-01 1996-04-01 Micro wind speed measurement device

Publications (2)

Publication Number Publication Date
JPH09269334A true JPH09269334A (en) 1997-10-14
JP3457801B2 JP3457801B2 (en) 2003-10-20

Family

ID=14425593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10612096A Expired - Fee Related JP3457801B2 (en) 1996-04-01 1996-04-01 Micro wind speed measurement device

Country Status (1)

Country Link
JP (1) JP3457801B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104569480A (en) * 2015-02-04 2015-04-29 西安科技大学 Liquid impact force and flow velocity measuring instrument and measuring method thereof
CN115877030A (en) * 2023-02-22 2023-03-31 金田产业发展(山东)集团有限公司 Measuring device for hydraulic engineering

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104569480A (en) * 2015-02-04 2015-04-29 西安科技大学 Liquid impact force and flow velocity measuring instrument and measuring method thereof
CN104569480B (en) * 2015-02-04 2018-10-16 西安科技大学 A kind of liquid impulse force Flow speed measurer and its measurement method
CN115877030A (en) * 2023-02-22 2023-03-31 金田产业发展(山东)集团有限公司 Measuring device for hydraulic engineering

Also Published As

Publication number Publication date
JP3457801B2 (en) 2003-10-20

Similar Documents

Publication Publication Date Title
JP4487059B2 (en) Apparatus and method for determining wind speed and direction experienced by a wind turbine
Van Oudheusden Silicon thermal flow sensors
CN203053472U (en) Tool for measuring pressure and velocity of eddy flow field
Kristensen The perennial cup anemometer
Sinclair Some preliminary dust devil measurements
JP6418972B2 (en) Wind direction anemometer and wind direction wind speed measurement method
JP2016004031A (en) Wind tunnel test system and wind tunnel test method
US11592838B2 (en) Velocity sensing for aircraft
Morris et al. Velocity measurements in the wake of an automotive cooling fan
Silverstein et al. Experimental verification of the theory of oscillating airfoils
Butterfield Application of thermal anemometry and high-frequency measurement of mass flux to aeolian sediment transport research
JP3457801B2 (en) Micro wind speed measurement device
US20080294356A1 (en) Self-orienting embedded in-situ flux system
Ghaemi-Nasab et al. A procedure for calibrating the spinning ultrasonic wind sensors
US7117735B2 (en) Fluid flow direction and velocity sensor
US3719079A (en) Air momentum anemometer
CN209027762U (en) The vertical Multipoint synchronous measuring device of hot line
CN221037935U (en) Wind-tunnel wind-swing-shrinkage-ratio testing device
Lawson Jr et al. A note on the measurement of transverse velocity fluctuations with heated cylindrical sensors at small mean velocities
Larguier Experimental analysis methods for unsteady flows in turbomachines
Larssen et al. The Generation and Structure of High Reynolds Number Homogeneous Turbulence
Joseph et al. Evaluation and performance enhancement of a pressure transducer under flows, waves, and a combination of flows and waves
JP3565374B2 (en) Current meter
CN117168754A (en) Wind tunnel wind swing shrinkage ratio testing device and method
JP3535056B2 (en) Anemometer with pressure inlet and wind direction anemometer

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030708

LAPS Cancellation because of no payment of annual fees